JPH03218462A - Method of measuring anti-dna value in biological liquid and measuring kit - Google Patents

Method of measuring anti-dna value in biological liquid and measuring kit

Info

Publication number
JPH03218462A
JPH03218462A JP29350290A JP29350290A JPH03218462A JP H03218462 A JPH03218462 A JP H03218462A JP 29350290 A JP29350290 A JP 29350290A JP 29350290 A JP29350290 A JP 29350290A JP H03218462 A JPH03218462 A JP H03218462A
Authority
JP
Japan
Prior art keywords
dna
tracer
double
antibody
stranded
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP29350290A
Other languages
Japanese (ja)
Other versions
JP2649100B2 (en
Inventor
Masahide Kawamura
雅英 川村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon DPC Corp
Original Assignee
Nippon DPC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon DPC Corp filed Critical Nippon DPC Corp
Priority to JP2293502A priority Critical patent/JP2649100B2/en
Publication of JPH03218462A publication Critical patent/JPH03218462A/en
Application granted granted Critical
Publication of JP2649100B2 publication Critical patent/JP2649100B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Measuring Or Testing Involving Enzymes Or Micro-Organisms (AREA)
  • Investigating Or Analysing Biological Materials (AREA)

Abstract

PURPOSE: To make stable supply of a reagent easier and to reduce error by using a DNA tracer wherein a linear double-strand DNA obtained by cutting a double-strand annular TNA with restriction enzyme is given a label. CONSTITUTION: An organism, such as Escherichia coli, which contains a double-strand annular DNA such as recombination type or natural type plasmid DNA is cultured in an appropriate medium, and bacteria is collected by such method as centrifugation, filtering, etc., then bacteriolisis and protein-removal are performed for extracting nucleic acid, and RAN is resolved with RAN resolution enzime, thus pair DNA fraction is obtained. Then, the plasmide DNA is separated by electrophoresis, etc., and the plasmide DNA is cut with such restriction enzime as Eco RI, and a DNA fragment is labeled with in vitro. Then, a labeled DNA tracer and an anti DNA antibody in a patient specimen are reacted each other in the appropriate buffer liquid, and after the reaction, the antibody which was combined with antibody is separated from the tracer which was not conbined. Then, with the use of the DNA tracer, an anti DNA antibody value in a sample is measured.

Description

【発明の詳細な説明】 「産業上の利用分野」 本発明は、生物学的液体試料中の抗DNA抗体価を測定
する方法および測定用キットに関するものである。
DETAILED DESCRIPTION OF THE INVENTION "Industrial Application Field" The present invention relates to a method and kit for measuring anti-DNA antibody titer in a biological fluid sample.

「従来の技術」 血清又は血漿等の生物学的液体中の抗DNA抗体の測定
は、全身性紅斑狼癒(S L E : Systcvi
cLupus Erythesatosus)の診断に
極めて重要な検査となっている。この抗DNA抗体には
、l)二本鎖DNAのみ反応する抗体、2)二本鎖及び
一本鎖DNAに反応する抗体、3)一本#tIDNAに
のみ反応する抗体が知られている。これらのうち、l)
及び2)の抗体はSLE患者の血中に特異的に見られ、
診断上重要であるか、3)の抗体は他の疾患(慢性関節
リウマチ、シェーグレン症候群等)でも出現する為、診
断の有用性は低い。二本!1DNAを抗原とすると、■
)及び2)の抗体が反応し、一本IDNAを抗原とする
と、2)及び3)の抗体が反応する。この為SLEに対
し、特異性の高い診断を行う為には、純枠な二本鎖DN
Aを抗原とした抗DNA抗体測定系が重要である。
``Prior Art'' The measurement of anti-DNA antibodies in biological fluids such as serum or plasma is a
cLupus Erythesatosus) has become an extremely important test for diagnosis. Known anti-DNA antibodies include 1) antibodies that react only with double-stranded DNA, 2) antibodies that react with both double-stranded and single-stranded DNA, and 3) antibodies that react only with single #tI DNA. Of these, l)
and 2) antibodies are specifically found in the blood of SLE patients,
Although it is important for diagnosis, the antibody in 3) also appears in other diseases (rheumatoid arthritis, Sjögren's syndrome, etc.), so its usefulness for diagnosis is low. two! 1 If DNA is used as an antigen, ■
) and 2) react, and when one IDNA is used as an antigen, antibodies 2) and 3) react. Therefore, in order to diagnose SLE with high specificity, it is necessary to use pure double-stranded DNA.
An anti-DNA antibody measurement system using A as an antigen is important.

このような抗DNA抗体価の測定法としては、赤血球凝
集反応法、放射免疫測定法(RIA法)、酵素免疫測定
法(E I A法)がある。
Methods for measuring such anti-DNA antibody titers include hemagglutination, radioimmunoassay (RIA), and enzyme immunoassay (EIA).

赤面球凝集反応法は、RIA法、EIA法に比べ、安価
なために広く用いられているが、感度.定量性に欠ける
という欠点がある。これに対し、It l A法、EI
A法は感度と定量性がよく、SLE患者の重篤度または
回復度とよく相関するために臨床上極めて有効である。
The blush sphere agglutination reaction method is widely used because it is cheaper than the RIA method and EIA method, but the sensitivity is low. The drawback is that it lacks quantitative properties. On the other hand, It l A method, EI
Method A has good sensitivity and quantitative properties, and correlates well with the severity or degree of recovery of SLE patients, so it is extremely effective clinically.

その中で、Fa r r法といわれる標識DNAを用い
た方法は最も高感度で精度の良い手法として現在広く普
及している。Fa r r法では、DNAを放射能で標
識したDNAトレーサーと患者検体中の抗DNA抗体を
反応させた後、終濃度が50%飽和となるように硫安(
硫酸アンモニウム)水溶液を加えて混和後、遠心分離し
、イムノグ口プリンを沈澱させ、イムノグ口プリンと結
合して沈澱した放射能(D N A量)より抗体価を算
出する。
Among these methods, a method using labeled DNA called the Farr method is currently widely used as the most sensitive and accurate method. In the Farr method, a radioactively labeled DNA tracer is reacted with an anti-DNA antibody in a patient specimen, and then ammonium sulfate (ammonium sulfate) is added so that the final concentration is 50% saturation.
After adding and mixing an aqueous solution (ammonium sulfate), the mixture is centrifuged to precipitate Immunoguchi purine, and the antibody titer is calculated from the radioactivity (amount of DNA) precipitated by binding with Immunoguchi purine.

これは、50%飽和硫安水溶液中でDNAが沈澱せず、
抗体と結合したDNAは沈澱する、という原理に基づい
ている。
This is because DNA does not precipitate in a 50% saturated ammonium sulfate aqueous solution.
It is based on the principle that DNA bound to antibodies precipitates.

「発明が解決しようとする課題」 これまで行われてきた抗DNA抗体測定系には下記の問
題点があった。
"Problems to be Solved by the Invention" The anti-DNA antibody measurement systems that have been used so far have had the following problems.

(イ)測定系内の抗原分子数の管理 (口)抗二本鎖DNA抗体測定系への一本鎖DNAの混
入 (ハ)抗体価と抗原結合量の直線性、 これらの点について、それぞれ従来技術を説明する。
(b) Control of the number of antigen molecules in the measurement system (1) Contamination of single-stranded DNA into the anti-double-stranded DNA antibody measurement system (c) Linearity of antibody titer and antigen binding amount Regarding each of these points, The conventional technology will be explained.

〔従来技術〕[Prior art]

(イ)測定系内の抗原分子数の管理について、これまで
の抗DNA抗体測定系においては、その抗原として牛胸
腺DNA  (特開昭58−56694号公報)ヒト培
養細胞D N A (Pincusら、The New
 England Journal of Medic
ine.(1969)2gI  P 701) 、C 
rithfdia属のネットワークDNAを精製したも
の(特開昭60−78349号公報)また、牛胸腺DN
Aを超音波で切断したもの(特開昭57−42632号
公報)が用いられてきた,これらのDNAは全て不均一
な長さ (分子量)のDNA分子より構成されている。
(b) Regarding the management of the number of antigen molecules in the measurement system, conventional anti-DNA antibody measurement systems have used bovine thymus DNA (Japanese Unexamined Patent Publication No. 58-56694) and human cultured cell DNA (Pincus et al. , The New
England Journal of Medicine
ine. (1969) 2gI P 701), C
Purified network DNA of the genus rithfdia (Japanese Unexamined Patent Publication No. 60-78349) and bovine thymus DNA
DNAs obtained by cutting A with ultrasonic waves (Japanese Unexamined Patent Publication No. 57-42632) have been used. All of these DNAs are composed of DNA molecules of non-uniform length (molecular weight).

この不均一性(どういう長さのDNAがどういう割合で
入っているか)は、調製したロットにより異なる為、こ
のようなDNAのモル濃度を管理する事は事実上不可能
である。
Since this heterogeneity (what length and what proportion of DNA is included) varies depending on the prepared lot, it is virtually impossible to control the molar concentration of DNA.

抗体の測定系において、系内の抗原の量は測定値にとっ
て非常に重要である。特にFa r r法のように、抗
体価を結合抗原量から求める測定系では、その抗原量は
モル濃度によって常に一定に管理されなければならない
。通常の抗体測定系、例えばリウマチ因子(変性1gG
に対する抗体)の測定系では、抗原が一定の分子層を持
つ為、抗原を重量濃度で管理すれば、同時にモル濃度に
よる管理が可能である。これに対し、上述の不均一なD
NA(分子量が広い分布をもって存在しているDNA)
のような抗原の場合は、重量濃度とモル濃度が一定の関
係を示さない。
In antibody measurement systems, the amount of antigen in the system is very important for the measured value. In particular, in a measurement system such as the Farr method, in which the antibody titer is determined from the amount of bound antigen, the amount of antigen must always be controlled to be constant based on the molar concentration. Usual antibody measurement systems, such as rheumatoid factor (denatured 1gG
In the measurement system for antibodies against antibodies), since the antigen has a certain molecular layer, if the antigen is managed by weight concentration, it is also possible to manage it by molar concentration. On the other hand, the above-mentioned non-uniform D
NA (DNA that exists with a wide distribution of molecular weights)
In the case of antigens such as, weight concentration and molar concentration do not show a fixed relationship.

本願発明者は、従来の抗DNA抗体の測定法が、測定系
内の抗原量がモル数として一定に管理されていないとこ
ろに、測定の精度を悪化させている大きな原因があるこ
とに気付いたのである。
The inventor of the present application has realized that a major cause of deterioration in measurement accuracy in conventional anti-DNA antibody measurement methods is that the amount of antigen in the measurement system is not controlled as a constant number of moles. It is.

(口)一本鎖DNAの混入について 既に述べたように、一本鎖DNAに対する抗体はSLE
以外の疾患でも出現する為、抗二本鎖DNA抗体の測定
系では、一本鎖DNAの混入ができるだけ少ない二本鎖
DNAを抗原として用いなければならない。このような
目的の為に、特開昭57−42632号公報ではSlヌ
クレアーゼ処理、特開昭58−56694号公報ではS
lヌクレアーゼ処理後ハイドロキシアバタイトによる精
製を行っている。Slヌクレアーゼは一本mDNAを特
異的に分解する酵素として知られているが、実際には二
本鎖DNAの分子中に一本鎖DNA切断(Nick)を
入れてしまう。 (宍戸ら、蛋白質核酸酵素,30  
,p981  (1985))このようなNickを持
った二本鎖DNAは、保存中に分解して一本鎖DNAを
生ずる可能性があり、このような抗原の不安定性につい
ては既に指摘されている。(東条ら,日本臨床1985
秋季増刊(下),pl97)また、S!ヌクレアーゼ処
理した二本鎖DNAは末端に若干の一本鎖DNA部分を
含んでいる事も知られており (宍戸ら、前掲)Slヌ
クレアーゼ処理は、二本鎖DNAの純度、安定性といっ
た点で必ずしも完全とはいえない。
(Note) Regarding the contamination of single-stranded DNA, as already mentioned, antibodies against single-stranded DNA are
Since it also appears in other diseases, double-stranded DNA with as little single-stranded DNA as possible must be used as an antigen in anti-double-stranded DNA antibody measurement systems. For this purpose, JP-A No. 57-42632 discloses Sl nuclease treatment, and JP-A No. 58-56694 discloses treatment with Sl nuclease.
After treatment with l nuclease, purification using hydroxyabatite is performed. Although Sl nuclease is known as an enzyme that specifically degrades single-stranded mRNA, it actually creates a single-stranded DNA cleavage (Nick) in a double-stranded DNA molecule. (Shishido et al., Protein Nucleic Acid Enzyme, 30
, p. 981 (1985)) Double-stranded DNA with such nicks may degrade into single-stranded DNA during storage, and the instability of such antigens has already been pointed out. . (Tojo et al., Japan Clinical 1985
Autumn Special Issue (Part 2), pl97) Also, S! It is also known that double-stranded DNA treated with nuclease contains some single-stranded DNA portions at the ends (Shishido et al., supra). It's not necessarily perfect.

また、ハイドロキシアバタイトによる精製は、完全な二
本鎖DNA分子と完全な一本鎖DNA分子の分離には適
ずるが、二本鎖DNAの末端あるいは中央部等に若干の
一本鎖DNA部分を含むような分子を、完全な二本@D
NAから分離する事は困難である。
In addition, purification using hydroxyabatite is suitable for separating completely double-stranded DNA molecules from completely single-stranded DNA molecules, but some single-stranded DNA parts may be present at the ends or the center of double-stranded DNA. Complete two molecules containing @D
It is difficult to separate it from NA.

さらに重大な問題は、不均一な分子量を持つDNA分子
を抗原としている場合、一本鎖DNAの混入量を評価す
る事か極めて難しいという事である。不均一な二本鎖D
NAと、それに由来する一本鎖DNA又は一部に一本鎖
部分を持つ二本鎖DNAは、電気泳動、ゲルろ過、超遠
心、ノ\イドロキソアパタイトカラムといった通常のD
NAの分折に用いられる手法では分離分析できない。従
って、従来法では一本鎖DNAを除く処理をした後、一
本鎖DNAが存在しないものと見なす事のみが可能であ
った。この為、一本鎖DNAの抗原への混入あるいは保
存中に一本!IDNAが生ずる可能性が常に指摘されて
おり (東条ら、前掲)それを否定する明確な反論はな
されていない。
A more serious problem is that when DNA molecules with non-uniform molecular weights are used as antigens, it is extremely difficult to evaluate the amount of single-stranded DNA contamination. Heterogeneous double strand D
NA and single-stranded DNA derived from it or double-stranded DNA with a partially single-stranded portion can be processed using conventional DNA techniques such as electrophoresis, gel filtration, ultracentrifugation, and noxoapatite columns.
Separation and analysis cannot be performed using the techniques used for NA analysis. Therefore, in the conventional method, it was only possible to assume that single-stranded DNA does not exist after processing to remove single-stranded DNA. For this reason, single-stranded DNA may be mixed into the antigen or one strand during storage! The possibility of IDNA generation has always been pointed out (Tojo et al., supra), and no clear refutation has been made to deny it.

(ハ)抗体価と抗原結合量の直線性についてFa r 
r法に於いては、抗体価と抗原結合量の直線性について
も従来法では問題があった。前述した様にFa r r
法は抗DNA抗体の量を抗体に結合した抗原の!(放射
能)より算出する手法である。従って抗体価を正確に求
めるには抗原と抗体が1対1の比で結合する事が最も理
想的で、その様な状態で結合抗原分子数と結合抗体分子
数が等しくなる。抗DNA抗体の測定系では抗原DNA
に対して抗体が十分に少ない場合は抗原と抗体が監対監
で結合するが、抗体が高濃度になると、一つの抗原に複
数の抗体が結合するようになる。
(c) Regarding the linearity of antibody titer and antigen binding amount Far
In the r method, there was also a problem with the linearity of the antibody titer and the amount of antigen binding in the conventional method. As mentioned above, Fa r r
The method is to measure the amount of anti-DNA antibody of the antigen bound to the antibody! (radioactivity). Therefore, in order to accurately determine the antibody titer, it is most ideal for the antigen and antibody to bind in a 1:1 ratio, and in such a state the number of bound antigen molecules becomes equal to the number of bound antibody molecules. In the anti-DNA antibody measurement system, antigen DNA
When the amount of antibodies against an antigen is sufficiently low, the antigen and antibody bind together in a controlled manner, but when the concentration of antibodies becomes high, multiple antibodies bind to one antigen.

この上うな状轢では、抗DNA抗体量が増加しても、結
合抗原量はさほど増加せず、抗体価と抗原結合量の直線
性が悪くなる。これはいわゆる “標準曲線が寝る“と
いう状態であり、測定精度を悪化させる大きな原因とな
っている。本願発明者は、これは抗原に用いるDNAの
長さが長すぎる為、一つの抗原に複数の抗体が結合する
確率が高くなることに起因しているということに気付い
たのである。
In this situation, even if the amount of anti-DNA antibody increases, the amount of bound antigen does not increase significantly, and the linearity between the antibody titer and the amount of antigen binding deteriorates. This is a so-called "standard curve sleeping" condition, and is a major cause of deteriorating measurement accuracy. The inventor of the present application has realized that this is because the length of the DNA used for the antigen is too long, which increases the probability that multiple antibodies will bind to one antigen.

「課題を解決するだめの手段」 上記従来の課題に対し、本願発明者らは鋭意研究を重ね
たところ、DNA トレーサーとして、ブラスミドDN
A等の二本鎖環状DNAを制限酵素で切断して得られる
直線状二本鎖DNAを標識して成るDNA トレーサー
を用いることにより、前述の各問題点に対し、次のよう
な効果を奏することを見出だした。
"Means to Solve the Problem" In order to solve the above-mentioned conventional problems, the inventors of the present application have conducted extensive research and have found that plasmid DNA has been developed as a DNA tracer.
By using a DNA tracer made by labeling linear double-stranded DNA obtained by cutting double-stranded circular DNA such as A with a restriction enzyme, the following effects can be achieved in solving the above-mentioned problems. I found out something.

(イ)抗原のモル濃度による管理 前述したように特異抗体の測定系に於いては、その測定
系内の抗原量がモル濃度で管理されなければならない。
(a) Control by molar concentration of antigen As mentioned above, in a specific antibody measurement system, the amount of antigen in the measurement system must be controlled by molar concentration.

この事を解決するためには、抗原を製造する際に、常に
抗原の単位重量中に含まれる抗原分子数を一定にコント
ロールできなければならない。この目的の為、本顆発明
者は遺伝子組換え型又は天然型ブラスミドDNA等の二
本鎖環状DNAを制限酵素で切断したものを用いた。こ
の方法によれば、抗原DNAの単位重量あたりの抗原分
子数を常に一定なものとする事ができる。
In order to solve this problem, it is necessary to constantly control the number of antigen molecules contained in a unit weight of antigen during antigen production. For this purpose, the present inventors used double-stranded circular DNA, such as genetically recombinant or natural plasmid DNA, cut with restriction enzymes. According to this method, the number of antigen molecules per unit weight of antigen DNA can be kept constant.

例えば、実施例lでは、1442b,と989bpの長
さを持つDNAのtitの混合物が得られる。
For example, in Example 1, a mixture of DNA tits having a length of 1442b and 989 bp is obtained.

一定分子量のDNAを調製する方法として高分子DNA
を超音波や酵素により切断した後、電気泳動、ゲルろ過
又は超遠心等を用いた分子量分画も理論的には考えられ
る。しかし、これらの手法では、最も理想的な状態で分
離して得られたDNA分子でも、ある程度の分子量の分
布をもっており、本発明で用いるDNAのような単位重
量中に常に一定分子数を含むものにはなり得ない。さら
に、これらの分子量分画法では極く少飛の抗原DNAL
,か分画できず、手法も煩雑であって、測定キットの商
業スケールでの製造という点では極めて困難な手法であ
る。従って、単位重量中常に一定の分子数を含むDNA
の製造方法としては、組換え型又は天然型ブラスミド等
の二本鎖環状DNAを材料として用いるのが最らよい。
Polymeric DNA is a method for preparing DNA with a certain molecular weight.
It is theoretically conceivable to cut the protein using ultrasound or enzymes and then perform molecular weight fractionation using electrophoresis, gel filtration, ultracentrifugation, or the like. However, in these methods, even DNA molecules obtained by separation under the most ideal conditions have a certain degree of molecular weight distribution, and DNA molecules that always contain a constant number of molecules per unit weight, such as the DNA used in the present invention, have a certain degree of molecular weight distribution. It cannot be. Furthermore, with these molecular weight fractionation methods, extremely small amounts of antigen DNA can be detected.
, cannot be fractionated, and the method is complicated, making it extremely difficult to manufacture measurement kits on a commercial scale. Therefore, DNA that always contains a constant number of molecules per unit weight
The best method for producing this is to use double-stranded circular DNA such as recombinant or natural plasmid as the material.

(口)一本鎖DNAの混入 一本鎖DNAの混入を最小にする方法としても組換え型
又は天然型のブラスミドDNA等の二本鎖環状DNA(
二本鎖閉環状DNA)は最適である。
(Note) Single-stranded DNA contamination One way to minimize single-stranded DNA contamination is to use double-stranded circular DNA (such as recombinant or natural plasmid DNA).
Double-stranded closed circular DNA) is optimal.

二本鎖閉環状D N A (ccc−D N A )は
最初から一本鎖DNAを全く含まない分子である。cc
cDNAは、染色体又はccc−DNAの分解に由来す
る直線状DNAとは、浮遊密度等の物理的性質が大きく
異なる為、CsCC密度勾配超遠心、電気泳動、ゲルろ
過等の遺伝子組換えでよく用いられる手法で精製すれば
、極めて高純度の二本鎖環状DNAとして得る事が可能
である。またこれを材料として実施例にあげた Ban
l,  Cfr1,  Avalのような制限酵素で切
断すると、末端に最大で4  baseの一本鎖部分が
生じる。、このような短い一本鎖DNA部分は後述する
実施例で用いているクレノー酵素等により、簡単に完全
な二本鎖DNAへと修復できる。
Double-stranded closed circular DNA (ccc-DNA) is a molecule that does not contain any single-stranded DNA from the beginning. cc
cDNA is often used in genetic recombination processes such as CsCC density gradient ultracentrifugation, electrophoresis, and gel filtration because it has very different physical properties such as buoyant density from linear DNA derived from chromosome or ccc-DNA degradation. If purified using a method described above, extremely pure double-stranded circular DNA can be obtained. In addition, Ban
When cut with restriction enzymes such as Cfr1, Cfr1, and Aval, a single-stranded portion of up to 4 bases is generated at the end. Such a short single-stranded DNA portion can be easily repaired into a complete double-stranded DNA using Klenow enzyme or the like used in the Examples described later.

さらに、このようなDNA分子の利用により、一本鎖D
NAあるいは他のDNA分子の混入量の管理が極めて明
確になる。組換え型又は天然型プラスミド等の二本鎖環
状DNAは、電気泳動、超遠心、ゲルろ過等の物理的手
法によって他のDNAと簡単にしかも明確に分別分析で
きる。また、電気泳動では、二本鎖環状DNAそのもの
のみならず、それを制限酵素で切断した断片もその他の
DNAと区別できる。従ってDNAを標識後、電気泳動
を行い、DNAのバンドの放射能等を測定することによ
り、目的とするDNA トレーサー以外のDNA (一
本鎖DNAもこの中に含まれる)の混入度を正確に管理
する事が可能となる。
Furthermore, by using such DNA molecules, single-stranded D
The amount of contamination of NA or other DNA molecules can be controlled very clearly. Double-stranded circular DNA such as a recombinant or natural plasmid can be easily and clearly analyzed separately from other DNA by physical methods such as electrophoresis, ultracentrifugation, and gel filtration. Moreover, in electrophoresis, not only double-stranded circular DNA itself but also fragments thereof cut with restriction enzymes can be distinguished from other DNA. Therefore, by performing electrophoresis after labeling the DNA and measuring the radioactivity of the DNA band, it is possible to accurately determine the degree of contamination by DNA other than the target DNA tracer (single-stranded DNA is also included). It becomes possible to manage.

以上のように、遺伝子組換え型又は天然型ブラスミド等
の二本鎖環状DNAに由来する一定の長さのDNAを用
いる事により、抗二本鎖DNA測定系における一本鎖D
NAの混入という問題が克服される事を見出した。
As described above, by using DNA of a certain length derived from double-stranded circular DNA such as recombinant or natural plasmids, single-stranded D
It has been found that the problem of NA contamination can be overcome.

(ハ)抗体価と抗原結合量の直線性 前記したように抗原として長いDNA分子を用いると、
一つの抗原に複数の抗体が結合する確率が高くなり、こ
れが従来法で抗体価と抗原結合量の直線性を悪くし、ひ
いては測定の精度を落とす原因となる。
(c) Linearity between antibody titer and antigen binding amount As mentioned above, when a long DNA molecule is used as an antigen,
The probability of multiple antibodies binding to one antigen increases, which causes poor linearity between the antibody titer and the amount of antigen binding in conventional methods, and ultimately reduces measurement accuracy.

本願発明者は、組換え型又は天然型ブラスミド等の二本
鎖環状DNAを制限酵素で切断すれば、任意で一定の長
さのDNAが得られる事に注目し、様々な長さのDNA
抗原を用いて、抗体価と結合抗原量の直線性を検討した
。その結果、DNA抗原はその長さが十分に短いと、抗
原と抗体がI対lで結合する確率が高くなる。(すなわ
ち、良好な直線性を示す領域が長くなる。)そして、こ
のようなDNAとしては、長さが0.1〜6 . 6 
kbpのものが好ましく、0.1〜1 . 4 kbp
のものが最も好ましいことを知見した。
The inventor of the present application noticed that DNA of any given length can be obtained by cleaving double-stranded circular DNA such as recombinant or natural plasmid with restriction enzymes, and discovered that DNA of various lengths can be obtained.
Using the antigen, we examined the linearity between the antibody titer and the amount of bound antigen. As a result, if the length of the DNA antigen is sufficiently short, the probability that the antigen and antibody will bind in a ratio of 1 to 1 increases. (In other words, the region exhibiting good linearity becomes longer.) Such DNA has a length of 0.1 to 6. 6
kbp is preferable, and 0.1 to 1. 4kbp
It has been found that the most preferable is

以上述べた様に、本発明は、抗原とするDNAトレーサ
ーとして、二本鎖環状DNAを制限酵素で切断して得ら
れる直線状二本鎖DNAを標識して成るDNAトレーサ
ーを用いることを、課題解決の手段とした。
As described above, the present invention aims to use, as a DNA tracer for an antigen, a DNA tracer obtained by labeling linear double-stranded DNA obtained by cutting double-stranded circular DNA with a restriction enzyme. It was used as a solution.

本発明に於いては、まず、組換え型又は天然型ブラスミ
ドDNA等の二本鎖環状DNAを含む生物を選択する。
In the present invention, first, an organism containing double-stranded circular DNA such as recombinant or natural plasmid DNA is selected.

このような生物としては大腸菌(Escherichi
acoli)、Bacillus subtilis,
 Pseudoionas putidaのような細菌
、Saccharoe+yces cerevicia
e等の酵母が利用可能である。ここでは大腸菌のブラス
ミドを例にとり説明する。ブラスミドをもつ大腸菌を適
当な培地で培養し、菌体を遠心、ろ過等の方法で集める
。次に菌体を、リゾチームのような溶菌酵素、ドデシル
硫酸ナトリウムのような界面活性剤、フェノールのよう
なタンパク変性剤等によって溶菌し、フェノール抽出等
により除タンパクを行い、核酸を抽出する。この核酸は
DNAとRNAを含むので、RNA分解酵素でRNAを
分解し粗DNA画分を得る。この粗DNA画分は、プラ
スミドDNAおよび染色体由来DNA及びブラスミド由
来の断片化したDNAを含むので、CsCl2平衡密度
勾配超遠心、ゲルろ過、ノ1イドロキノアパタイト力ラ
ム、電気泳動等の方法でccc−DNA(ブラスミドD
NA)を分離する。
Such an organism is Escherichia coli (Escherichia coli).
acoli), Bacillus subtilis,
Bacteria like Pseudoionas putida, Saccharoe + yces cerevisia
Yeasts such as Y. e. Here, we will explain using Escherichia coli plasmid as an example. E. coli containing plasmid is cultured in an appropriate medium, and bacterial cells are collected by centrifugation, filtration, or other methods. Next, the bacterial cells are lysed using a lytic enzyme such as lysozyme, a surfactant such as sodium dodecyl sulfate, a protein denaturant such as phenol, etc., and the proteins are removed by phenol extraction or the like, and the nucleic acids are extracted. Since this nucleic acid contains DNA and RNA, the RNA is degraded with RNA degrading enzyme to obtain a crude DNA fraction. This crude DNA fraction contains plasmid DNA, chromosomal DNA, and plasmid-derived fragmented DNA, so it was analyzed using methods such as CsCl2 equilibrium density gradient ultracentrifugation, gel filtration, neuroquinoapatite force ram, and electrophoresis. -DNA (Blasmid D
NA) is separated.

このようにして得られたCCC−DNAは極めて高純度
の二本鎖DNAであり、この事はアガロースゲル電気泳
動や、ゲルろ過等を利用したHPLC等で確認できる。
The CCC-DNA thus obtained is double-stranded DNA of extremely high purity, and this can be confirmed by agarose gel electrophoresis, HPLC using gel filtration, or the like.

続いて、このCCC−DNAを適当な制限酵素で切断し
、好ましくは0.1〜6 . 6 kbp,最も好まし
くは0.1〜1.4kbPのDNA断片を生ぜしめる。
Subsequently, this CCC-DNA is digested with an appropriate restriction enzyme, preferably 0.1 to 6. Generates DNA fragments of 6 kbp, most preferably 0.1-1.4 kbp.

この時の制限酵素は、EcoRI、I{indl[l、
Bag+I{  I, Ban I等のあらゆる制限酵
素が利用可能であるが、目的の長さのDNA断片を生じ
るよう慎重に選ぶ必要がある。得られたDNA断片は 
in  vitroで標識する。従来はl″Stシチヂ
ン、10−チミジン、3H−チミジン等をヒト培養細胞
や大腸菌細胞等にとり込ませ、DNAを標識ずるいわゆ
る in  vivo標識法がよく用いられていた。こ
の in  vivo標識法も本発明に応用可能である
が、in  vitro標識法は標識しない抗原の大量
の在庫が可能である為、製造の手間が大巾に省略され、
また、抗原ロット間の誤差という問題も少なくできるこ
と、更には放射能を取り扱う作業時間が短縮されること
等、in  vivo標識法に比べて様々な利点がある
The restriction enzymes at this time were EcoRI, I{indl[l,
Any restriction enzyme can be used, such as Bag+I{I, Ban I, etc., but must be carefully selected to yield a DNA fragment of the desired length. The obtained DNA fragment is
Label in vitro. Conventionally, a so-called in vivo labeling method was often used in which DNA was labeled by incorporating l''St cytidine, 10-thymidine, 3H-thymidine, etc. into cultured human cells or E. coli cells.This in vivo labeling method is also described in this book. Although it can be applied to inventions, the in vitro labeling method allows a large amount of unlabeled antigen to be stocked, which greatly reduces the manufacturing effort.
In addition, it has various advantages over in vivo labeling methods, such as reducing the problem of errors between antigen lots and shortening the time required to handle radioactivity.

DNAの in  vitroの標識法としては、所謂
[ニックトランスレーション法」に代表されるDNA分
子の中ほどに標識する方法と、DNA末端のみに標識す
る方法とがある。このうちニックトランスレーンヨン法
は、最も比活性の高いDNAが得られる良い標識法であ
り、通常最もよく用いられる。しかし、この標識法では
、DNA分子の中ほどに一本鎖切断(いわゆるニック)
を入れる結果となり、二本鎖DNAの安定性が悪化して
しまう。これに対し、末端のみに標識する方法は、DN
A分子にニック等のキズをつける事がない為、二本鎖D
NAが最も安定した状態で標識される。このような末端
標識法としてはポリヌクレオチドキナーゼを用いる方法
、DNAポリメラーゼ・ラージフラグメント (クレノ
ー酵素)を用いる方法、T 4 −D N Aポリメラ
ーゼを用いる方法、ターミナルデオキノトランスフエラ
ーゼ(T dT )を用いる方法が可能である。
In vitro labeling methods for DNA include a method of labeling the middle of the DNA molecule, typified by the so-called nick translation method, and a method of labeling only the ends of the DNA. Among these, the nick transrayon method is a good labeling method that yields DNA with the highest specific activity and is usually used most often. However, with this labeling method, single-strand breaks (so-called nicks) occur in the middle of the DNA molecule.
As a result, the stability of the double-stranded DNA deteriorates. In contrast, the method of labeling only the ends of DN
Since there is no nick or other damage to the A molecule, double-stranded D
NA is labeled in the most stable state. Such end-labeling methods include methods using polynucleotide kinase, methods using DNA polymerase large fragment (Klenow enzyme), methods using T4-DNA polymerase, and terminal deoquinotransferase (T dT). method is possible.

標識は、ItJ、”C,31−1、311)等の放射性
物質、パー才キシダーゼ、アルカリ性フォスファターゼ
、β−ガラクトシダーゼ等の酵素、蛍光物質、化学的発
光物質で標識されたデオキシリボヌクレオヂドリン酸等
を用いて行い得る。又はビオチン化デオキシリボヌクレ
オチドリン酸などを用い、放射性物質、酵素、蛍光物質
、化学的発光物質で標識したアビジンを用いて間接的に
標識する事も可能である。
Labels include radioactive substances such as ItJ, "C, 31-1, 311), enzymes such as peroxidase, alkaline phosphatase, and β-galactosidase, fluorescent substances, and deoxyribonucleodiphosphate labeled with chemiluminescent substances. Alternatively, indirect labeling can be performed using biotinylated deoxyribonucleotide phosphate, etc., and avidin labeled with a radioactive substance, an enzyme, a fluorescent substance, or a chemiluminescent substance.

測定は標識されたDNAトレーサーと患者検体中の抗D
NA抗体を適当な緩衝液中で反応させる。
The measurement is performed using a labeled DNA tracer and anti-D in the patient sample.
The NA antibody is reacted in an appropriate buffer.

反応後、抗体と結合したトレーサー(結合トレーサー)
と抗体結合しなかったトレーサー(遊離トレーサー)を
分離する。Fa r r法においては、終濃度50%飽
和の硫安水溶液により結合トレーサーのみを沈澱さける
が、ポリエチレングリコール(P E G i法、抗ヒ
トイムノグロプリン抗体等を用いた2抗体法、あるいは
PEG法と2抗体法を組み合せた方法によって結合トレ
ーサーのみを沈澱させる事も可能である。又、ゲルろ過
等のカラム、超遠心、電気泳動等の結合トレーサーと遊
離トレーサーを分離できる全ての方法が利用可能である
After reaction, tracer bound to antibody (bound tracer)
and the tracer that did not bind to the antibody (free tracer). In the Farr method, only the bound tracer is precipitated using an ammonium sulfate aqueous solution with a final concentration of 50% saturation. It is also possible to precipitate only the bound tracer by a method that combines two antibody methods.Also, any method that can separate bound and free tracers, such as columns such as gel filtration, ultracentrifugation, and electrophoresis, can be used. be.

次に実施例を用いて、具体的に説明する。Next, a specific explanation will be given using examples.

「実施例1」 (I)  試薬の調製 (i)DNAトレーサーの作製 ■ ブラスミドpNDPcIを持つE coli K1
2JMl09株をLB培地(1%トリブトン、0.5%
酵母エキス、0.5%NaCg)で培養し、通常の方法
でブラスミドを精製する。pNDPclの制限酵素地図
は、第1図に示すようである。すなわち、この地図に示
すように、ブラスミドpNDPclは、pU C 1 
B (Yanisch Perron,C. et a
l. ,Gene  33:103(1985))が部
分的にCfrlにより切断され、その後、そのままT4
−DNAリガーゼにより結合されてなるものである。こ
の場合の選択マーカは ApRおよびIac−であった
“Example 1” (I) Preparation of reagents (i) Preparation of DNA tracer ■ E coli K1 with plasmid pNDPcI
2JMl09 strain was grown in LB medium (1% tributone, 0.5%
Yeast extract, 0.5% NaCg) and purify the plasmid using a conventional method. The restriction enzyme map of pNDPcl is shown in FIG. That is, as shown in this map, plasmid pNDPcl is pU C 1
B (Yanisch Perron, C. et a
l. , Gene 33:103 (1985)) was partially cleaved by Cfrl and then directly converted to T4.
- It is formed by joining with DNA ligase. The selection markers in this case were ApR and Iac-.

■ pNDPcIを[10mM T ris ・H C
 (!(pH 8. 5)、7mM M9CL、20i
M NaCl, 7nM  2メルカプトエタノール、
o.oi%牛血清アルブミン]を含む水溶液中で、制限
酵素Ctrlにより切断する。
■ pNDPcI [10mM Tris HC
(! (pH 8.5), 7mM M9CL, 20i
M NaCl, 7 nM 2-mercaptoethanol,
o. oi% bovine serum albumin] and cleaved with the restriction enzyme Ctrl.

■ このDNA断片を、[5hM T ris−H C
 (!(p}{7.2)、10mM  M9S O .
. I mMジチオスレイトール、500μ9/x(l
牛血清アルブミン、1w+MdGTP]を含む水溶液中
に溶解し、”’I−dCTPとDNAポリメラーゼI・
ラージフラグメント(クレノー酵素)を加え、標識を行
う。
■ This DNA fragment was transformed into [5hM Tris-HC
(!(p}{7.2), 10mM M9SO.
.. ImM dithiothreitol, 500 μ9/x (l
Bovine serum albumin, I-dCTP and DNA polymerase I.
Add large fragment (Klenow enzyme) and perform labeling.

■ この反応液をセファデックスG25カラムにより標
識DNAを未反応1″51−dCTPから分離する。こ
れを[50mMホウ酸ナトリウム、15mM  EDT
A, 0.01%NaN3]を含む水溶液に終濃度0.
1μCi/mi2となるように溶解する。これをトレー
サー溶液とする。
■ Separate the labeled DNA from unreacted 1''51-dCTP using a Sephadex G25 column.
A, 0.01% NaN3] at a final concentration of 0.
Dissolve to a concentration of 1 μCi/mi2. This is used as a tracer solution.

(II)標準溶液の作製 I p moleのDNAに結合するタンパク量を10
00Uと定義した。
(II) Preparation of standard solution The amount of protein that binds to I p mole DNA is 10
It was defined as 00U.

赤血球凝集反応法で抗DNA抗体価++十+の患者の血
清をそれぞれ0、6、l2、45、87、178U/m
ffとなるように馬血清にて希釈し、標準溶液とした。
Sera from patients with anti-DNA antibody titers of 10+ by hemagglutination were collected at 0, 6, 12, 45, 87, and 178 U/m, respectively.
It was diluted with horse serum to give a standard solution.

(山)硫酸アンモニウム水溶液の作製 硫酸アンモニウム3909をIffの蒸留水に溶解する
(Mountain) Preparation of ammonium sulfate aqueous solution Ammonium sulfate 3909 is dissolved in Iff distilled water.

(II)  測定操作 (i)  試験管に標準溶液または血清(サンプル)を
20μg入れる。
(II) Measurement procedure (i) Put 20 μg of standard solution or serum (sample) into a test tube.

(ii)  トレーサー溶液を200μg加え、37℃
、2時間保温する。
(ii) Add 200 μg of tracer solution and heat at 37°C.
, keep warm for 2 hours.

(iii)  硫酸アンモニウム溶液をllIQ加え、
よく混和する。
(iii) Add ammonium sulfate solution to llIQ,
Mix well.

(iv )  1500G , 1 5分遠心し、上澄
みを吸引除去する。
(iv) Centrifuge at 1500G for 15 minutes and remove the supernatant by suction.

(V)  井戸型シンチレーションカウンターを用いて
、各試験管の放射能を測定する。
(V) Measure the radioactivity in each test tube using a well-type scintillation counter.

(v1)標準曲線を作製し、血清(サンプル)の抗DN
A抗体価を読み取る。第2図は、このようにして得た抗
DNA抗体価の標準曲線である。
(v1) Create a standard curve and compare serum (sample) anti-DN
Read the A antibody titer. FIG. 2 is a standard curve of anti-DNA antibody titers thus obtained.

実際に本測定法で測定した値と、従来の抗DNA抗体価
測定用キット(アマーシャム社製の抗DNA抗体価測定
用キット)で測定した値を表lに示す。
Table 1 shows the values actually measured using this measurement method and the values measured using a conventional anti-DNA antibody titer measurement kit (anti-DNA antibody titer measurement kit manufactured by Amersham).

[表 l] 「実施例2」 この実施例は、1 . 1 kbPと1.2kbl)の
DNA断片を+宜srにより標識して、これをトレーサ
ーとし、S L, E患各血清を標準物質とした例であ
る。
[Table 1] "Example 2" This example consists of 1. In this example, a DNA fragment of 1 kbP and 1.2 kbl was labeled with +Isr and used as a tracer, and serum from patients with SL and E was used as a standard substance.

(1)  試薬の調整 ( i )  D N A トレーサーの作製■ 前記
実施例lで用いたプラスミドpN D PClを[ 1
0mM T ris−}{ C (!(PH 8.5)
、7IIIMM9Cat1 7IIIM 2−メルカプ
トエタノール、0.1%牛血清アルブミン(pH 8.
0)]を含む水溶液中で制限酵素B an rにより切
断する。この切断によりρNDPC lは、1.lkb
pSl.2kbpの2本のDNA断片となる。
(1) Preparation of reagents (i) Preparation of DNA tracer ■ Plasmid pNDPCl used in Example 1 above was converted to [1
0mM Tris-}{C (!(PH 8.5)
, 7IIIMM9Cat1 7IIIM 2-mercaptoethanol, 0.1% bovine serum albumin (pH 8.
0)] in an aqueous solution containing restriction enzyme B an r. Due to this cutting, ρNDPC l becomes 1. lkb
pSl. This results in two 2kbp DNA fragments.

■ これらのDNA断片を、それぞれ[ 50s+MT
 ris−}{ C ((pfl 7.2)、10mM
 M9S O ., l mMジチオスレイトール、5
00μ9/IIIQ牛血清アルブミン、lmM−dGT
P,1mM dATPS 1mM  dTT p (p
i−+ 7.2)]を含む水溶液中に溶解し、目5■−
dC T PとDNAポリメラーゼ1・ラージフラグメ
ント(クレノー酵素)を加え、標識を行う。
■ Each of these DNA fragments [50s+MT
ris-}{C ((pfl 7.2), 10mM
M9SO. , lmM dithiothreitol, 5
00μ9/IIIQ bovine serum albumin, lmM-dGT
P, 1mM dATPS 1mM dTT p (p
i-+ 7.2)] and dissolved in an aqueous solution containing
Labeling is performed by adding dCTP and DNA polymerase 1 large fragment (Klenow enzyme).

■ これらの反応液をセファデックスG25カラムによ
り標識DNAを未反応1″51 −dC T Pから分
離する。これを[ 50mMホウ酸ナトリウム、15m
M  EDTA,0.01%NaNs]を含む水溶液に
終濃度0.1μCi/wIQとなるように溶解する。こ
れらをトレーサー溶液とする。
■ Separate the labeled DNA from unreacted 1''51-dCTP from these reaction solutions using a Sephadex G25 column.
Dissolve in an aqueous solution containing MEDTA, 0.01% NaNs to a final concentration of 0.1 μCi/wIQ. These are used as a tracer solution.

(11)標準溶液の作製 抗DNA抗体価600U/ml2のSLE患者血清を馬
血清に、それぞれ0、5、IO、25、50、100U
/ml2となるように溶解した。
(11) Preparation of standard solution SLE patient serum with anti-DNA antibody titer 600 U/ml was added to horse serum at 0, 5, IO, 25, 50, and 100 U, respectively.
/ml2.

(ロ1)硫酸アンモニウム水溶液の作製硫酸アンモニウ
ム390gをtCの蒸留水に溶解する。
(B1) Preparation of ammonium sulfate aqueous solution 390 g of ammonium sulfate is dissolved in tC distilled water.

(II)  測定操作 (1)試験管に標準溶液または血清(サンプル)を25
μg入れる。
(II) Measurement procedure (1) Add 25 ml of standard solution or serum (sample) to a test tube.
Add μg.

(ii)  トレーサー溶液を200μQ加え、37℃
 2時間保温する。
(ii) Add 200 μQ of tracer solution and heat at 37°C.
Keep warm for 2 hours.

(iii)  硫酸アンモニウム溶液をlx(加え、よ
く混和する。
(iii) Add ammonium sulfate solution (1x) and mix well.

(iv)  1500G,15分遠心し、上澄みを吸引
除去する。
(iv) Centrifuge at 1500G for 15 minutes and remove the supernatant by suction.

(v)  井戸型シンチレーションカウンターを用いて
、各試験管の放射能を測定する。
(v) Measure the radioactivity in each test tube using a well-type scintillation counter.

(v1)標準曲線を作製し、血清(サンプル)の抗DN
A抗体価を読み取る。第3図は、このようにして得た抗
DNA抗体価の標準曲線である。図に見るように、全領
域にわたって良好な標準曲線が得られる。
(v1) Create a standard curve and compare serum (sample) anti-DN
Read the A antibody titer. FIG. 3 is a standard curve of anti-DNA antibody titers thus obtained. As shown in the figure, a good standard curve is obtained over the entire region.

「実施例3」 この実施例は、天然に存在するブラスミドDNAから調
製した 6 . 6 itbpのDNA断片を口5lに
より標識して、これをトレーサーとし、SLE患者の血
清を標準物質とした例である。
Example 3 This example was prepared from naturally occurring plasmid DNA 6. This is an example in which a DNA fragment of 6 itbp was labeled with 5L, and this was used as a tracer, and the serum of an SLE patient was used as a standard substance.

(1)試薬の調整 (i)DNAトレーサーの作製 ■ 大腸菌由来 C olEI、D N A (Cha
n P.■.etall.Bid.chew. 260
  8925−8935,(1985))を[1.Oi
MTris−HCl2、7 mM  M gC Q*S
IOmM  N aC (!−7sM2−メルカブトエ
タノール (pH  7.3)コを含む水溶液中で、制
限酵素A va Iにより切断する。
(1) Preparation of reagents (i) Preparation of DNA tracer■ E. coli-derived ColEI, DNA (Cha
nP. ■. etall. Bid. Chew. 260
8925-8935, (1985)) [1. Oi
MTris-HCl2, 7mM MgC Q*S
Cleavage is performed with the restriction enzyme Ava I in an aqueous solution containing IOmM NaC (!-7sM2-mercabutoethanol (pH 7.3)).

この切断によりDNAは、6 . 6 kbpの断片と
なる。
Through this cleavage, the DNA becomes 6. It becomes a 6 kbp fragment.

■ このDNA断片を、[ 50mM T ris ・
H C O(p1−1 7.2)、10a+M MgS
 0 4+ I mMジチオスレイトール、500μg
/ x(l牛血清アルブミン、1mM  dGTP,l
mM dATP、I n+M dT ’l” P (p
H 7.2)]を含む水溶液中に溶解し、”’ I −
dC T PとDNAポリメラーゼ1・ラージフラグメ
ント(クレノー酵素)を加え、標識を行う。
■ This DNA fragment was dissolved in [50mM Tris・
H CO (p1-1 7.2), 10a+M MgS
0 4+ I mM dithiothreitol, 500 μg
/ x (l bovine serum albumin, 1mM dGTP, l
mM dATP, I n+M dT 'l'' P (p
H 7.2)] and dissolved in an aqueous solution containing
Labeling is performed by adding dCTP and DNA polymerase 1 large fragment (Klenow enzyme).

■ この反応液をセファデックスG25カラムにより標
識DNAを未反応”’ I −dC T Pから分離す
る。これを[ 50mMホウ酸ナトリウム、15a+M
EDTA,0.01%NaN3]を含む水溶液に終濃度
0.1μCi/*12となるように溶解する。これをト
レーサー溶液とする。
■ Separate the labeled DNA from unreacted I-dCTP using a Sephadex G25 column.
Dissolve in an aqueous solution containing EDTA, 0.01% NaN3 to a final concentration of 0.1 μCi/*12. This is used as a tracer solution.

(+1)標準溶液の作製 抗DNA抗体価6 0 0 U/峠のS L E患者血
清を馬血清に、それぞれ0、5、10,25、50、+
000/jlcとなるように溶解した。
(+1) Preparation of standard solution Anti-DNA antibody titer 600 U/pass of SLE patient serum to horse serum, respectively 0, 5, 10, 25, 50, +
000/jlc.

(■)硫酸アンモニウム水溶液の作製 硫酸アンモニウム3909をIffの蒸留水に溶解する
(■) Preparation of ammonium sulfate aqueous solution Ammonium sulfate 3909 is dissolved in Iff distilled water.

(II)  測定操作 (i)  試験管に標準溶液または血清(サンプル)を
25μQ入れる。
(II) Measurement procedure (i) Put 25 μQ of standard solution or serum (sample) into a test tube.

(ii)  トレーサー溶液を200μC加え、37℃
 2時間保温する。
(ii) Add 200 μC of tracer solution and heat at 37°C.
Keep warm for 2 hours.

(iii)  硫酸アンモニウム溶液を11加え、よく
混和する。
(iii) Add 11 parts of ammonium sulfate solution and mix well.

(iv )  1500G , 1 5分遠心し、上澄
みを吸引除去する。
(iv) Centrifuge at 1500G for 15 minutes and remove the supernatant by suction.

(v)  井戸型シンチレーションカウンターを用いて
、各試験管の放射能を測定する。
(v) Measure the radioactivity in each test tube using a well-type scintillation counter.

(v1)標準曲線を作製し、血清(サンプル)の抗DN
A抗体価を読み取る。第4図は、このようにして得た抗
DNA抗体価の標準曲線である。図に見るように、抗D
NA抗体価500/x(以上の領域で標準曲線がなだら
かとなる。
(v1) Create a standard curve and compare serum (sample) anti-DN
Read the A antibody titer. FIG. 4 is a standard curve of anti-DNA antibody titers thus obtained. As shown in the figure, anti-D
NA antibody titer 500/x (The standard curve becomes gentle in the region above.

「実施例4」 この実施例は、141、3!3、315、368、47
5、l307、1 4 4 4 bpのDNA断片を1
181により標識して、これをトレーサーとし、SLE
患各血清を標準物質とした例である。
“Example 4” This example includes 141, 3!3, 315, 368, 47
5, l307, 1 4 4 4 bp DNA fragment
181 and used it as a tracer to detect SLE.
This is an example in which each patient's serum was used as a standard substance.

(!)試薬の調整 (i )  DNA トレーサーの作製■ プラスミド
pB R 322(Sanger.F,et al,J
,Mol.Bio1.125 225−246.(19
7g))を[ lomM T ris−H C(l, 
lOmM M9C(1*%lOhM NaCI2, l
OmM  2メルカブトエタノール(pl−1 7.3
) ]を含む水溶液中で、制限酵素T thHB8 [
により切断する。この切断によりDNAは、141、3
13、315、368、475、1307、I 4 4
 4 bpの7本の断片となる。
(!) Preparation of reagents (i) Preparation of DNA tracer ■ Plasmid pB R 322 (Sanger. F, et al.
, Mol. Bio1.125 225-246. (19
7g)) to [lomM Tris-HC(l,
lOmM M9C (1*% lOhM NaCI2, l
OmM 2-mercabutoethanol (pl-1 7.3
) ] in an aqueous solution containing the restriction enzyme T thHB8 [
Cut by. This cleavage makes the DNA 141,3
13, 315, 368, 475, 1307, I 4 4
This results in 7 fragments of 4 bp each.

■これらのDNA断片を、[ 50mM T ris−
HC C(pH 7.2)、lhM M9S O ..
 1 g+Mジチオスレイトール、500μ9/肩Q牛
血清アルブミン、lmMdGTP,   監 mM  
dATP,   la+M  dTTP(pH7.2)
]を含む水溶液中に溶解し、”51 −dC T Pと
DNAポリメラーゼI・ラージフラグメント(クレノー
酵素)を加え、標識を行う。
■These DNA fragments were treated with [50mM Tris-
HCC (pH 7.2), lhM M9SO. ..
1 g + M dithiothreitol, 500μ9/Shoulder Q bovine serum albumin, lmMdGTP, mM
dATP, la+M dTTP (pH 7.2)
], and labeling is performed by adding 51-dCTP and DNA polymerase I large fragment (Klenow enzyme).

■これらの反応液をセファデックス025カラムにより
標識DNAを未反応”’ I −dC T Pから分離
する。これを[ 50aMホウ酸ナトリウム、15rL
IM EDTA, 0.01%NaNs]を含む水溶液
に終濃度0,1uCi/x(2となるように溶解する。
■ Separate the labeled DNA from unreacted I-dCTP using a Sephadex 025 column.
Dissolve in an aqueous solution containing IM EDTA, 0.01% NaNs to a final concentration of 0.1 uCi/x (2).

これをトレーサー溶液とする。This is used as a tracer solution.

(ii)  標準溶液の作製 抗DNA抗体価600U/z&のSLE患者血清を馬血
清に、それぞれ0、5、IO、25、50、100U/
j112となるように溶解した。
(ii) Preparation of standard solutions SLE patient serum with anti-DNA antibody titer 600U/z& was added to horse serum at 0, 5, IO, 25, 50, 100U/z, respectively.
It was dissolved so that it became j112.

(山)硫酸アンモニウム水溶液の作製 硫酸アンモニウム3909をIgの蒸留水に溶解する。(Yama) Preparation of ammonium sulfate aqueous solution Dissolve ammonium sulfate 3909 in distilled water of Ig.

(II)  測定操作 (−)試験管に標準溶液または血清(サンプル)を25
μQ入れる。
(II) Measurement procedure (-) Add 25 liters of standard solution or serum (sample) to a test tube.
Add μQ.

(ii)  }L/−サー溶液を200μff加え、3
7℃ 2時間保温する。
(ii) Add 200μff of }L/-Sur solution,
Keep warm at 7℃ for 2 hours.

(iii)  硫酸アンモニウム溶液をIR(l加え、
よく混和する。
(iii) Add ammonium sulfate solution to IR (l,
Mix well.

(iv)  1500G  1 5分遠心し、上澄みを
吸引除去する。
(iv) Centrifuge at 1500G for 15 minutes and remove the supernatant by suction.

(v)  井戸型ノンヂレーションカウンターを用いて
、各試験管の放射能を測定する。
(v) Measure the radioactivity in each test tube using a well-type nondilation counter.

(vi)  標準曲線を作製し、血清(サンプル)の抗
DNA抗体価を読み取る。第5図は、このようにして得
た抗DNA抗体価の標準曲線である。図に見るように、
抗DNA抗体価10U/il2以下の領域で標準曲線が
なだらかとなる。
(vi) Prepare a standard curve and read the anti-DNA antibody titer of the serum (sample). FIG. 5 is a standard curve of anti-DNA antibody titers thus obtained. As you can see in the figure,
The standard curve becomes gentle in the region where the anti-DNA antibody titer is 10 U/il2 or less.

前記したように、本発明の実施例1、2、3、5では、
遺伝子組換プラスミド由来のDNAで0.1〜l.4k
bpまでのものを示し、また実施例4では6 . 6 
kbpのものが可能であることを示した。
As mentioned above, in Examples 1, 2, 3, and 5 of the present invention,
0.1 to 1.0 l. with DNA derived from a recombinant plasmid. 4k
bp up to 6 bp, and in Example 4, 6. 6
It was shown that kbp is possible.

これによって、本発明においてはDNAの長さとして、
0.1〜6 . 6 kbl)のものが可能であると判
断した。というのは、当業者には明らかなように、本発
明の技術分野では、抗原物質として、天然型ブラスミド
由来のDNAも、遺伝子組換型DNAも同等に使用でき
るからである。
As a result, in the present invention, the length of DNA is
0.1-6. 6 kbl) was determined to be possible. This is because, as is clear to those skilled in the art, in the technical field of the present invention, both natural plasmid-derived DNA and genetically recombinant DNA can be equally used as antigenic substances.

「実施例5」 この実施例では、補体CIQの影響を調べた。"Example 5" In this example, the influence of complement CIQ was investigated.

正常者の血清における捕体の影響を検討した。The effect of the capture body on the serum of normal subjects was investigated.

lO例の正常考の血清を、 ■ そのまま(補体が活性を持った状態)■ 56℃3
0分処理による非働化後(補体が失活した状態)、のそ
れぞれでDNA トレーサーへの結合を調べた。DNA
 l−レーサーは、(a)前記実施例3で用いたトレー
サー(二本鎖DNAトレーサー、dsDNA)、(b)
前記実施例3のトレーサーを95゜Cl分間処理した後
、水中で急冷することにより作製した一本鎖DNA ト
レーサー(SSDNA)、の2種類を用いた。
Normal serum from a case of 1O is left as is (with complement active) at 56℃3
After inactivation by treatment for 0 minutes (in a state in which complement was inactivated), binding to the DNA tracer was examined. DNA
l-racer is (a) the tracer used in Example 3 (double-stranded DNA tracer, dsDNA), (b)
Two types of single-stranded DNA tracers (SSDNA) were used, which were prepared by treating the tracer of Example 3 with 95° Cl for a minute and then rapidly cooling it in water.

谷トレーサーDNAへの結合率(B /T )は、(5
0%飽和硫安沈澱中のカウント)/(全カウント)で表
した。これを表2に示した。この表のB/T値よ、(M
 ean±SD)値であり、単位は%である。
The binding rate (B/T) to valley tracer DNA is (5
It was expressed as (counts in 0% saturated ammonium sulfate precipitation)/(total counts). This is shown in Table 2. The B/T value in this table is (M
ean±SD) value, and the unit is %.

表から明らかなように、本発明の二本鎖DNA(dsD
 N A )では、補体失活(非働化)の効果は全く見
られず、このトレーサーを用いた測定法がClq等の補
体の影響を受けないことがわかる。
As is clear from the table, the double-stranded DNA (dsD
With NA), no effect of complement deactivation (inactivation) was observed, indicating that the measurement method using this tracer is not affected by complements such as Clq.

一方、一本I′iD N A(ssD N A)では、
非働化前後で結合率に大きな差が見られ、血清検体中の
補体成分が測定に影響していることが明確に示されてい
る。
On the other hand, with one I'iD N A (ssD N A),
A large difference was observed in the binding rate before and after inactivation, clearly indicating that the complement components in the serum sample affected the measurement.

[表21 B / T (Mean+ S D ) 「実施例6」 臨床的検討 この実施例では、健常者およびSLEを含む種々の疾患
の患者の計213例を前記実施例3に述べた方法により
測定した。その結果を第6図に示す。
[Table 21 B/T (Mean+SD) "Example 6" Clinical study In this example, a total of 213 healthy subjects and patients with various diseases including SLE were measured by the method described in Example 3 above. did. The results are shown in FIG.

健常者!40例の測定により、正常値を.6U/mQ以
下に設定したところ、活動期SLEでは96.4%(2
7例728例中)、非活動期SLEでは62.5%(3
0例/48例中)、その他の膠原病では4.4%(2例
/46例中)が陽性であった。
Healthy person! After measuring 40 cases, normal values were found. When set to 6 U/mQ or less, 96.4% (2
7 cases (out of 728 cases), and 62.5% (3 out of 728 cases) in inactive SLE.
0 cases/48 cases), and 4.4% (2 cases/46 cases) of other collagen diseases were positive.

[−発明の効果」 以上説明したように、本願発明に係る生物学的液体中の
抗DNA抗体価の測定法および測定用キ・ソトによれば
、試薬の安定供給が容易で、測定誤差が少なく、正確な
測定が可能となる。
[-Effects of the Invention] As explained above, according to the method and kit for measuring anti-DNA antibody titer in biological fluids according to the present invention, stable supply of reagents is easy and measurement errors are reduced. This makes it possible to make accurate measurements.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の実施例で用いたブラスミドpNDPC
Iの制限酵素地図を示すもので、第2図は本発明の第1
の実施例で得た抗DNA抗体の標準曲線、第3図は本発
明の第2の実施例で得た抗DNA抗体の標準曲線、第4
図は本発明の第3の実施例で得た抗DNA抗体の標準曲
線、第5図は本発明の第4の実施例で得た抗DNA抗体
の標準曲線、第6図は本発明の臨床的効果を確認するた
めに行った第6の実施例の結果を示すもので、各種疾先
における抗DNA抗体価をプロットしたグラフである。 出顆人  ニッポン・ディービーシー・コーボレーンヨ
ン 0/268B 第2図 (c o m) 抗DNA抗体価 (U/ml?) (%) 第3図 抗DNA抗体価(Ll/rrl ) 第4図 (%) 抗DNA抗体価 (u/mQ) 第6図 各種疾患における抗DNA抗体価
Figure 1 shows the plasmid pNDPC used in the examples of the present invention.
FIG. 2 shows a restriction enzyme map of No. I of the present invention.
Figure 3 shows the standard curve of the anti-DNA antibody obtained in Example 2 of the present invention.
The figure shows the standard curve of the anti-DNA antibody obtained in the third example of the present invention, Figure 5 shows the standard curve of the anti-DNA antibody obtained in the fourth example of the present invention, and Figure 6 shows the standard curve of the anti-DNA antibody obtained in the fourth example of the present invention. This is a graph plotting anti-DNA antibody titers in various diseased areas, showing the results of the sixth example conducted to confirm the clinical effect. Figure 2 (com) Anti-DNA antibody titer (U/ml?) (%) Figure 3 Anti-DNA antibody titer (Ll/rrl) Figure 4 (%) Anti-DNA antibody titer (u/mQ) Figure 6 Anti-DNA antibody titer in various diseases

Claims (6)

【特許請求の範囲】[Claims] (1)抗原とするDNAトレーサーと、このDNAトレ
ーサーに対して結合し得る標準物質とを用い、免疫学的
方法により生物学的液体中の抗DNA抗体価を測定する
測定法であって、 前記DNAトレーサーとして、二本鎖環状DNAを制限
酵素で切断して得られる直線状二本鎖DNAを標識して
成るDNAトレーサーを用いることを特徴とする生物学
的液体中の抗DNA抗体価の測定法。
(1) An assay method for measuring the anti-DNA antibody titer in a biological fluid by an immunological method using a DNA tracer as an antigen and a standard substance capable of binding to the DNA tracer, comprising: Measurement of anti-DNA antibody titer in a biological fluid, characterized by using a DNA tracer that is obtained by labeling linear double-stranded DNA obtained by cleaving double-stranded circular DNA with a restriction enzyme. Law.
(2)前記二本鎖環状DNAが、細菌または酵母に由来
し、遺伝子組換法によって調製された二本鎖環状DNA
である請求項1に記載の生物学的液体中の抗DNA抗体
価の測定法。
(2) The double-stranded circular DNA is derived from bacteria or yeast and prepared by a genetic recombination method.
The method for measuring an anti-DNA antibody titer in a biological fluid according to claim 1.
(3)前記二本鎖環状DNAが、細菌または酵母に由来
し、天然に存在する二本鎖環状DNAである請求項1に
記載の生物学的液体中の抗DNA抗体価の測定法。
(3) The method for measuring an anti-DNA antibody titer in a biological fluid according to claim 1, wherein the double-stranded circular DNA is a naturally occurring double-stranded circular DNA derived from bacteria or yeast.
(4)抗原とするDNAトレーサーと、このDNAトレ
ーサーに対して結合し得る標準物質とを有し、免疫学的
方法により生物学的液体中の抗DNA抗体価を測定する
ための測定用キットであって、前記DNAトレーサーと
して、二本鎖環状DNAを制限酵素で切断して得られる
直線状二本鎖DNAを標識して成るDNAトレーサーを
用いたことを特徴とする生物学的液体中の抗DNA抗体
価の測定用キット。
(4) A measurement kit for measuring the anti-DNA antibody titer in a biological fluid by an immunological method, which includes a DNA tracer as an antigen and a standard substance capable of binding to the DNA tracer. The present invention is characterized in that the DNA tracer is a DNA tracer obtained by labeling linear double-stranded DNA obtained by cleaving double-stranded circular DNA with a restriction enzyme. Kit for measuring DNA antibody titer.
(5)前記二本鎖環状DNAが、細菌または酵母に由来
し、遺伝子組換法によって調製された二本鎖環状DNA
である請求項4に記載の生物学的液体中の抗DNA抗体
価の測定用キット。
(5) The double-stranded circular DNA is derived from bacteria or yeast and prepared by a genetic recombination method.
The kit for measuring an anti-DNA antibody titer in a biological fluid according to claim 4.
(6)前記二本鎖環状DNAが、細菌または酵母に由来
し、天然に存在する二本鎖環状DNAである請求項4に
記載の生物学的液体中の抗DNA抗体価の測定用キット
(6) The kit for measuring an anti-DNA antibody titer in a biological fluid according to claim 4, wherein the double-stranded circular DNA is a naturally occurring double-stranded circular DNA derived from bacteria or yeast.
JP2293502A 1990-10-30 1990-10-30 Method and kit for detecting SLE disease to improve proportionality between antigen binding rate and anti-double-stranded DNA antibody titer in standard curve Expired - Fee Related JP2649100B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2293502A JP2649100B2 (en) 1990-10-30 1990-10-30 Method and kit for detecting SLE disease to improve proportionality between antigen binding rate and anti-double-stranded DNA antibody titer in standard curve

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2293502A JP2649100B2 (en) 1990-10-30 1990-10-30 Method and kit for detecting SLE disease to improve proportionality between antigen binding rate and anti-double-stranded DNA antibody titer in standard curve

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP8818481A Division JPH0192660A (en) 1987-01-30 1988-01-28 Measurement of anti-dna antibody value in biological liquid and kit therefor

Related Child Applications (2)

Application Number Title Priority Date Filing Date
JP34682895A Division JPH08233822A (en) 1995-12-13 1995-12-13 Detecting probe for antibody of anti-double-stranded dna in humor such as sle serum
JP34682995A Division JPH08233813A (en) 1995-12-13 1995-12-13 Method for measuring antibody titer of anti-double-stranded dna in human body fluid

Publications (2)

Publication Number Publication Date
JPH03218462A true JPH03218462A (en) 1991-09-26
JP2649100B2 JP2649100B2 (en) 1997-09-03

Family

ID=17795574

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2293502A Expired - Fee Related JP2649100B2 (en) 1990-10-30 1990-10-30 Method and kit for detecting SLE disease to improve proportionality between antigen binding rate and anti-double-stranded DNA antibody titer in standard curve

Country Status (1)

Country Link
JP (1) JP2649100B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08233813A (en) * 1995-12-13 1996-09-13 Nippon Dpc Corp Method for measuring antibody titer of anti-double-stranded dna in human body fluid

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5856694A (en) * 1981-09-25 1983-04-04 Mitsui Pharmaceut Inc Reagent for assay of antinuclear antibody
JPS60231693A (en) * 1984-01-16 1985-11-18 アンステイテユ・ナシオナル・ドウ・ラ・サンテ・エ・ドウ・ラ・ルシエルシユ・メデイカル Modified nucleic acid-containing idiosyncratic antibody-recognizable probe and use
JPS60253869A (en) * 1984-05-30 1985-12-14 Mitsui Pharmaceut Inc Reagent for mesuring anti-artificial nucleus antigen antibody

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5856694A (en) * 1981-09-25 1983-04-04 Mitsui Pharmaceut Inc Reagent for assay of antinuclear antibody
JPS60231693A (en) * 1984-01-16 1985-11-18 アンステイテユ・ナシオナル・ドウ・ラ・サンテ・エ・ドウ・ラ・ルシエルシユ・メデイカル Modified nucleic acid-containing idiosyncratic antibody-recognizable probe and use
JPS60253869A (en) * 1984-05-30 1985-12-14 Mitsui Pharmaceut Inc Reagent for mesuring anti-artificial nucleus antigen antibody

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08233813A (en) * 1995-12-13 1996-09-13 Nippon Dpc Corp Method for measuring antibody titer of anti-double-stranded dna in human body fluid

Also Published As

Publication number Publication date
JP2649100B2 (en) 1997-09-03

Similar Documents

Publication Publication Date Title
DK2299275T3 (en) Classification of oncofetal fetronectin level for pregnancy-related indications
KR101222437B1 (en) Biomarker
TW201514310A (en) Anti-TNF and anti-IL17 combination therapy biomarkers for inflammatory disease
JPH0768280B2 (en) Monoclonal antibody
KR20140108718A (en) Biomarkers for kawasaki disease
KR101064866B1 (en) Primers capable of simultaneous detecting bovine coronavirus, bovine rotavirus and bovine viral diarrhea virus, and simultaneous detection method of diarrhea viruses in ruminants, including cattle, using the same
KR20110135911A (en) Biomarker
EP0472482B1 (en) New procedure for the quantitative determination of extracellular DNA in a biological fluid
JPH0192660A (en) Measurement of anti-dna antibody value in biological liquid and kit therefor
WO2015066640A1 (en) Kit and method for identifying individual responsiveness to steroid therapy of nephrotic syndrome
JPH03218462A (en) Method of measuring anti-dna value in biological liquid and measuring kit
AU746812B2 (en) Method for determining antigens
KR101901365B1 (en) Atopic Dermatitis PTGR2 Gene Specifically Expressed in Intestinal Epithelial Cell
JP2001525180A (en) Selective methods for rapid identification of proteins and genes and uses thereof
CN114959003A (en) Acute myocardial infarction marker and application thereof
EP3665306B1 (en) Rna identity method using rnase h digestion and size fractionating
JPH08233822A (en) Detecting probe for antibody of anti-double-stranded dna in humor such as sle serum
JPH08233813A (en) Method for measuring antibody titer of anti-double-stranded dna in human body fluid
US20040241712A1 (en) Diagnostic detection of nucleic acids
KR102494928B1 (en) Method of determining immediate hypersensitivity patients using MRGPRX2
JPH0291572A (en) Method of measuring anti-dna antibody value in biological liquid by using virus dna and kit for measurement
CN111363808B (en) Biomarker related to Alzheimer disease and application thereof
CN107012254A (en) The application of KLHL22 genes and its expression product in diagnostic products are prepared
WO2007043531A1 (en) Genetic marker for use in diagnosis of sensitivity to anti-tumor agent or concurrent chemoradiation therapy, and use thereof
JPH11142409A (en) Detection method of pathogenic microbe

Legal Events

Date Code Title Description
S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

R371 Transfer withdrawn

Free format text: JAPANESE INTERMEDIATE CODE: R371

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees