JPH03218400A - Sweetness-inducing substance - Google Patents

Sweetness-inducing substance

Info

Publication number
JPH03218400A
JPH03218400A JP63318437A JP31843788A JPH03218400A JP H03218400 A JPH03218400 A JP H03218400A JP 63318437 A JP63318437 A JP 63318437A JP 31843788 A JP31843788 A JP 31843788A JP H03218400 A JPH03218400 A JP H03218400A
Authority
JP
Japan
Prior art keywords
added
miraculin
amino acid
resultant
sweetness
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP63318437A
Other languages
Japanese (ja)
Other versions
JP2620615B2 (en
Inventor
Yoshie Kurihara
栗原 良枝
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
MITAJIRI KAGAKU KOGYO KK
Original Assignee
MITAJIRI KAGAKU KOGYO KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by MITAJIRI KAGAKU KOGYO KK filed Critical MITAJIRI KAGAKU KOGYO KK
Priority to JP63318437A priority Critical patent/JP2620615B2/en
Publication of JPH03218400A publication Critical patent/JPH03218400A/en
Application granted granted Critical
Publication of JP2620615B2 publication Critical patent/JP2620615B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Jellies, Jams, And Syrups (AREA)
  • Seasonings (AREA)
  • Peptides Or Proteins (AREA)
  • General Preparation And Processing Of Foods (AREA)

Abstract

NEW MATERIAL:A high-purity miracullin having an amino acid sequence represented by the formula (CHO is sugar chain), etc., a sugar composition (molar ratio) of 3.0 glucosamine, 3.0 mannose, 2.1 fucose, 0.7 galactose and 1.0 xylose, about 25000 molecular weight and about pH9.0 isoelectric point. USE:A sweetener. PREPARATION:For example, water is added to the lyophilized sarcocarp of a miracle fruit and the mixture is homogenized and centrifuged to collect the resultant precipitate. To the collected precipitate, 0.5M sodium chloride solution is added and the resultant mixture is homogenized and centrifuged. The resultant supernatant is collected and ammonium sulfate is added to the collected extract to 40% saturation to deposit an active substance. The deposited active substance is separated and dissolved in a phosphate buffer solution and the resultant solution is subjected to ion-exchange chromatography, affinity chromatography and high-performance liquid chromatography in order for purification, thus obtaining the objective sweetness-inducing substance of the formula.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は天然のミラクルフルーツから分離した新規な甘
味誘導物質ミラクリンに関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to miraculin, a novel sweetness-inducing substance isolated from natural miracle fruit.

〔従来の技術〕[Conventional technology]

西アフリカ原産のミラクルフルーツ(Richarde
lla Dulcifica)には、これを口に含んで
から酸味のものを味わうと甘く感じるという性質がある
Miracle fruit (Richard) native to West Africa
lla Dulcifica) has the property that if you put it in your mouth and then taste something sour, it will taste sweet.

ミラクルフルーツのこの味覚を変える活性成分(味覚変
性物質)は(分子量45,000前後の)糖タンパク質
であることがすでに知られている。また、この糖タンパ
ク質に含まれる糖の割合はおよそ10〜15%前後であ
り、糖の種類は、L−アラビノース、L−ラムノース、
D−キシロース、D−マンノース、D−ガラクトース、
D−グルコースであることが確認されている。
It is already known that this taste-altering active ingredient (taste modifier) of the miracle fruit is a glycoprotein (with a molecular weight of around 45,000). In addition, the proportion of sugar contained in this glycoprotein is approximately 10 to 15%, and the types of sugar are L-arabinose, L-rhamnose,
D-xylose, D-mannose, D-galactose,
It has been confirmed that it is D-glucose.

このミラクルフルーツの甘味発現の機構はいまだ解明さ
れていないが、ミラクルフルーツの果肉をあらかじめ酸
味物質と混ぜて一定時間放置したのち口に含んでも甘味
を示さないことから、ミラクルフルーツの活性成分であ
る甘味誘導物質は、従来の甘味剤とは異なって、酸味そ
のものを甘味に変えるのではなく、活性成分が舌上皮の
甘味受容体と何らかの相互作用をすることにより甘味が
発現すると考えられている。
The mechanism behind the sweetness of this miracle fruit has not yet been elucidated, but the pulp of the miracle fruit is mixed with sour substances in advance and does not exhibit any sweetness even if it is left in the mouth for a certain period of time, so it is believed to be the active ingredient in the miracle fruit. Unlike conventional sweeteners, sweet taste inducers are thought to produce sweet taste through some kind of interaction between their active ingredients and sweet taste receptors in the epithelium of the tongue, rather than by converting sour taste itself into sweet taste.

このようなことからミラクルフルーツの甘味誘導物質は
新しいタイプの甘味剤として、特に、糖分の摂取を制限
されている人にも有効な甘味剤として期待されているも
のである。
For these reasons, miracle fruit sweetness inducers are expected to be a new type of sweetener, especially as a sweetener that is effective for people who have limited sugar intake.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

本発明者から先に、ミラクルフルーツから甘味誘導物質
を活性を失うことなく高純度且つ高収率に製造する方法
を提供したが、本発明では、更にこの甘味誘導物質につ
いてその一次構造を解明した、甘味度の優れた新規な高
純度ミラクリンを提供することにある。
The present inventors have previously provided a method for producing sweetness-inducing substances from miracle fruits with high purity and high yield without losing activity, but in the present invention, the primary structure of this sweetness-inducing substance has been further elucidated. The purpose of the present invention is to provide a novel high-purity miraculin with excellent sweetness.

〔課題を解決するための手段〕[Means to solve the problem]

本発明の新規な高純度ミラクリンは次の理化学的性質を
有するもの、 (1)アミノ酸組成は第1表に記載したとおりである。
The novel high-purity miraculin of the present invention has the following physical and chemical properties: (1) The amino acid composition is as shown in Table 1.

(本頁以下余白) 第1表 アミノ酸組成 アミノ酸 % *数値は全残基100としたときのアミノ酸残基の和対
数を示す。
(Margins below this page) Table 1 Amino acid composition Amino acid % *Numbers indicate the sum of logarithms of amino acid residues when the total residues are 100.

(2) I! 組 成 :第2表 (3)分子量:約25,000 (4)等電点:約pH 9.0 第2表 ミラクリンの糖組成 八sp  Ser  Ala  ProAsp Gly
 Glu Lys Tyr Tyr  Ile Val Gly Gly Gly Leu 八sn  Pro  Val  LeuLeu Arg
 Thr Gly Pro Val  Leu Arg Thr  Vat  Ser  AlaAsp  He Thr  Asn Asp His Thr  Thr Val  Vat  Gln  ThrAsp Arg
 Pro Leu Pro  Lys  Glu  AspAsp  Le
u  Asn  TieArg Lys Glu  V
al Ala  Phe  Phe  ProVal  Va
l  Arg  VatAsn  Phe  Ser 
 AlaAsp旧S Glu  Asn Ser  Thr Phe  Met Arg Leu Asp Lys  Tyr Asp 
Glu Ser Thr GlyGly  Asn  
Pro  Gly  Pro  Glu  Thr11
e  Ser  Ser Trp  Phe Lys Tie  Glu  Glu  Phe CysGl.
y  Ser Val  Cys Gly Ser Cys Lys 
Val  Lys Cys GlyPhe 本発明の新規な高純度ミラクリンはミラクルフルーツの
果肉を洗液が着色しなくなるまで水洗し、次いで塩化ナ
トリウム溶液で抽出し、次いでこの抽出物を精製するこ
とにより得られる。
(2) I! Composition: Table 2 (3) Molecular weight: Approximately 25,000 (4) Isoelectric point: Approximately pH 9.0 Table 2 Sugar composition of Miraculin 8sp Ser Ala ProAsp Gly
Glu Lys Tyr Tyr Ile Val Gly Gly Gly Leu Eight sn Pro Val LeuLeu Arg
Thr Gly Pro Val Leu Arg Thr Vat Ser AlaAsp He Thr Asn Asp His Thr Thr Thr Val Vat Gln ThrAsp Arg
Pro Leu Pro Lys Glu AspAsp Le
u Asn TieArg Lys Glu V
al Ala Phe Phe ProVal Va
l Arg VatAsn Phe Ser
AlaAsp Old S Glu Asn Ser Thr Phe Met Arg Leu Asp Lys Tyr Asp
Glu Ser Thr GlyGly Asn
Pro Gly Pro Glu Thr11
e Ser Ser Trp Phe Lys Tie Glu Glu Phe CysGl.
y Ser Val Cys Gly Ser Cys Lys
Val Lys Cys GlyPhe The novel high-purity miraculin of the present invention can be obtained by washing the pulp of miracle fruit with water until the washings are no longer colored, then extracting with a sodium chloride solution, and then purifying this extract.

具体的には、ミラクルフルーツの凍結乾燥果肉に水を加
えてホモジナイズし、遠心分離する。この時上清は濃い
ピンク色を示す。この上清には酸味を甘味に変える活性
はない。このときの沈渣に当初と等量の水を加えてホモ
ジナイスし、遠心分離する。この操作を上清が無色にな
るまで繰り返す。無色となったときの上清にも活性はな
い。
Specifically, water is added to the freeze-dried pulp of the miracle fruit, homogenized, and centrifuged. At this time, the supernatant shows a deep pink color. This supernatant has no activity to change sourness into sweetness. Add the same amount of water as the initial amount to the resulting sediment, homogenize it, and centrifuge. Repeat this operation until the supernatant becomes colorless. There is no activity in the supernatant when it becomes colorless.

次に塩化ナトリウム溶液を用いて抽出する。すなわち、
水洗操作でのあとの沈渣に塩化ナトリウム溶液を加えて
ホモジナイズし、遠心分離する。
Then extract using sodium chloride solution. That is,
A sodium chloride solution is added to the precipitate after the water washing operation, homogenized, and centrifuged.

中性付近での抽出のための、得られる抽出液は活性を失
うことなく高活性を示す。 抽出液の精製は、抽出液を
硫酸アンモニウムで塩析したのち、通常のクロマトグラ
フ法によって行うことができる。たとえば、塩析で得ら
れた沈澱をCM−セファロースイオン交換クロマトグラ
フィーにかけ、さらにアフィニティーク口マトグラフィ
ーにより精製する。得られる高純度ミラクリンのアミノ
酸配列の決定はこの高純度ミラクリンを酵素(トリプシ
ン、キモトリプシン、リジルエンドベプチダーゼ)で加
水分解した後、ODS 120Tのカラムを用いHPL
Cで各ベプチドフラグメントを分画することにより行っ
た。
For extraction near neutrality, the resulting extract exhibits high activity without loss of activity. The extract can be purified by salting out the extract with ammonium sulfate and then using a conventional chromatography method. For example, a precipitate obtained by salting out is subjected to CM-Sepharose ion exchange chromatography and further purified by affinity chromatography. The amino acid sequence of the obtained high-purity miraculin was determined by hydrolyzing the high-purity miraculin with enzymes (trypsin, chymotrypsin, lysyl endobeptidase), and then performing HPL using an ODS 120T column.
This was done by fractionating each peptide fragment with C.

ミラクリンは、全く新しいタイプの甘味物質として、食
品、医薬品など応用されるもので、この発明によって、
その実用化は一層加速される。
Miraculin is a completely new type of sweet substance that can be applied to foods, medicines, etc. With this invention,
Its practical application will be further accelerated.

参考例 (1)水洗および塩化ナトリウム溶液による抽出ミラク
ルフルーツの凍結乾燥果肉10gをとり、40ccの水
を加えてホモジナイズし、遠心分離(12.50O r
pm 、20分間)した。このとき上清は濃いピンク色
を呈し、これには酸味を甘味に変える活性はなかった。
Reference Example (1) Water washing and extraction with sodium chloride solution Take 10 g of freeze-dried pulp of miracle fruit, add 40 cc of water, homogenize, and centrifuge (12.50 O r
pm, for 20 minutes). At this time, the supernatant had a deep pink color and had no activity to change sourness into sweetness.

この沈渣に40ccの水を加えてホモジナイズし、遠心
分離(12.50O rpm、20分間)する。この上
清には味覚を変更する活性はなかった。
Add 40 cc of water to this sediment, homogenize it, and centrifuge (12.50 rpm, 20 minutes). This supernatant had no taste-altering activity.

つぎに、0.5M塩化ナトリウム溶液を加えてホモジナ
イズし、遠心分離(12.50O rpm、20分間)
した。これによりえられた上滑は無色で、甘味を誘導す
る活性を示した。40ccの0.5M塩化ナトリウム溶
液による抽出操作を3回繰返し、3回分の上清を合わせ
た。
Next, 0.5M sodium chloride solution was added, homogenized, and centrifuged (12.50 rpm, 20 minutes).
did. The resulting curd was colorless and exhibited sweetness-inducing activity. The extraction operation using 40 cc of 0.5M sodium chloride solution was repeated three times, and the supernatants from the three times were combined.

(2)硫酸アンモニウムによる塩析 上記の操作で得られた抽出液に40%飽和になるように
硫酸アンモニウムを加え、活性物質を折出させた。遠心
分離(13.00O rpm、20分間)して得た沈澱
を0.OIMリン酸緩衝液に溶かす。
(2) Salting out with ammonium sulfate Ammonium sulfate was added to the extract obtained in the above procedure to achieve 40% saturation to precipitate the active substance. The precipitate obtained by centrifugation (13.00 rpm, 20 minutes) was Dissolve in OIM phosphate buffer.

(3)CM−セファロースイオン交換クロマトグラフイ
ー (2)で調整した溶液をあらかじめ十分に0.01Mリ
ン酸緩衝液により平衡化したCM−セファロース力ラム
にのせた。次いで、最初にリン酸緩衝液(pH 6.8
)で十分溶出した後、塩化ナトリウム溶液O〜1.0M
の直線濃度勾配溶出法で溶出した(流速5cc/15m
in、1分画5cc、全溶出液量400cc)。蛋白質
は280nmの吸収によりモニターした。その結果を示
したものが第1図である。この第1図のピーク0が甘味
誘導活性物質である。
(3) CM-Sepharose ion exchange chromatography The solution prepared in (2) was placed on a CM-Sepharose column that had been sufficiently equilibrated with 0.01M phosphate buffer in advance. Then, first phosphate buffer (pH 6.8
) After sufficient elution with sodium chloride solution O~1.0M
Elution was performed using a linear concentration gradient elution method (flow rate 5cc/15m).
in, 1 fraction 5 cc, total eluate volume 400 cc). Protein was monitored by absorption at 280 nm. Figure 1 shows the results. Peak 0 in FIG. 1 is the sweet taste-inducing active substance.

(4)  アフィニティーク口マトグラフィー上記のピ
ーク0の部分を、限外濾過で10ccに濃縮し、さらに
溶媒を0.5M塩化ナトリウムを含む0.OIMリン酸
緩衝液(pH 6.8)に溶媒置換した。この濃縮液を
ConA−セファロース4Bカラムにより処理した。は
じめに0.5M塩化ナトリウムを含む0.OIMリン酸
緩衝液(pH6.8)で洗い、ついでα−メチルーD−
グルコシド溶液0〜0.15Mの直線濃度勾配溶出法で
溶出した(流速3 cc/14min、全溶出液量20
0 cc)。蛋白質は10 280nmの吸光度でモニターした。その結果を示した
ものが第2図である。ピークIが活性を示し、その収量
は35mgであった。
(4) Affinity oral tomography The above peak 0 portion was concentrated to 10 cc by ultrafiltration, and the solvent was added to 0.0 cc containing 0.5 M sodium chloride. The solvent was replaced with OIM phosphate buffer (pH 6.8). This concentrate was processed through a ConA-Sepharose 4B column. First, 0.5M sodium chloride was added. Wash with OIM phosphate buffer (pH 6.8), then α-methyl-D-
Glucoside solution was eluted using a linear concentration gradient elution method of 0 to 0.15M (flow rate 3 cc/14 min, total eluate volume 20
0 cc). Protein was monitored by absorbance at 10280 nm. Figure 2 shows the results. Peak I showed activity and the yield was 35 mg.

(5)高速液体クロマトグラフイー 活性物質(第2図のピーク■)の純度を逆相カラムを用
いた高速液体クロマトグラフイー(H P L C )
により確認した。
(5) High performance liquid chromatography The purity of the active substance (peak ■ in Figure 2) was determined by high performance liquid chromatography (HPLC) using a reversed phase column.
Confirmed by.

カラムはTSK gel TMS−250を用い、0.
05%トリフルオロ酢酸を含むアセトニトリル(20〜
70%)の直線濃度勾配溶出法で溶出し、210nmの
吸光度を測定することによりモニターした。
The column used was TSK gel TMS-250.
Acetonitrile containing 0.5% trifluoroacetic acid (20~
70%) using a linear concentration gradient elution method and monitored by measuring absorbance at 210 nm.

その結果は、第3図に示すように、鋭い単一ピークを示
し、きわめて純度が高いことが確認できた。
As shown in FIG. 3, the results showed a sharp single peak, and it was confirmed that the purity was extremely high.

この高純度ミラクリンの分子量は、SOS−PAGEに
より28,000を示した。一方、糖の含有率は14%
(フェノールー硫酸法とLowry法から計算した。)
であるから、(P2)のアミノ酸一次構造から計算する
と、約25,000をとなる。糖の組成は第2表に示し
た通りである。等電点11 pHは9.0前後である。アミノ酸組成は第1表の通り
であり、アミノ酸配列は前述の通りである。
The molecular weight of this highly purified miraculin was 28,000 by SOS-PAGE. On the other hand, the sugar content is 14%
(Calculated from the phenol-sulfuric acid method and Lowry method.)
Therefore, when calculated from the amino acid primary structure of (P2), it is approximately 25,000. The composition of the sugar is shown in Table 2. Isoelectric point 11 pH is around 9.0. The amino acid composition is as shown in Table 1, and the amino acid sequence is as described above.

この高純度ミラクリンの活性テストの結果を第8図に示
す。この第8図からこのアミノ酸配列を確定した高純度
ミラクリンの活性は0.5M庶誠に相当し、一方従来の
ちは最高0.4M庶糖に相当することから本発明のミラ
クリンが従来のものに比して優れた活性を示すことが判
る。
The results of the activity test of this highly purified miraculin are shown in FIG. From FIG. 8, the activity of high-purity miraculin whose amino acid sequence has been determined corresponds to 0.5M sucrose, while the conventional one corresponds to a maximum of 0.4M sucrose, so the miraculin of the present invention has a higher activity than the conventional one. It can be seen that it shows excellent activity.

〔発明の効果〕〔Effect of the invention〕

この発明によりアミノ酸配列の決定した活性の高い高純
度ミラクリンを提供することができた。
This invention has made it possible to provide highly active and highly purified miraculin whose amino acid sequence has been determined.

また、この高純度ミラクリンは遺伝子工学的手法により
大量にミラクリンを製造するときの構造遺伝子の供給源
として有用である。
Furthermore, this highly purified miraculin is useful as a source of structural genes when miraculin is produced in large quantities by genetic engineering techniques.

実施例 (1)S一カルポキシアミドメチル化ミラクリンの調製 参考例により調製した高純度ミラクリン7mgを6Mグ
アニジン塩酸塩、2mM EDTA及び60mMジチオ
スレイトールを含む0.4M I−リス緩衝l2 液5 mflに溶解する。この溶液を窒素ガス中で37
゜C、24時間インキユベートした。この溶液にヨード
アセトアミド0.2gを加え、室温で10分間静置し、
次いで氷水浴中で60分間静置した。得られるS一カル
ボキシアミドメチル化ミラクリンをセファデックスG−
25を用い2M尿素及び2mM EDTAを含む50m
M重炭酸ナトリウム緩衝液(pH 8.0)を溶媒とし
て脱塩した。
Example (1) Preparation of S-carpoxyamidomethylated miraculin 7 mg of high purity miraculin prepared according to Reference Example was added to 5 mfl of 0.4M I-Lys buffer 12 containing 6M guanidine hydrochloride, 2mM EDTA and 60mM dithiothreitol. dissolve in This solution was dissolved in nitrogen gas for 37
℃, incubated for 24 hours. Add 0.2 g of iodoacetamide to this solution and let stand at room temperature for 10 minutes.
Then, it was left standing in an ice water bath for 60 minutes. The resulting S-carboxyamidomethylated miraculin was treated with Sephadex G-
25 with 2M urea and 2mM EDTA.
Desalting was carried out using M sodium bicarbonate buffer (pH 8.0) as a solvent.

(2)S一カルボキシアミドメチル化ミラクリンの酵素
開裂 S一カルボキシアミドメチル化ミラクリンのりジルエン
ドペプチダーゼ消化を2M尿素及び2 mM EDTA
を含む50mM重炭酸アンモニウム緩衝液中で37゜C
120時間行った。
(2) Enzymatic cleavage of S-carboxyamidomethylated miraculin Glycine endopeptidase digestion of S-carboxyamidomethylated miraculin with 2 M urea and 2 mM EDTA
at 37°C in 50mM ammonium bicarbonate buffer containing
I went for 120 hours.

蛋白質濃度はlIIlg/rdで酵素:基質比ば1:1
00 (w/w)である。消化反応はHCLを加えpt
+ 2.0とすることにより停止した。消化物には不溶
性物質は存在しなかった。また、S一カルポキシアミド
メチル化ミラクリンのキモトリプシン消化を上記消化と
同じ緩衝液、蛋白質濃度及び酵13 素:基質化の下、37゜C、90分間行った。消化反応
は上記と同じ方法で停止した。消化物には不溶性物質は
形成されなかった。
The protein concentration is lIIlg/rd and the enzyme:substrate ratio is 1:1.
00 (w/w). For the digestion reaction, add HCL and pt
It was stopped by setting the value to +2.0. No insoluble material was present in the digestate. In addition, chymotrypsin digestion of S-carpoxyamidomethylated miraculin was carried out at 37°C for 90 minutes using the same buffer, protein concentration, and enzyme:substrate as in the above digestion. Digestion reactions were stopped in the same manner as above. No insoluble material was formed in the digestate.

S一カルポキシアミドメチル化ミラクリンを2M尿素及
び2mMEDT八を含む50mM重炭酸アンモニウム(
pH 7.8)中、スタフィ口コツカス・アウレウスの
V B (Staphylococcus aureu
s V8)プロテアーゼで37゜C、3時間消化した。
S-carpoxyamidomethylated miraculin was added to 50mM ammonium bicarbonate (containing 2M urea and 2mM EDT8).
V B (Staphylococcus aureus) in pH 7.8).
s V8) Digested with protease at 37°C for 3 hours.

蛋白質濃度はl mg/mfl,酵素:基質比は1 :
 30 w7wである。消化後沈澱が形成された。反応
混合物に溶液が透明になるまで固形の尿素を加えた。
The protein concentration was 1 mg/mfl, and the enzyme:substrate ratio was 1:
30w7w. A precipitate formed after digestion. Solid urea was added to the reaction mixture until the solution became clear.

(3)ペプチドの分離 上記三種類の酵素により消化して得られる各ベプチドは
TSK−003−120T (東洋曹達■製)カラムを
用いHPLC (東洋曹達■PC 8000)により分
離した。各ベプチドは0.05%トリフルオロ酢酸を含
むアセトニトリルの直線濃度匂配溶出法で溶出した。ベ
プチドは210nmの吸収により検知され、各ピークが
集められた。
(3) Separation of peptides Each peptide obtained by digestion with the three types of enzymes mentioned above was separated by HPLC (Toyo Soda PC 8000) using a TSK-003-120T (manufactured by Toyo Soda) column. Each peptide was eluted using a linear gradient elution method using acetonitrile containing 0.05% trifluoroacetic acid. Veptides were detected by absorption at 210 nm and each peak was collected.

(4)アミノ酸分析およびアミノ酸配列の決定14 各ベプチドのアミノ酸組成はWaters Picot
agsystemにより決定した。即ち、ペブチドはH
CL蒸気で110゜C、22時間加水分解した。得られ
るアミノ酸をフェニルチオカルバミル(PTC) 誘導
体とし、TSK − OI]S−80TMカラム0.4
6 X 15cm(東洋曹達■製)を用いたllPLf
l:により分析した。
(4) Amino acid analysis and determination of amino acid sequence 14 The amino acid composition of each peptide is determined by Waters Picot.
Determined by agsystem. That is, the peptide is H
Hydrolysis was carried out using CL steam at 110°C for 22 hours. The obtained amino acid was used as a phenylthiocarbamyl (PTC) derivative, and the TSK-OI]S-80TM column 0.4
llPLf using 6 x 15cm (manufactured by Toyo Soda)
Analyzed by l:.

アミノ酸のPTC誘導体は50lIIMリン酸緩衝液(
p117.0)の3.0%アセトニトリルで20分間、
次いで40%アセト二トリルにより5分間それぞれ流速
1d/minでカラムから流出された。流出されたPT
C−アミノ酸は254nmの吸光度により検知した。ア
ミノ酸配列の決定は470A Applied Bio
sytem Protein Sequencerで行
われた。すなわちフェニルチオヒダントイン誘導体(P
TH−アミノ酸)としてTSK 一〇DS −120 
Tカラム(東洋曹達)を用いた+1 P L Cにより
分析された。
PTC derivatives of amino acids were prepared in 50 lIIM phosphate buffer (
p117.0) in 3.0% acetonitrile for 20 minutes;
The column was then flushed with 40% acetonitrile for 5 minutes each at a flow rate of 1 d/min. Leaked PT
C-amino acids were detected by absorbance at 254 nm. Amino acid sequence was determined using 470A Applied Bio
System Protein Sequencer was used. That is, phenylthiohydantoin derivative (P
TH-amino acid) as TSK 10DS-120
Analysis was performed by +1 PLC using a T column (Toyo Soda).

C一末端アミノ酸配列は八mblerにより記載されて
いるカルボキシペプチターゼを用いて決定された。ミラ
クリン200 tt gを0.1MN−エチルモルホリ
ン酢酸緩衝液(pH 8.0) 0.9 mlに溶15 解する。この溶液にカルボキシペプチダーゼA,1μg
を加え、反応混合物を室温でインキユベートする。反応
液の一部を、15, 30, 60, 120分毎に採
取する。これらの反応液にトリクロル酢酸を加え蛋白質
を沈澱させ、これを遠心分離により除き、上清にある遊
離したアミノ酸をHaters Picotag sy
stemにより、分析した。
The C-terminal amino acid sequence was determined using carboxypeptidase as described by Yambler. Dissolve 200 tt g of miraculin in 0.9 ml of 0.1M N-ethylmorpholine acetate buffer (pH 8.0). Add 1 μg of carboxypeptidase A to this solution.
is added and the reaction mixture is incubated at room temperature. Aliquots of the reaction solution are collected every 15, 30, 60, and 120 minutes. Trichloroacetic acid was added to these reaction solutions to precipitate proteins, which were removed by centrifugation, and the free amino acids in the supernatant were purified using Haters Picotag Sy.
It was analyzed by stem.

以上の方法により決定されたアミノ酸配列は次の通りで
ある。
The amino acid sequence determined by the above method is as follows.

八sp  Ser  Ala  ProAsp Gly
 Glu Lys Tyr Tyr  Ile Val Gly Gly Gly Leu ^sn  Pro  Val  LeuLeu  Ar
g Thr Gly Pro Val  Leu  Arg Thr  Val  Ser  AlaAsp  Il
e Thr  Asn Asp His Thr  Thr Asp Arg Pro Leu  Ala  Phe
 Phe Pro Glu  AsnPro Lys 
Glu Asp Val  Val  Arg Val
  Ser ThrArg Leu Asp Lys 
Tyr Asp Glu Ser Thr Gly16 Gln  Tyr Phe  Val  Thr  I
le Gly GIy  Val  LysGly A
sn  Pro Gly Pro Glu Thr  
Ile Ser SerTrp Phe  Lys  
Ile Glu  Glu Phe Cys  Gly
 SerAsp Val Gly 11e Tyr 11e Asp Gin Lys Gly
8sp Ser Ala ProAsp Gly
Glu Lys Tyr Tyr Ile Val Gly Gly Gly Gly Leu ^sn Pro Val LeuLeu Ar
g Thr Gly Pro Val Leu Arg Thr Val Ser AlaAsp Il
e Thr Asn Asp His Thr Thr Asp Arg Pro Leu Ala Phe
Phe Pro Glu AsnPro Lys
Glu Asp Val Val Arg Val
Ser ThrArg Leu Asp Lys
Tyr Asp Glu Ser Thr Gly16 Gln Tyr Phe Val Thr I
le Gly GIy Val LysGly A
sn Pro Gly Pro Glu Thr
Ile Ser SerTrp Phe Lys
Ile Glu Glu Phe Cys Gly
SerAsp Val Gly 11e Tyr 11e Asp Gin Lys Gly

【図面の簡単な説明】[Brief explanation of drawings]

第1図は、ミラクルフルーツから水洗、抽出、塩析操作
によって得た甘味誘導物質のCM−セファロースイオン
交換クロマトグラフィーの溶出パターンである。 第2図は、第1図のビーク■部分をConA−セファロ
ース4Bカラムにより処理したアフィニティーク口マト
グラフィーの溶出パターンである。 第3図は、第2図のビークIの高速液体クロマ17 トグラフフィーの溶出パターンである。 第4図はS一カルボキシアミドメチル化ミラクリンのり
ジルエンドペプチターゼ消化により得られるペプチドの
}IPLc分離を示す。第5図はS−カルボキシアミド
メチル化ミラクリンのキモトリプシン消化により得られ
るペプチドのHPLCを示す。 第6図はS一カルボキシアミドメチル化ミラクリンのス
タフィロコッカスアウレスV B (Staphy1o
coccus aureus V8)プロテアーゼ消化
により得られるHPLC分離を示す。第7図はミラクリ
ンのアミノ酸配列を示す。第7図において、LEP及び
chはリジルエンドペブチターゼ及びキモトリプシン消
化からのベプチド、■は■8−プロテアーゼ消化からの
べブチドを、NはN末端から決定したアミノ酸配列をそ
れぞれ示す。←←はC一末端からの配列を示す。 また、アルファベットとアミノ酸との関係は、次の通り
である。 G :G1y,A :A1a,S :Ser,T :T
hr,C :Cys,N :Asn,Q :GIn,L
 :Leu, I : Ile,V :Val18 M :Met,F :Phe.Y :Tyr,W :T
rp,P :ProD  :Asp.E  :G1u,
H  :His,K  :Lys,R  :  八rg
,第8図は本発明の高純度ミラクリンの活性を示す。
FIG. 1 shows the elution pattern of a sweet taste-inducing substance obtained from miracle fruit by washing with water, extraction, and salting out by CM-Sepharose ion exchange chromatography. FIG. 2 is an elution pattern of affinity chromatography in which the beak (■) portion of FIG. 1 was treated with a ConA-Sepharose 4B column. FIG. 3 is an elution pattern of high performance liquid chromatography of peak I in FIG. 2. FIG. 4 shows the IPLc separation of peptides obtained by S-carboxyamidomethylated miraculin and dylyl endopeptidase digestion. FIG. 5 shows HPLC of peptides obtained by chymotryptic digestion of S-carboxyamidomethylated miraculin. Figure 6 shows S-carboxyamidomethylated miraculin of Staphylococcus aureus V B (Staphy1o
Figure 3 shows HPLC separation obtained by protease digestion of C. coccus aureus V8). Figure 7 shows the amino acid sequence of miraculin. In FIG. 7, LEP and ch indicate the peptides from lysyl endopeptidase and chymotrypsin digestion, ■ indicates the peptides from ■8-protease digestion, and N indicates the amino acid sequence determined from the N-terminus, respectively. ←← indicates the sequence from the C-terminus. Furthermore, the relationship between alphabets and amino acids is as follows. G: G1y, A: A1a, S: Ser, T: T
hr, C: Cys, N: Asn, Q: GIn, L
:Leu, I:Ile, V:Val18 M:Met, F:Phe. Y: Tyr, W: T
rp,P:ProD:Asp. E:G1u,
H: His, K: Lys, R: 8rg
, FIG. 8 shows the activity of highly purified miraculin of the present invention.

Claims (1)

【特許請求の範囲】 1、下記の理化学的性質を有する高純度ミラクリン (1)アミノ酸組成第1表のとおり (2)糖組成:第2表のとおり (3)分子量:約25,000 (4)等電点:約pH9.0 2、次のアミノ酸配列を有する請求項1の高純度ミラク
リン 【遺伝子配列があります】 【遺伝子配列があります】
[Claims] 1. High purity miraculin having the following physical and chemical properties (1) Amino acid composition as shown in Table 1 (2) Sugar composition as shown in Table 2 (3) Molecular weight: approximately 25,000 (4) ) Isoelectric point: approximately pH 9.0 2. High purity miraculin of claim 1 having the following amino acid sequence [There is a gene sequence] [There is a gene sequence]
JP63318437A 1988-03-12 1988-12-19 Sweetness inducer Expired - Lifetime JP2620615B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63318437A JP2620615B2 (en) 1988-03-12 1988-12-19 Sweetness inducer

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP63-57373 1988-03-12
JP5737388 1988-03-12
JP63318437A JP2620615B2 (en) 1988-03-12 1988-12-19 Sweetness inducer

Publications (2)

Publication Number Publication Date
JPH03218400A true JPH03218400A (en) 1991-09-25
JP2620615B2 JP2620615B2 (en) 1997-06-18

Family

ID=26398412

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63318437A Expired - Lifetime JP2620615B2 (en) 1988-03-12 1988-12-19 Sweetness inducer

Country Status (1)

Country Link
JP (1) JP2620615B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011072291A1 (en) * 2009-12-11 2011-06-16 David Posner Taste-modified consumable products and methods for preparation

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103082260A (en) * 2013-02-21 2013-05-08 万福群 Method for extracting miraculin from miracle fruit

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011072291A1 (en) * 2009-12-11 2011-06-16 David Posner Taste-modified consumable products and methods for preparation

Also Published As

Publication number Publication date
JP2620615B2 (en) 1997-06-18

Similar Documents

Publication Publication Date Title
Cunningham et al. Isolation and proteolytic cleavage of the intact subunit of concanavalin A
Koide et al. Studies on Soybean Trypsin Inhibitors: 3. Amino‐Acid Sequence of the Carboxyl‐Terminal Region and the Complete Amino‐Acid Sequence of Soybean Trypsin Inhibitor (Kunitz)
Theerasilp et al. Complete purification and characterization of the taste-modifying protein, miraculin, from miracle fruit.
Sletten et al. The Complete Amino‐Acid Sequence of Non‐Immunolobulin Amyloid Fibril Protein AS in Rheumatoid Arthritis
ODANI et al. Studies on soybean trypsin inhibitors: IV. Complete amino acid sequence and the anti-proteinase sites of Bowman-Birk soybean proteinase inhibitor
CALS et al. Primary structure of bovine lactoperoxidase, a fourth member of a mammalian heme peroxidase family
Yamauchi et al. Purification and molecular cloning of prostacyclin-stimulating factor from serum-free conditioned medium of human diploid fibroblast cells
Charles et al. The primary structure of porcine colipase II. I. The amino acid sequence
JPH0334995A (en) Oxygenic removal of terminal arrangement of proteinic amino
Nagasawa et al. Determination of the cleavage site involved in C-terminal processing of penicillin-binding protein 3 of Escherichia coli
Svendsen et al. Isolation and characterization of the folate-binding protein from cow's milk
De Graaf et al. Purification and Characterization of a Complex between Cloacin and Its Immunity Protein Isolated from Enterobacter cloacae (Clo DF13) Dissociation and Reconstitution of the Complex
Matsuda et al. Studies on the Structure of γ-Glutamyltranspeptidase: I. Correlation between Sialylation and Isozymic Forms
Sengupta et al. Comparative studies on calotropins DI and DII from the latex of Calotropis gigantea
Adamson et al. Relationship between degree of casein hydrolysis and phosphopeptide release
FI112492B (en) The DNA sequence encoding the plant toxin gelonin
Kageyama et al. Rabbit pepsinogens: Purification, characterization, analysis of the conversion process to pepsin and determination of the NH2‐terminal amino‐acid sequences
YIN et al. Pseudomonas 3β‐hydroxysteroid dehydrogenase: Primary structure and relationships to other steroid dehydrogenases
Schultes et al. Complete amino‐acid sequence of glyceraldehyde‐3‐phosphate dehydrogenase from the hyperthermophilic eubacterium Thermotoga maritima
Kanaya et al. Comparison of the primary structures of ribonuclease U2 isoforms
Grishin et al. The isolation and sequence determination of a cytotoxin from the venom of the Middle-Asian cobra Naja naja oxiana
Williams et al. Hydrolysis of peptide bonds of the oxidized B-chain of insulin by Endothia parasitica protease
Kim et al. The amino acid sequence and position of the free thiol group of a short-chain neurotoxin from common-death-adder (Acanthophis antarcticus) venom
Gustchina et al. Post X‐ray crystallographic studies of chymosin: the existence of two structural forms and the regulation of activity by the interaction with the histidine‐proline cluster of κ‐casein
JPH03218400A (en) Sweetness-inducing substance