JPH0321830A - Guided-in light selector - Google Patents
Guided-in light selectorInfo
- Publication number
- JPH0321830A JPH0321830A JP15798589A JP15798589A JPH0321830A JP H0321830 A JPH0321830 A JP H0321830A JP 15798589 A JP15798589 A JP 15798589A JP 15798589 A JP15798589 A JP 15798589A JP H0321830 A JPH0321830 A JP H0321830A
- Authority
- JP
- Japan
- Prior art keywords
- magnetic field
- light
- polarizing plate
- side polarizing
- faraday
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 230000010287 polarization Effects 0.000 claims abstract description 41
- 230000005291 magnetic effect Effects 0.000 claims abstract description 37
- 239000003365 glass fiber Substances 0.000 abstract description 37
- 230000005611 electricity Effects 0.000 abstract 1
- 238000005268 plasma chemical vapour deposition Methods 0.000 description 9
- 230000007246 mechanism Effects 0.000 description 7
- 239000000758 substrate Substances 0.000 description 6
- 238000010586 diagram Methods 0.000 description 5
- 239000000835 fiber Substances 0.000 description 5
- 239000010408 film Substances 0.000 description 5
- 238000000295 emission spectrum Methods 0.000 description 4
- 239000007789 gas Substances 0.000 description 3
- 238000005259 measurement Methods 0.000 description 3
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 2
- 238000004458 analytical method Methods 0.000 description 2
- 238000000151 deposition Methods 0.000 description 2
- 230000008021 deposition Effects 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 239000012495 reaction gas Substances 0.000 description 2
- 238000001228 spectrum Methods 0.000 description 2
- 239000010409 thin film Substances 0.000 description 2
- 230000015572 biosynthetic process Effects 0.000 description 1
- 230000005284 excitation Effects 0.000 description 1
- 238000000605 extraction Methods 0.000 description 1
- 238000000034 method Methods 0.000 description 1
- 230000003287 optical effect Effects 0.000 description 1
- 239000013307 optical fiber Substances 0.000 description 1
- 239000002907 paramagnetic material Substances 0.000 description 1
- 239000000376 reactant Substances 0.000 description 1
- 238000012732 spatial analysis Methods 0.000 description 1
Landscapes
- Spectrometry And Color Measurement (AREA)
- Investigating Or Analysing Materials By Optical Means (AREA)
Abstract
Description
【発明の詳細な説明】
〔産業上の利用分野〕
この発明は、プラズマCVD装置等のようにチャンバ内
に光が空間的に分布する場合に、この光の一部を分光器
に導入するための導入光セレクタに関する.
〔従来の技術〕
たとえば、薄膜形或装置としてのプラズマC■D装置は
、チャンバ内に平行平板電極が配置されており、この平
行平板電極の間に高周波を印加し、両電極間にプラズマ
を起こさせ、アース側に接続された電極上に設けられた
基板に膜を堆積するものである.
このようなプラズマCVD法を用いて薄膜形或を行う装
置においては、チャンバ内の放電状態、すなわちプラズ
マ光を観測することによって、導入された反応ガスがど
のような状jl3i(イオン化、励起状!)にあり、ま
た励起活性化されたガス分子や原子がどの程度の密度で
存在しているかを知ることができる.また、基板上に形
威される膜の堆積スピードや、基板上に形威された膜の
組或比等もプラズマ光を分析することにより把握するこ
とができる.さらに、プラズマ領域の中央部と基板上面
付近とでは、発光の仕方が異なっているので、プラズマ
領域の各位置におけるプラズマ光を分光器に導入し、空
間的な発光強度計測や発光スペクトル分析を行うことに
より、反.応全体のメカニズムを把握することができる
。[Detailed Description of the Invention] [Industrial Application Field] This invention is a method for introducing a part of this light into a spectrometer when light is spatially distributed in a chamber such as in a plasma CVD apparatus. Introducing the optical selector. [Prior Art] For example, in a plasma CD device as a thin film type device, parallel plate electrodes are arranged in a chamber, and a high frequency is applied between the parallel plate electrodes to generate plasma between the two electrodes. The film is deposited on a substrate placed on an electrode connected to the ground side. In an apparatus that performs thin film formation using such a plasma CVD method, by observing the discharge state in the chamber, that is, the plasma light, it is possible to determine the state of the introduced reactant gas (ionization, excitation state, etc.). ), and it can also be used to determine the density of excited and activated gas molecules and atoms. Furthermore, the deposition speed of the film formed on the substrate and the compositional ratio of the film formed on the substrate can be determined by analyzing plasma light. Furthermore, since the way of light emission is different between the center of the plasma region and the vicinity of the top surface of the substrate, the plasma light at each position in the plasma region is introduced into a spectrometer to perform spatial emission intensity measurement and emission spectrum analysis. By doing so, the opposite. You can understand the overall mechanism of the reaction.
そこで、従来装置においては、チャンバの側壁に石英ガ
ラス等により覗き窓を構威し、この覗き窓から光導入用
のスリット等を介してプラズマ光を分光器に導入し、プ
ラズマ光の分析を行うようにしている.また、分光器自
体やこの分光器に接続された光導入用のファイバーを観
測位置に合わせて上下に移動させることにより、空間的
な分析を行うようにしている.
〔発明が解決しようとする課題〕
前述のように、従来装置においては発光スペクトルの空
間分布を計測する場合、分光器や光導入用の光ファイバ
ー等の光導入機構を機械的に上下移動させるようにして
いる。このため、目的の観測位置まで光導入機構を移動
させるための時間に遅れが伴う。プラズマCVD装置や
、プラズマCVD装置よりさらに高真空で膜付を行うE
CRプラズマCVD装置においては、チャンバ内に導入
された反応ガスが励起され、イオン化あるいは反応され
て基板上に堆積するまでの時間は高速である.したがっ
て、反応全体のメカニズムを把握するためには、前述の
光導入機構を高速で繰り返し走査することが必要である
が、従来のような機械的な動きを必要とする光導入機構
においては、繰り返し走査の時間短縮化に限界がある.
この発明の目的は、光導入機構の走査時間を短縮するこ
とができ、空間的な発光強度計測や発光スペクトル分析
を容易に行うことができる導入光セレクタを提供するこ
とにある。Therefore, in conventional devices, a viewing window is constructed from quartz glass or the like on the side wall of the chamber, and the plasma light is introduced from this viewing window into a spectrometer through a light introduction slit, etc., and the plasma light is analyzed. That's what I do. In addition, spatial analysis can be performed by moving the spectrometer itself and the light introduction fiber connected to the spectrometer up and down according to the observation position. [Problems to be Solved by the Invention] As mentioned above, in conventional devices, when measuring the spatial distribution of emission spectra, the light introduction mechanism such as a spectrometer or an optical fiber for light introduction is mechanically moved up and down. ing. Therefore, there is a delay in the time it takes to move the light introduction mechanism to the target observation position. Plasma CVD equipment and E, which performs film deposition in a higher vacuum than plasma CVD equipment.
In a CR plasma CVD apparatus, the time required for a reactive gas introduced into a chamber to be excited, ionized or reacted, and deposited on a substrate is fast. Therefore, in order to understand the overall reaction mechanism, it is necessary to repeatedly scan the light introduction mechanism described above at high speed. There is a limit to the reduction in scanning time.
An object of the present invention is to provide an introduced light selector that can shorten the scanning time of a light introduction mechanism and easily perform spatial emission intensity measurement and emission spectrum analysis.
この発明に係る導入光セレクタは、空間的に分布する光
の一部を分光器に導入するためのものである.そして、
ファラデー回転子群と、このファラデー回転子群を挟ん
で対向して配置された入射側偏光板及び出射側偏光板と
、複数のファラデー回転子のそれぞれに磁界を印加する
タイミングを制御する磁界印加制御手段とを備えたもの
である.前記ファラデ−回転子群は、通過する光の偏光
面を磁界の印加により所定角度回転させるファラデー回
転子をアレイ状に配置してなるものである。The introduced light selector according to the present invention is for introducing a part of spatially distributed light into a spectrometer. and,
Magnetic field application control that controls the timing of applying a magnetic field to a Faraday rotator group, an entrance side polarizing plate and an output side polarizing plate that are arranged to face each other with the Faraday rotator group in between, and each of a plurality of Faraday rotators. It is equipped with the means. The Faraday rotator group is made up of an array of Faraday rotators that rotate the polarization plane of passing light by a predetermined angle by applying a magnetic field.
また、入射側偏光板及び出射側偏光板は、それらの偏光
面選択方向が、前記ファラデー回転子の偏光面回転角度
分ずれるように配置されている。Further, the incident-side polarizing plate and the exit-side polarizing plate are arranged such that their polarization plane selection directions are shifted by the polarization plane rotation angle of the Faraday rotator.
この発明においては、たとえば或膜室のチャンバ内に発
生したプラズマ光は、チャンバ側壁の覗き窓を介して導
入光セレクタの入射側偏光板に入射する.この入射側偏
光板は特定の方向の偏光面を有しているので、入射側偏
光板を通過し゛た光は一定の偏光面を有する光となって
いる.そして、この入射側偏光板を通過した光はファラ
デー回転子群に入射する。In this invention, for example, plasma light generated in a certain film chamber enters the incident-side polarizing plate of the introduced light selector through a viewing window on the side wall of the chamber. Since this polarizing plate on the incident side has a plane of polarization in a specific direction, the light that passes through the polarizing plate on the incident side has a fixed plane of polarization. The light that has passed through this incident-side polarizing plate enters the Faraday rotator group.
ファラデー回転子のうちの、所定の位置のファラデー回
転子には磁界印加制御手段から磁界が印加されており、
この磁界の印加されたファラデー回転子を通過する光は
所定角度回転される.そして、ファラデー回転子の出口
側には、出射側偏光板が配置されており、この出射側偏
光板の偏光面選択方向は、入射側偏光板の偏光面選択方
向に対して前記ファラデー回転子の偏光面回転角度分だ
けずれている.したがって、複数のファラデー回転子を
通過してきた光のうち、磁界が印加されたファラデー回
転子を通過してきた光のみが出射側偏光板を通遇するこ
とができ、特定位置の光のみが分光器に入力される。A magnetic field is applied to a Faraday rotator at a predetermined position among the Faraday rotators from a magnetic field application control means,
The light passing through the Faraday rotator to which this magnetic field is applied is rotated by a predetermined angle. An exit side polarizing plate is disposed on the exit side of the Faraday rotator, and the polarization plane selection direction of the exit side polarizing plate is different from the polarization plane selection direction of the input side polarizing plate of the Faraday rotator. It is shifted by the rotation angle of the polarization plane. Therefore, among the light that has passed through multiple Faraday rotators, only the light that has passed through the Faraday rotator to which a magnetic field has been applied can pass through the exit side polarizing plate, and only the light at a specific position can be passed through the spectroscope. is input.
前記磁界の印加されるファラデー回転子を順次走査して
いけば、観測位置を移動させることができる.
〔実施例〕
第3図は本発明の一実施例による導入光セレクタを用い
たプラズマCVD装置及びそのプラズマ光計測システム
を示す模式図である.プラズマCVD装置のチャンバ1
内には、平行平板電極2及び3が上下方向に対向して配
置されている.下電極3の上面には、戒膜すべき基板4
が配置され、また下電極3の下方にはヒータ5が設けら
れている.上電極2には高周波電源6が接続され、両電
極2及び3間に高周波が印加可能となっている.チャン
バ1には、両電極2及び3間に反応ガスを導入するため
の反応ガス導入口が設けられ、またチャンバ1内を排気
するための排気口が設けられている。By sequentially scanning the Faraday rotator to which the magnetic field is applied, the observation position can be moved. [Embodiment] FIG. 3 is a schematic diagram showing a plasma CVD apparatus using an introduced light selector and its plasma light measurement system according to an embodiment of the present invention. Chamber 1 of plasma CVD equipment
Inside, parallel plate electrodes 2 and 3 are arranged facing each other in the vertical direction. On the upper surface of the lower electrode 3, there is a substrate 4 to be coated.
is arranged, and a heater 5 is provided below the lower electrode 3. A high frequency power source 6 is connected to the upper electrode 2, so that high frequency can be applied between the two electrodes 2 and 3. The chamber 1 is provided with a reaction gas inlet for introducing a reaction gas between the electrodes 2 and 3, and an exhaust port for exhausting the inside of the chamber 1.
前記チャンバ1の側壁には、石英ガラス等で構威される
覗き窓7が設けられており、この覗き窓7の側方に導入
光セレクタ8が設けられている.導入光セレクタ8の出
力は分光器9に入力されている.
第1図に導入光セレクタ8の構威を示す.導入光セレク
タ8は、ファラデー回転ガラスファイバーアレイ(ファ
ラデー回転子群)10と、このファラデ−回転子ガラス
ファイバーアレイ(以下、単にガラスファイバーアレイ
と記す)を挟んで対向して設けられた入射側偏光板11
と出射側偏光板12とを有している。ガラスファイバー
アレイ10は、複数のファラデ−回転ガラスファイバー
(以下、単にガラスファイバーと記す)を、縦方向に配
設してなるものである.ガラスファイバーのそれぞれは
、磁界の印加によって通過する光の偏光面を所定角度回
転させるためのものである。A viewing window 7 made of quartz glass or the like is provided on the side wall of the chamber 1, and an introduction light selector 8 is provided on the side of this viewing window 7. The output of the introduced light selector 8 is input to a spectrometer 9. Figure 1 shows the structure of the introduced light selector 8. The introduced light selector 8 is provided with a Faraday rotator glass fiber array (Faraday rotator group) 10 and a polarized light beam on the incident side, which is provided to face the Faraday rotator glass fiber array (hereinafter simply referred to as a glass fiber array). Board 11
and an output side polarizing plate 12. The glass fiber array 10 is formed by arranging a plurality of Faraday-rotated glass fibers (hereinafter simply referred to as glass fibers) in the vertical direction. Each of the glass fibers is used to rotate the polarization plane of passing light by a predetermined angle by applying a magnetic field.
なお、偏光面の回転方向は、磁界の方向によってのみ決
まり、光の進行方向に依存しない.偏光面の回転角θは
、常磁性体では、ガラスファイバーの長さをl、印加磁
界強度をHとすると、θ−VHf
なる関係がある.ここで、■はベルデ定数であり、ファ
ラデー回転の大きさを表す係数である。この実施例では
、印加磁界強度H及びガラスファイバーの長さlは、そ
れぞれ偏光面の回転角θが90’になるように設定され
ている.
前記入射側偏光板1jは偏光面選択方向が水平方向とな
っており、また、出射側偏光板・−1 2は偏光面選択
方向が垂直方向となっている。このように、入射側偏光
板11の偏光面選択方向と出射側偏光板12の偏光面選
択方向とは、前記ガラスファイバーの偏光面回転角度分
(90゜)ずれるように配置されている.
第2図に示すように、ガラスファイバー15のそれぞれ
には、磁界印加用の電磁コイル16が巻かれている。ま
た、各ガラスファイバー15に印加された磁界が他のガ
ラスファイバーに影響を与えないように、電磁コイル1
6の外周には、磁気シールド17が設けられている.各
ガラスファイバーl5の電磁コイル16は、第1図に示
す磁界印加制御手段13に接続されている.この磁界印
加制御手段l3は、電源14に接続されており、磁界を
印加すべきガラスファイバーにのみ、選択的に通電を行
うものである。Note that the direction of rotation of the plane of polarization is determined only by the direction of the magnetic field and does not depend on the direction in which the light travels. In a paramagnetic material, the rotation angle θ of the plane of polarization has the relationship θ−VHf, where the length of the glass fiber is l and the applied magnetic field strength is H. Here, ■ is the Verdet constant, which is a coefficient representing the magnitude of Faraday rotation. In this example, the applied magnetic field strength H and the length l of the glass fiber are each set so that the rotation angle θ of the plane of polarization is 90'. The input side polarizing plate 1j has a polarization plane selected in the horizontal direction, and the output side polarizing plate -12 has a polarization plane selection direction in the vertical direction. In this way, the polarization plane selection direction of the input-side polarizing plate 11 and the polarization plane selection direction of the output-side polarization plate 12 are arranged to be shifted by the polarization plane rotation angle (90°) of the glass fiber. As shown in FIG. 2, an electromagnetic coil 16 for applying a magnetic field is wound around each of the glass fibers 15. In addition, the electromagnetic coil 1
A magnetic shield 17 is provided around the outer periphery of the magnetic shield 6. The electromagnetic coil 16 of each glass fiber 15 is connected to the magnetic field application control means 13 shown in FIG. This magnetic field application control means 13 is connected to the power supply 14, and selectively energizes only the glass fibers to which a magnetic field is to be applied.
次に動作について説明する。Next, the operation will be explained.
まず第4図により、ファラデー回転ガラスファイバーを
用いた場合の光の取り出し原理を説明する.入射光Li
は、ランダムな偏光面を有している。入射光Liが入射
側偏光板11を通過すると、この入射側偏光板11は水
平方向の偏光面のみを通過させるので、ガラスファイバ
ー15の入口側における光の偏光面は水平方向となって
いる.この光が磁界の印加されたガラスファイバー15
に入射すると、その偏光面は光の進行とともに回転する
.前述のように、ガラスファイバー150長さlと、印
加磁界の強度Hとは、偏光面の回転角度が90°になる
ように設定されているので、ガラスファイバー15から
射出された光の偏光面は垂直方向となっている.出射側
偏光板12は、偏光面選択方向が垂直方向に設定されて
いるので、前記ガラスファイバー15によって回転され
た光が、この出射側偏光板12を通過し、射出光Loと
して分光器9側に出力される.
本実施例の導入光セレクタ8においては、前記のような
ガラスファイバー15が縦方向にアレイ状に配置されて
いる.したがって、今、第5図に示すように、平行平板
電極2.3間のプラズマを矢印Pとして模式化して示す
と、磁界印加制御手段13により最下端位置のガラスフ
ァイバーにのみ磁界Hを印加しておけば、プラズマ光P
のうちの最下端の位置の光P,のみが、ガラスファイバ
ー15を通遇することにより回転され、出射側偏光板1
2から選択的に出射される.その他の部分のプラズマ光
P!は、水平方向の偏光面が入射側偏光板11を通遇す
るものの、Pt部分に相当するガラスファイバーに磁界
Hが印加されていないので、この偏光面はそのままガラ
スファイバーを通過し、垂直方向の偏光面選択方向を有
する出射側偏光板12を通過することができない。First, with reference to Figure 4, we will explain the principle of light extraction when using a Faraday rotating glass fiber. Incident light Li
has a random plane of polarization. When the incident light Li passes through the incident-side polarizing plate 11, the incident-side polarizing plate 11 allows only the horizontal polarization plane to pass through, so that the polarization plane of the light on the entrance side of the glass fiber 15 is horizontal. This light is applied to a glass fiber 15 to which a magnetic field is applied.
When the light is incident on the light, its plane of polarization rotates as the light travels. As mentioned above, the length l of the glass fiber 150 and the intensity H of the applied magnetic field are set so that the rotation angle of the polarization plane is 90°, so the polarization plane of the light emitted from the glass fiber 15 is is in the vertical direction. Since the polarization plane selection direction of the output-side polarizing plate 12 is set to the vertical direction, the light rotated by the glass fiber 15 passes through the output-side polarizing plate 12 and is sent to the spectrometer 9 side as output light Lo. is output to . In the introduced light selector 8 of this embodiment, the glass fibers 15 as described above are arranged in an array in the vertical direction. Therefore, as shown in FIG. 5, if the plasma between the parallel plate electrodes 2 and 3 is schematically shown as an arrow P, the magnetic field H is applied only to the glass fiber at the lowest position by the magnetic field application control means 13. If you keep it, plasma light P
Only the light P at the lowest end of the light beams is rotated by passing through the glass fiber 15, and the light P is rotated by passing through the glass fiber 15.
It is selectively emitted from 2. Other parts of plasma light P! Although the horizontal plane of polarization passes through the incident side polarizing plate 11, since the magnetic field H is not applied to the glass fiber corresponding to the Pt portion, this polarization plane passes through the glass fiber as it is, and the vertical plane passes through the incident side polarizing plate 11. It cannot pass through the output side polarizing plate 12 which has a polarization plane selection direction.
次に、最下段から2番目のガラスファイバーにのみ磁界
Hを印加するようにすれば、P+の上部のプラズマ光の
みを前記同様の動作により選択的に取り出すことができ
る。このようにして、磁界を印加するガラスファイバー
を順次走査していくと、スペクトルのチャンバ1内にお
ける空間分布特性を得ることができる
このような本実施例では、ファラデー回転ガラスファイ
バーを電子的に走査することができるので、従来の機械
的な上下移動に較べて非常に高速に繰り返し走査を行う
ことができ、真空中の反応メカニズムを解析することが
できる.
〔他の実施例〕
(a) 前記実施例では、入射側偏光板11の偏光面
選択方向を水平方向とし、出射側偏光板l2の偏光面選
択方向を垂直方向としたが、これらの偏光板11及び1
2の偏光面選択方向はそれぞれ逆であってもよい。Next, by applying the magnetic field H only to the second glass fiber from the bottom, only the plasma light above P+ can be selectively extracted by the same operation as described above. In this way, by sequentially scanning the glass fiber to which a magnetic field is applied, the spatial distribution characteristics of the spectrum within the chamber 1 can be obtained.In this example, the Faraday rotating glass fiber is electronically scanned. This makes it possible to repeatedly scan at a much higher speed than conventional mechanical vertical movement, making it possible to analyze reaction mechanisms in vacuum. [Other Examples] (a) In the above embodiment, the polarization plane selection direction of the incident side polarizing plate 11 was set to the horizontal direction, and the polarization plane selection direction of the output side polarizing plate l2 was set to the vertical direction. 11 and 1
The two polarization plane selection directions may be opposite to each other.
(ロ)また、入射側偏光板11と出射側偏光板12の偏
光面選択方向は、特定の角度方向に限定されるものでは
なく、両者の偏光面選択方向の角度ずれが90°に設定
されていればよい.
(C) 前記実施例では、ファラデー回転ガラスファ
イバー15における偏光面回転角度と、入射側偏光板及
び出射側偏光板の偏光面選択方向の角度ずれ分を90°
に設定したが、この角度は901に限定されるものでは
ない.すなわち、たとえば45″や60°にしてもよく
、ファラデー回転ガラスファイバーの偏光面回転角度と
、入射側偏光板と出射側偏光板の偏光面選択方向の角度
ずれ分が同じであればよい.
(イ)前記実施例では、ファラデー回転ガラスファイバ
ーアレイにおいて、上下方向に順次1つずつ磁界を印加
するようにしたが、磁界を印加するファイバーの組合せ
を変更することも可能である。(b) Furthermore, the polarization plane selection directions of the incident side polarizing plate 11 and the output side polarizing plate 12 are not limited to a specific angular direction, and the angular shift between the polarization plane selection directions of both is set to 90°. It is enough if it is. (C) In the above embodiment, the angular deviation between the polarization plane rotation angle in the Faraday rotary glass fiber 15 and the polarization plane selection direction of the input side polarizing plate and the output side polarizing plate is 90°.
However, this angle is not limited to 901. That is, it may be set to 45'' or 60°, for example, as long as the rotation angle of the polarization plane of the Faraday rotary glass fiber and the angular deviation of the polarization plane selection direction of the input side polarizing plate and the output side polarizing plate are the same. ( b) In the above embodiment, the magnetic field was applied one by one in the vertical direction in the Faraday rotating glass fiber array, but it is also possible to change the combination of fibers to which the magnetic field is applied.
たとえば、所定の間隔を設けて複数個のファイバ一に同
時に磁界を印加したり、また隣接する複数のファイバー
に対して同時に磁界を印加するとともに、この複数の組
合せを順次ずらして行く等のように、任意の組合せが可
能である.
(e) 前記実施例では、本発明をプラズマCVD装
置の発光スペクトル分析に用いたが、他の装置、たとえ
ば発光分光分析装置等におけるスペクトルの空間分布特
性を調べたりする際に適用することができるのはもちろ
んである.
〔発明の効果〕
このように本発明では、ファラデー回転子をアレイ状に
配置して、各ファラデ一回転子のそれぞれに磁界を印加
するタイミングを制御するようにしたので、観測位置を
電子的に走査することができ、走査に要する時間を著し
く短縮することができる.For example, a magnetic field can be applied simultaneously to multiple fibers at a predetermined interval, or a magnetic field can be applied simultaneously to multiple adjacent fibers, and the combinations of these multiple fibers can be sequentially shifted. , any combination is possible. (e) In the above examples, the present invention was used to analyze the emission spectrum of a plasma CVD device, but it can also be applied to investigating the spatial distribution characteristics of the spectrum in other devices, such as an emission spectrometer. Of course. [Effects of the Invention] As described above, in the present invention, the Faraday rotators are arranged in an array, and the timing of applying the magnetic field to each Faraday rotor is controlled, so the observation position can be electronically adjusted. The time required for scanning can be significantly reduced.
第1図は本発明の一実施例による導入光セレクタの概略
構或図、第2図は前記導入光セレクタのファラデー回転
子群を構威するファラデー回転ガラスファイバーアイレ
のエレメントを示す拡大図、第3図は前記導入光セレク
タが用いられたプラズマCVD装置の概略構成図、第4
図は本発明の基本原理を説明するための図、第5図は前
記導入光セレクタの動作を説明するための図である。FIG. 1 is a schematic diagram of the structure of an introduction light selector according to an embodiment of the present invention, FIG. Figure 3 is a schematic configuration diagram of a plasma CVD apparatus in which the introduced light selector is used;
The figure is a diagram for explaining the basic principle of the present invention, and FIG. 5 is a diagram for explaining the operation of the introduced light selector.
Claims (1)
めの導入光セレクタであって、 通過する光の偏光面を磁界の印加により所定角度回転さ
せるファラデー回転子をアレイ状に配置してなるファラ
デー回転子群と、このファラデー回転子群を挟んで対向
しかつ偏光面選択方向が前記ファラデー回転子の偏光面
回転角度分ずれるように配置された入射側偏光板及び出
射側偏光板と、前記複数のファラデー回転子のそれぞれ
に磁界を印加するタイミングを制御する磁界印加制御手
段とを備えた導入光セレクタ。(1) An introduction light selector for introducing a part of spatially distributed light into a spectrometer, in which Faraday rotators are arranged in an array to rotate the polarization plane of passing light by a predetermined angle by applying a magnetic field. a group of Faraday rotators, and an input-side polarizing plate and an output-side polarizing plate that face each other across the Faraday rotator group and are arranged such that the polarization plane selection direction is shifted by the polarization plane rotation angle of the Faraday rotator. and a magnetic field application control means for controlling the timing of applying a magnetic field to each of the plurality of Faraday rotators.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP15798589A JPH0321830A (en) | 1989-06-20 | 1989-06-20 | Guided-in light selector |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP15798589A JPH0321830A (en) | 1989-06-20 | 1989-06-20 | Guided-in light selector |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH0321830A true JPH0321830A (en) | 1991-01-30 |
Family
ID=15661723
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP15798589A Pending JPH0321830A (en) | 1989-06-20 | 1989-06-20 | Guided-in light selector |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH0321830A (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US7254287B2 (en) | 2004-02-12 | 2007-08-07 | Panorama Labs, Pty Ltd. | Apparatus, method, and computer program product for transverse waveguided display system |
-
1989
- 1989-06-20 JP JP15798589A patent/JPH0321830A/en active Pending
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US7254287B2 (en) | 2004-02-12 | 2007-08-07 | Panorama Labs, Pty Ltd. | Apparatus, method, and computer program product for transverse waveguided display system |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Winn et al. | Recent progress on HYSPEC, and its polarization analysis capabilities | |
Schönhense | Photoelectron spin-polarization spectroscopy: A new method in adsorbate physics: The model case of physisorbed rare gases | |
Kabachnik et al. | Coherence and correlations in photoinduced Auger and fluorescence cascades in atoms | |
US20140284484A1 (en) | Terahertz ellipsometer system, and method of use | |
Johnson et al. | Spin‐polarized photoemission spectroscopy of magnetic surfaces using undulator radiation | |
Zhou et al. | A photodissociation study of CH2BrCl in the A-band using the time-sliced ion velocity imaging method | |
Shinohara et al. | Polarization analysis for magnetic field imaging at RADEN in J-PARC/MLF | |
Nordgren et al. | Resonant soft X-ray fluorescence spectra of molecules. | |
Wittmaack | Successful operation of a scanning ion microscope with quadrupole mass filter | |
JPH0321830A (en) | Guided-in light selector | |
EP2798322A1 (en) | Terahertz ellipsometer system, and method of use | |
Imajo et al. | Spatial separation of ion clouds between sympathetically laser-cooled Cd+-ion isotopes in a Penning trap | |
KR19980035472A (en) | Wafer surface analysis device and wafer surface analysis method using the same | |
Reid et al. | Validation of velocity map imaging conditions over larger areas | |
Parr et al. | An angle resolved photoelectron spectrometer for atoms and molecules | |
CN108231530B (en) | For laser beam to be coupled to mass spectrometric system and method | |
Thomas et al. | Prospects for edge current density determination using LIBEAM on DIII-D | |
US20020068126A1 (en) | Method and apparatus for depositing thin layers | |
US4588888A (en) | Mass spectrometer having magnetic trapping | |
Ahrendsen et al. | An improved source of spin-polarized electrons based on spin exchange in optically pumped rubidium vapor | |
Perseo et al. | Coherence imaging spectroscopy systems on Wendelstein 7-X for studies of island divertor plasma behavior | |
Ding et al. | Development of laser assisted nanometric resolution scanning tunneling microscopy time-of-flight mass analyzer system | |
Chandler et al. | Velocity-selected spatial map ion imaging spectrometer for direct imaging of near-surface catalytic activity | |
Fuke | Preparation of ultracold ions in strong magnetic field and application to gas-phase NMR spectroscopy II | |
JPH08248141A (en) | Spin detector |