JPH0321803A - Measuring method for opposite surface interval and shape - Google Patents

Measuring method for opposite surface interval and shape

Info

Publication number
JPH0321803A
JPH0321803A JP15792489A JP15792489A JPH0321803A JP H0321803 A JPH0321803 A JP H0321803A JP 15792489 A JP15792489 A JP 15792489A JP 15792489 A JP15792489 A JP 15792489A JP H0321803 A JPH0321803 A JP H0321803A
Authority
JP
Japan
Prior art keywords
probe
tips
tip
conductor
tunnel current
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP15792489A
Other languages
Japanese (ja)
Inventor
Akira Sato
章 佐藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujitsu Ltd
Original Assignee
Fujitsu Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu Ltd filed Critical Fujitsu Ltd
Priority to JP15792489A priority Critical patent/JPH0321803A/en
Publication of JPH0321803A publication Critical patent/JPH0321803A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To measure the interval or surface shape of opposite flanks formed of a recessed part provided in a conductor without destructing nor bringing into contact by applying a voltage between a probe and an object, and putting the probe in scanning operation while detecting a tunnel current generated when putting the probe close to the measured surface. CONSTITUTION:A conductive measuring element 2 which has two needlelike tips 2a and 2b is interposed between the opposite surfaces 1a and 1b provided to the conductor 1 so that the tips 2a and 2b face the opposite surfaces 1a and 1b. The voltage E is applied between the measuring element 2 and conductor 1. Then the measuring element 2 is moved in three dimensions between the opposite surfaces 1a and 1b to detect the tunnel current between one of the opposite surfaces 1a and 1b and the opposite tip 2a or 2b. Then the gap size between the tip 2a or 2b and surface 1a or 1b, the movement size of the measuring element 2, and the size between the tips 2a and 2b at the time of detecting the tunnel current are used to find the gap or surface shape of the opposite surfaces 1a and 1b.

Description

【発明の詳細な説明】 〔概 要〕 半導体などの導電体に設けた凹部が形戒する対向側面(
対向面)の間隔または表面形状の測定方法に関し、 その間隔または表面形状を、非破壊、非接触で三次元的
に測定する方法の提供を目的とし、導電体に設けられた
対向面の間に、先端部が側方左右に分岐してなる針状の
二つの先端を有する導電性の測定子を、上記先端の各々
が対向面の各々に対向するように挿入して、測定子と上
記導電体との間に電圧を印加し、測定子を三次元的に移
動させて、対向面の一方とそれに対向する上記先端との
間のトンネル電流を検出することを対向面の両面に対し
て行い、トンネル電流検出時における検出対象の上記先
端と面との間隙寸法、測定子の移動寸法、及び二つの上
記先端の間の寸法から、対向面の間隔または表面形状を
求めるように構或する。
[Detailed Description of the Invention] [Summary] Opposing side surfaces formed by recesses formed in a conductor such as a semiconductor (
The purpose of the present invention is to provide a method for three-dimensionally measuring the distance or surface shape of opposing surfaces (opposed surfaces) in a non-destructive, non-contact manner. , insert a conductive probe having two needle-like tips with the tip branching laterally to the left and right so that each of the tips faces each of the opposing surfaces, and connect the probe to the conductive probe. A voltage is applied between the body and the probe is moved three-dimensionally to detect a tunnel current between one of the opposing surfaces and the tip facing it on both sides of the opposing surface. The distance or surface shape of the opposing surfaces is determined from the gap between the tip of the object to be detected and the surface, the movement dimension of the probe, and the dimension between the two tips when detecting the tunnel current.

〔産業上の利用分野〕[Industrial application field]

本発明は、対向面間隔形状測定方法に係り、特に、半導
体などの導電体に設けた凹部が形戊する対向側面(対向
面)の間隔または表面形状を測定する方法に関する。
The present invention relates to a method for measuring the shape of the distance between opposing surfaces, and particularly to a method of measuring the distance or surface shape of opposing side surfaces (opposing surfaces) formed by recesses provided in a conductor such as a semiconductor.

近年、半導体素子は微細化の一途をたどっている。中で
も半導体記憶素子においてはその傾向が著しく、素子の
主要構戒である容量はその構造が二次元から三次元へと
移り変わっている。容量の三次元構造を代表するトレン
チ構造において、その凹部が形成する対向側面の間隔ま
たは表面形状は容量形戒のために重要であり、その間隔
または表面形状を非破壊、非接触で三次元的に測定する
必要がある。
In recent years, semiconductor devices have continued to become smaller. This trend is particularly noticeable in semiconductor memory devices, where the structure of capacitance, which is the main structure of devices, is changing from two-dimensional to three-dimensional. In the trench structure, which represents the three-dimensional structure of a capacitor, the spacing or surface shape of the opposing sides formed by the recess is important for capacitive formation, and the spacing or surface shape can be changed non-destructively, non-contact, and three-dimensionally. need to be measured.

〔従来の技術〕[Conventional technology]

従来、凹部の対向側面の間隔または表面形状を測定する
方法としては、走査電子顕微鏡を用いる方法と接触探針
を用いる方法がある。しかし、前者は、裁断した断面か
らのみ測定が可能であり、二次元情報しか得られない。
Conventionally, methods for measuring the distance or surface shape of opposing side surfaces of a recess include a method using a scanning electron microscope and a method using a contact probe. However, the former method can only be measured from a cut cross section, and only two-dimensional information can be obtained.

後者は、凹部側面形状を観察する場合、探針を細くしな
ければならないが接触さ妊るためにあまり細くすること
ができない。また、この方法は垂直方向の変化に敏感で
ない。
In the latter case, when observing the shape of the side surface of a recess, the probe must be made thinner, but it cannot be made too thin because it will not come into contact with the tip. Also, this method is not sensitive to vertical changes.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

従って上記従来の方法は、凹部の対向側面の間隔または
表面形状を測定する場合、対象物を破壊したり、対象物
に接触させたりしなければならない。然も、得られる情
報が十分でない。
Therefore, in the conventional method described above, when measuring the distance or surface shape of the opposing side surfaces of a recess, the object must be destroyed or brought into contact with the object. However, the information available is not sufficient.

そこで本発明は、半導体などの導電体に設けた凹部が形
成する対向側面(対向面)の間隔または表面形状を、非
破壊、非接触で三次元的に測定する方法の提供を目的と
する。
Therefore, an object of the present invention is to provide a method for three-dimensionally measuring the distance or surface shape of opposing side surfaces (opposing surfaces) formed by recesses provided in a conductor such as a semiconductor in a non-destructive and non-contact manner.

〔課題を解決するための手段〕[Means to solve the problem]

第1図は本発明を説明する斜視図である。 FIG. 1 is a perspective view illustrating the present invention.

同図を参照して、上記目的は、導電体lに設けられた対
向面1a及び1bの間に、先端部が側方左右に分岐して
なる針状の二つの先端2a及び2bを有する導電性の測
定子2を、上記先端2a及び2bの各々が対向面1a及
び1bの各々に対向するように挿入して、測定子2と上
記導電体2との間に電圧Eを印加し、 測定子2を三次元的に移動させて、対向面1aまたは1
bの一方とそれに対向する上記先端2aまたは2bとの
間のトンネル電流を検出することを対向面1a及び1b
の両面に対して行い、 トンネル電流検出時における検出対象の上記先端2aま
たは2bと面1aまたは1bとの間隙寸法、測定子2の
移動寸法、及び二つの上記先端2a及び2bの間の寸法
から、対向面1a及び1bの間隔または表面形状を求め
る本発明の測定方法によって達威される。
Referring to the same figure, the above object is to provide a conductive conductor having two needle-shaped tips 2a and 2b whose tips are branched laterally to the left and right between the opposing surfaces 1a and 1b provided on the conductor l. Insert the measuring tip 2 such that the tips 2a and 2b face each of the facing surfaces 1a and 1b, apply the voltage E between the measuring tip 2 and the conductor 2, and measure. The child 2 is moved three-dimensionally to face the opposing surface 1a or 1.
The opposing surfaces 1a and 1b are configured to detect a tunnel current between one of the ends 2a and 2b facing the tip 2a or 2b.
from the gap dimension between the tip 2a or 2b of the object to be detected and the surface 1a or 1b, the movement dimension of the probe 2, and the dimension between the two tips 2a and 2b when detecting the tunnel current. , can be achieved by the measuring method of the present invention for determining the distance or surface shape of the opposing surfaces 1a and 1b.

〔作 用〕[For production]

上方が開放された表面の形状を非破壊、非接触で測定す
る装置に走査トンネル顕微鏡(STM)がある。これは
、探針と対象物との間に電圧を印加し、探針を測定表面
に近づけた際に生ずるトンネル電流を検出しなから探針
を走査することにより、対象物に探針を接触させること
なく表面形状を測定するものである。
A scanning tunneling microscope (STM) is a device that non-destructively and non-contactly measures the shape of a surface with an open top. This method applies a voltage between the probe and the object, detects the tunnel current that occurs when the probe approaches the measurement surface, and then scans the probe to bring the probe into contact with the object. It measures the surface shape without causing any damage.

本発明は、このSTMの原理を利用したものであり、探
針の代わりに先端部が側方左右に分岐してなる針状の二
つの先端2a及び2bを有する上記測定子2を用い、測
定子2を三次元的に移動させることにより、導電体lに
設けられた対向面1a及び1bの間隔または表面形状を
求め得るようにしたものである。
The present invention utilizes this STM principle, and uses the measuring element 2 described above, which has two needle-shaped tips 2a and 2b whose tips are branched laterally to the left and right, instead of a probe, to carry out measurements. By moving the child 2 three-dimensionally, the distance or surface shape of the opposing surfaces 1a and 1b provided on the conductor 1 can be determined.

その際のトンネル電流は、第2図のトンネル電流特性図
に示すように、一定の印加電圧Eの下で測定子2の先端
2aまたは2bと面1aまたは1bとの間隙寸法に依存
して、間隙寸法が小さくなるに従って大きくなるなるも
ので、数V程度の印加電圧、inn程度の間隙寸法でn
Aオーダの大きさを示す。
As shown in the tunnel current characteristic diagram in FIG. 2, the tunnel current at that time depends on the gap size between the tip 2a or 2b of the probe 2 and the surface 1a or 1b under a constant applied voltage E. It increases as the gap size becomes smaller, and with an applied voltage of several V and a gap size of about inn, n
Indicates the size of A order.

そしてこれらの定量的関係は対象物と無関係に予め明ら
かにすることができる。
These quantitative relationships can be clarified in advance regardless of the object.

また、測定子2の二つの先端2a及び2bの間の寸法は
既知のものであり、測定子2の移動寸法は測定時点に確
定できるものである。
Further, the dimension between the two tips 2a and 2b of the measuring stylus 2 is known, and the movement dimension of the measuring stylus 2 can be determined at the time of measurement.

従って、上記寸法から単純な計算を行うことにより、半
導体などの導電体に設けた凹部が形或する対向側面(対
向面)の間隔または表面形状を、非破壊、非接触で三次
元的に求めることが可能となる。
Therefore, by performing simple calculations from the above dimensions, it is possible to determine three-dimensionally, non-destructively and non-contact, the spacing or surface shape of the opposing side surfaces (opposing surfaces) where the recess is formed in a conductor such as a semiconductor. becomes possible.

〔実施例〕〔Example〕

以下本発明による測定の実施例について第3図〜第5図
を用いて説明する。第3図は実施例に用いる測定装置の
要部構戒図、第4図は実施例のSTM走査の探針移動図
、第5図は実施例の対向面測定時の測定子状態を示す図
、であり、全図を通し同一符号は同一対象物を示す。
Examples of measurement according to the present invention will be described below with reference to FIGS. 3 to 5. Fig. 3 is a schematic diagram of the main parts of the measuring device used in the example, Fig. 4 is a diagram of probe movement during STM scanning in the example, and Fig. 5 is a diagram showing the state of the probe during measurement of the opposing surface in the example. , and the same reference numerals indicate the same objects throughout the figures.

第3図において、3は測定子2を三次元的に移動させる
測定子駆動部、4は駆動部3を制御する測定子駆動部制
御回路、5は測定子2の先端2aまたは2bに生ずるト
ンネル電流を検出し出力を制1■回路4に送るトンネル
電流検出回路、6は測定子2の移動寸法をデータとして
記憶する移動寸法記憶回路、であり、これらは、対向而
1a及び1bの間隔または表面形状の三次元的測定に用
いる。またこの装置は、測定対象物である導電体lの対
向面1a及び1bを形戒する凹部の位置を知るために、
探針7及び探針駆動部8などからなるSTMを具えてい
る。
In FIG. 3, reference numeral 3 denotes a probe drive unit that moves the probe 2 three-dimensionally, 4 a probe drive control circuit that controls the drive unit 3, and 5 a tunnel formed at the tip 2a or 2b of the probe 2. 1 is a tunnel current detection circuit that detects the current and sends the output to circuit 4; 6 is a movement dimension memory circuit that stores the movement dimension of the probe 2 as data; Used for three-dimensional measurement of surface shape. In addition, in order to know the position of the recess that defines the opposing surfaces 1a and 1b of the conductor l, which is the object to be measured,
It is equipped with an STM consisting of a probe 7, a probe drive unit 8, and the like.

測定子2は棒状をなしてタングステンなどの金属からな
り、その先端2a及び2bは測定子2の先端部が側方左
右に分岐してなるもので左右方向に尖った針状をなし、
先端2aから先端2bまでの寸法は対向面1a及び1b
の間隔よりも小さくしてある。
The measuring tip 2 is rod-shaped and made of metal such as tungsten, and its tips 2a and 2b are formed by branching the tip of the measuring tip 2 laterally to the left and right, and are needle-shaped with sharp points in the left-right direction.
The dimensions from the tip 2a to the tip 2b are the opposing surfaces 1a and 1b.
The spacing is smaller than that of .

測定子駆動部3は測定子2の駆動源として圧電素子など
を用い、測定子2を極めて精度良く移動させることがで
きる。
The measuring element driving section 3 uses a piezoelectric element or the like as a driving source for the measuring element 2, and can move the measuring element 2 with extremely high accuracy.

対向面1a及び1bの上記測定は、次のように行う。The above measurements of the opposing surfaces 1a and 1b are performed as follows.

先ず、対向面1a及び1bに立てた垂線の方向が測定子
2の先端2a及び2bを結ぶ線の方向(X方向)に合致
するように導電体lをセットし、測定子2をその先端部
が探針7の先端より高くなるように位置させた状態で、
探針7により導電体1の上面をX方向に走査する。探針
7の移動経過は第4図のようになり、その経過の降下点
及び上昇点により導電体1の凹部の位置が判る。
First, the conductor l is set so that the direction of the perpendicular line erected on the opposing surfaces 1a and 1b matches the direction (X direction) of the line connecting the tips 2a and 2b of the probe 2, and the probe 2 is placed at the tip of the probe 2. is positioned so that it is higher than the tip of the probe 7,
The probe 7 scans the top surface of the conductor 1 in the X direction. The progress of the movement of the probe 7 is as shown in FIG. 4, and the position of the recess in the conductor 1 can be determined from the falling and rising points of the progress.

これにより、測定子2を導電体1に接触させることなく
その凹部が形戒する対向面1a及び1bの間に挿入する
ことができる。その状態が第5図及び先に述べた第1図
に示される。
Thereby, the measuring element 2 can be inserted between the opposed surfaces 1a and 1b defined by the recessed portion without contacting the conductor 1. This state is shown in FIG. 5 and FIG. 1 mentioned above.

その後、対向面1a及び1bの間隔または表面形状の測
定に入る。
After that, measurement of the distance or surface shape of the opposing surfaces 1a and 1b begins.

即ち第5図を参照して、測定子2をX方向に移動して破
線で示すように測定子2の先端2a (または2b)を
対向面1a (または1b)に近づけ、この両者間のト
ンネル電流を検出回路5で検出する。更に測定子2を逆
方向に移動して測定子2の先端2b(または2a)を対
向面1b (または1a)に近づけ、この両者間のトン
ネル電流を検出回路5で検出する.その際、記憶回路6
により測定子2の移動寸法をデータとして記憶しておく
That is, referring to FIG. 5, move the probe 2 in the X direction to bring the tip 2a (or 2b) of the probe 2 closer to the opposing surface 1a (or 1b) as shown by the broken line, and create a tunnel between the two. A detection circuit 5 detects the current. Further, the probe 2 is moved in the opposite direction to bring the tip 2b (or 2a) of the probe 2 closer to the opposing surface 1b (or 1a), and the detection circuit 5 detects the tunnel current between the two. At that time, the memory circuit 6
The movement dimension of the probe 2 is stored as data.

そうすれば、トンネル電流検出時の間隙寸法、測定子2
の移動寸法、及び、既知である先端2aと2bの間の寸
法から、対向面1a及び1bの或る一点における間隔を
単純な計算により求めることができる。他の点における
間隔の測定は、測定子2の位置をY,Z方向(Y方向は
紙面と直角な方向)に適宜にずらせて上記と同様にすれ
ば良い。
By doing so, the gap size when detecting the tunnel current, the measuring point 2
From the movement dimension and the known dimension between the tips 2a and 2b, the distance at a certain point between the opposing surfaces 1a and 1b can be determined by simple calculation. The spacing at other points may be measured in the same manner as described above by appropriately shifting the position of the measuring element 2 in the Y and Z directions (the Y direction is a direction perpendicular to the plane of the paper).

上記の検出回路5によるトンネル電流検出は、トンネル
電流の大きさを或る一定値に定めて、その電流値になる
ように先端2aまたは2bが近づいた時点を検出時点と
するのが実務的である。
For tunnel current detection by the detection circuit 5 described above, it is practical to set the magnitude of the tunnel current to a certain constant value, and to set the detection point at the time when the tip 2a or 2b approaches the current value. be.

また表面形状は、対向面1a及び1bの間に挿入された
測定子2を、X方向に移動して破線で示すように測定子
2の先端2a (または2b)を対向面1a(または1
b)に近づけ、この両者間のトンネル電流を検出回路5
が検出したところで、トンネル電流を一定に保つように
しながら測定子2をY,Z及びX方向に適宜に移動する
と共に、その移動軌跡の寸法をデータとして記憶回路6
に記憶し、測定子2の移動軌跡から三次元的に求めるこ
とができる。
The surface shape is such that the tip 2a (or 2b) of the probe 2 inserted between the opposing surfaces 1a and 1b is moved in the X direction and the tip 2a (or 2b) of the probe 2 is inserted between the opposing surfaces 1a (or
b), and the detection circuit 5 detects the tunnel current between the two.
When detected, the probe 2 is moved appropriately in the Y, Z, and X directions while keeping the tunnel current constant, and the dimensions of the movement locus are stored in the memory circuit 6 as data.
, and can be determined three-dimensionally from the movement locus of the tracing stylus 2.

〔発明の効果〕〔Effect of the invention〕

以上説明したように本発明の構戒によれば、半導体など
の導電体に設けた凹部が形成する対向側面(対向面)の
間隔または表面形状の測定方法に関し、その間隔または
表面形状を、非破壊、非接触で三次元的に測定する方法
が提供されて、例えば高集積化された半導体記憶素子の
トレンチ構造をなす容量の、トレンチに対する製造上の
評価を確実にさせる効果がある。
As explained above, according to the structure of the present invention, regarding the method of measuring the distance or surface shape of the opposing side surfaces (opposing surfaces) formed by a recess provided in a conductor such as a semiconductor, the distance or surface shape can be measured in a non-conductive manner. A non-destructive, non-contact three-dimensional measurement method is provided, which has the effect of ensuring, for example, the manufacturing evaluation of the capacitance of a trench structure of a highly integrated semiconductor memory element.

【図面の簡単な説明】[Brief explanation of drawings]

第l図は本発明を説明する斜視図、 第2図はトンネル電流特性図、 第3図は実施例に用いる測定装置の要部構戒図、第4図
は実施例のSTM走査の探針移動図、第5図は実施例の
対向面測定時の測定子状態を示す図、 である。 図において、 1は導電体、 1a, 1bは対向面、 2は測定子、 2a、2bは測定子の先端、 3は測定子駆動部、 4は測定子駆動部制御回路、 5はトンネル電流検出回路、 6は測定子移動寸法記憶回路、 Eは印加電圧、 である。 20志棉 2bも搗 !導電体 水茫明左説明す5斜視図 茅1図 夷羽E伊j1二 用L ′5測定咬置のでB構灰口 茅 3 図 ト ン ネ ル 電;ズ已}千十155第 2 5ゴ 藁7i!!伊1のSTM走蚤の探釘将動2芦 4 図
Fig. 1 is a perspective view explaining the present invention, Fig. 2 is a tunnel current characteristic diagram, Fig. 3 is a schematic diagram of the main parts of the measuring device used in the embodiment, and Fig. 4 is a probe for STM scanning in the embodiment. FIG. 5 is a diagram showing the state of the probe during measurement of the opposing surface of the embodiment. In the figure, 1 is a conductor, 1a and 1b are opposing surfaces, 2 is a probe, 2a and 2b are tips of the probe, 3 is a probe drive unit, 4 is a probe drive control circuit, and 5 is a tunnel current detection 6 is a measuring stylus movement dimension memory circuit, and E is an applied voltage. 20 Shisa 2b is also tsuki! Conductor water brightness left explanation 5 Perspective view Go straw 7i! ! I1's STM flea running probe Shoudo 2 Ashi 4 Figure

Claims (1)

【特許請求の範囲】 導電体(1)に設けられた対向面(1a、1b)の間に
、先端部が側方左右に分岐してなる針状の二つの先端(
2a、2b)を有する導電性の測定子(2)を、上記先
端(2a、2b)の各々が対向面(1a、1b)の各々
に対向するように挿入して、測定子(2)と上記導電体
(1)との間に電圧(E)を印加し、 測定子(2)を三次元的に移動させて、対向面(1a、
1b)の一方とそれに対向する上記先端(2aまたは2
b)との間のトンネル電流を検出することを対向面(1
a、1b)の両面に対して行い、トンネル電流検出時に
おける検出対象の上記先端(2aまたは2b)と面(1
aまたは1b)との間隙寸法、測定子(2)の移動寸法
、及び二つの上記先端(2a、2b)の間の寸法から、
対向面(1a、1b)の間隔または表面形状を求めるこ
とを特徴とする対向面間隔形状測定方法。
[Claims] Between the opposing surfaces (1a, 1b) provided on the conductor (1), there are two needle-shaped tips (1a, 1b) with the tips branching laterally to the left and right.
2a, 2b) is inserted so that each of the tips (2a, 2b) faces each of the opposing surfaces (1a, 1b), and A voltage (E) is applied between the conductor (1) and the probe (2) is moved three-dimensionally to form the opposite surface (1a,
1b) and the opposing tip (2a or 2)
b) to detect the tunnel current between the opposing surface (1
a, 1b), and the tip (2a or 2b) of the detection target during tunnel current detection and the surface (1
a or 1b), the movement dimension of the probe (2), and the dimension between the two tips (2a, 2b),
A method for measuring the spacing between opposing surfaces (1a, 1b) or the surface shape of the opposing surfaces (1a, 1b).
JP15792489A 1989-06-20 1989-06-20 Measuring method for opposite surface interval and shape Pending JPH0321803A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP15792489A JPH0321803A (en) 1989-06-20 1989-06-20 Measuring method for opposite surface interval and shape

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP15792489A JPH0321803A (en) 1989-06-20 1989-06-20 Measuring method for opposite surface interval and shape

Publications (1)

Publication Number Publication Date
JPH0321803A true JPH0321803A (en) 1991-01-30

Family

ID=15660442

Family Applications (1)

Application Number Title Priority Date Filing Date
JP15792489A Pending JPH0321803A (en) 1989-06-20 1989-06-20 Measuring method for opposite surface interval and shape

Country Status (1)

Country Link
JP (1) JPH0321803A (en)

Similar Documents

Publication Publication Date Title
US5583443A (en) Calibration of capacitance probe
JP2007309919A (en) Scanning probe microscope
US20030200798A1 (en) Atomic force microscope
JPH0321803A (en) Measuring method for opposite surface interval and shape
JP2017096906A (en) Method of measuring topographic profile and/or topographic image
JPH0545141B2 (en)
JP2004177294A (en) Non-contact displacement meter and measurement method using the same
JP2579726B2 (en) Contact probe
KR100416440B1 (en) Method for the measurements of 3-dimensional surface topography and material distribution using friction signal
JP3069931B2 (en) Surface shape measuring method and device
JPH0519766Y2 (en)
JP3137796B2 (en) Scanning probe microscope apparatus and measuring method using the same
JPS63305204A (en) Scanning capacitance microscopy
JPH03216501A (en) Small hole diameter measuring method
KR200164834Y1 (en) Pointing tip of a three dimensional measuring rule
JPH0412214A (en) Shape detecting method for inside surface of cylinder
JPS62139030A (en) Coordinate input device
JPH05315412A (en) Judging method for contact point
JPH05347338A (en) Device for inspecting operation state of fine circuit
JP3175342B2 (en) Surface shape measurement method
JP2004053413A (en) Measuring device and measuring method using it
JPH1047941A (en) Touch signal probe
JPS58109803A (en) Apparatus for measuring shape of material to be rolled
JPH0364830B2 (en)
JPS5952703A (en) Gap length detecting method