JPH0321784B2 - - Google Patents

Info

Publication number
JPH0321784B2
JPH0321784B2 JP57209324A JP20932482A JPH0321784B2 JP H0321784 B2 JPH0321784 B2 JP H0321784B2 JP 57209324 A JP57209324 A JP 57209324A JP 20932482 A JP20932482 A JP 20932482A JP H0321784 B2 JPH0321784 B2 JP H0321784B2
Authority
JP
Japan
Prior art keywords
vehicle speed
speed
opening
target
continuously variable
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP57209324A
Other languages
Japanese (ja)
Other versions
JPS59103070A (en
Inventor
Hiroshi Ito
Shigeki Hiramatsu
Mitsuru Takada
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP57209324A priority Critical patent/JPS59103070A/en
Publication of JPS59103070A publication Critical patent/JPS59103070A/en
Priority to US06/911,874 priority patent/US4771656A/en
Publication of JPH0321784B2 publication Critical patent/JPH0321784B2/ja
Granted legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2552/00Input parameters relating to infrastructure
    • B60W2552/15Road slope, i.e. the inclination of a road segment in the longitudinal direction

Landscapes

  • Control Of Vehicle Engines Or Engines For Specific Uses (AREA)
  • Control Of Transmission Device (AREA)
  • Arrangement Or Mounting Of Control Devices For Change-Speed Gearing (AREA)
  • Control Of Driving Devices And Active Controlling Of Vehicle (AREA)
  • Controls For Constant Speed Travelling (AREA)
  • Control Of Throttle Valves Provided In The Intake System Or In The Exhaust System (AREA)

Description

【発明の詳細な説明】 産業上の利用分野 本発明は、無段変速機付き車両の車速自動制御
方法に係り、特に吸気系スロツトル弁が車速自動
制御機構(オートドライブ機構)によりアイドリ
ング開度に維持されている走行期間において車速
自動制御方法に関する。
[Detailed Description of the Invention] Industrial Application Field The present invention relates to a method for automatically controlling the vehicle speed of a vehicle with a continuously variable transmission, and in particular, the invention relates to a method for automatically controlling the vehicle speed of a vehicle equipped with a continuously variable transmission. The present invention relates to an automatic vehicle speed control method during a maintained running period.

従来の技術およびその課題 本出願人は車両に搭載される無段変速機を先に
特願昭57−67362号において開示しており、この
ような無段変速機を有する車両では目標機関回転
速度Noが吸気系スロツトル弁の開度、すなわち
スロツトル開度θの関数として定義されている。
Prior Art and its Problems The present applicant previously disclosed a continuously variable transmission mounted on a vehicle in Japanese Patent Application No. 57-67362, and in a vehicle equipped with such a continuously variable transmission, the target engine rotational speed is No is defined as a function of the opening degree of the intake system throttle valve, that is, the throttle opening degree θ.

また車速自動制御機構は実際の車速Vrが目標
車速Voより大きいとスロツトル開度θを減少さ
せ、実際の車速Vrが目標車速Voより小さいとス
ロツトル開度を増大させるが、スロツトル開度を
アイドリング開度よりさらに減少させることは困
難である。したがつて前記先願のような無段変速
機を有する車両では、降坂時には機関回転速度が
スロツトル開度0%に対応する一定の目標値に維
持されて無段変速機の速度比(=出力側回転速度
Nout/入力側回転速度Nin)が増大されあるい
は上限となり、車速Vrが増大するばかりである
いは大きな値に維持され、適切なエンジンブレー
キが作動しないという支障があつた。
In addition, the automatic vehicle speed control mechanism decreases the throttle opening θ when the actual vehicle speed Vr is higher than the target vehicle speed Vo, and increases the throttle opening when the actual vehicle speed Vr is lower than the target vehicle speed Vo. It is difficult to reduce it further than that. Therefore, in a vehicle having a continuously variable transmission as in the prior application, when descending a slope, the engine rotational speed is maintained at a constant target value corresponding to 0% throttle opening, and the speed ratio of the continuously variable transmission (= Output side rotation speed
Nout/input side rotational speed Nin) was increased or reached its upper limit, and the vehicle speed Vr simply increased or was maintained at a large value, causing a problem in that appropriate engine braking was not activated.

本発明の目的は降坂時のようにスロツトル開度
が車速自動制御機構によりアイドリング開度に維
持されている走行期間においてエンジンブレーキ
を適切に作動させて適切な車速自動制御を行なう
ことができる無段変速機付き車両の車速自動制御
方法を提供することである。
An object of the present invention is to provide a vehicle that can appropriately operate the engine brake and perform appropriate automatic vehicle speed control during driving periods when the throttle opening is maintained at the idling opening by the automatic vehicle speed control mechanism, such as when descending a slope. An object of the present invention is to provide an automatic vehicle speed control method for a vehicle with a step-change transmission.

課題を解決するための第1の手段 上記目的を達成するための第1発明の要旨とす
るところは、実際の目標車速Vrが目標車速Voと
なるように吸気系スロツトル弁の開度を制御する
車速自動制御機構により、その吸気系スロツトル
弁の開度がアイドリング開度に維持されている走
行期間において、実際の車速Vrと目標車速Voと
を比較し、Vr−Vo≧A1(但しA1は正の所定値)
であれば、目標機関回転速度Noを上記目標車速
Voと実際の車速Vrとの偏差Vo−Vrに応じてそ
の増大側へ徐々に変更することにある。
First Means for Solving the Problems The gist of the first invention for achieving the above object is to control the opening degree of the intake system throttle valve so that the actual target vehicle speed Vr becomes the target vehicle speed Vo. During the driving period when the automatic vehicle speed control mechanism maintains the opening of the intake system throttle valve at the idling opening, the actual vehicle speed Vr is compared with the target vehicle speed Vo, and Vr−Vo≧A1 (however, A1 is correct). predetermined value)
If so, set the target engine rotation speed No. to the target vehicle speed above.
The purpose is to gradually increase the deviation Vo and the actual vehicle speed Vr in accordance with the deviation Vo−Vr.

作用および第1発明の効果 このようにすれば、車速自動制御機構により吸
気系スロツトル弁の開度がアイドリング開度に維
持されている走行期間においてVr−Vo≧A1とな
ると、目標機関回転速度Noがその増大側へ徐々
に変更される。このため、無段変速機の速度比が
減少させられて無段変速機が減速側へシフトさせ
られるので、機関の吸収トルクが増大して降坂走
行時のエンジンブレーキ作用が効果的に得られ
る。また、上記のように目標機関回転速度Noが
目標車速Voと実際の車速Vrとの偏差Vo−Vrに
応じてその増大側へ徐々に変更されることから、
降坂走行時に目標車速Vo付近の車速を維持する
ためのエンジンブレーキ作用がスロツトル開度が
0%の状態で得られるように無段変速機が減速側
へ適切な幅だけシフトされるので、段階的なシフ
トダウンをすることにより降坂走行時のエンジン
ブレーキ作用を発生させる場合に比較して、目標
車速Voを得るためにスロツトル弁を開いて燃費
を低下させることがなく、しかも、急激なシヨツ
クを伴うことなくエンジンブレーキ作用を発生さ
せて実際の車速Vrを目標車速Voに近づけること
ができる。
Operation and Effects of the First Invention With this arrangement, when Vr−Vo≧A1 during the driving period in which the opening of the intake system throttle valve is maintained at the idling opening by the automatic vehicle speed control mechanism, the target engine rotational speed No. is gradually changed to its increasing side. For this reason, the speed ratio of the continuously variable transmission is reduced and the continuously variable transmission is shifted to the deceleration side, which increases the absorption torque of the engine and effectively provides engine braking action when driving downhill. . In addition, as mentioned above, since the target engine speed No is gradually changed to the increasing side according to the deviation Vo - Vr between the target vehicle speed Vo and the actual vehicle speed Vr,
The continuously variable transmission is shifted to the deceleration side by an appropriate width so that the engine braking action to maintain the vehicle speed near the target vehicle speed Vo when driving downhill can be obtained with the throttle opening at 0%. Compared to generating engine braking action when driving downhill by downshifting, there is no need to open the throttle valve to obtain the target vehicle speed Vo, which reduces fuel consumption. It is possible to generate an engine braking action and bring the actual vehicle speed Vr closer to the target vehicle speed Vo without causing the engine braking effect.

課題を解決するための第2の手段 前記の目的を達成するための第2発明の要旨と
するところは、実際の車速Vrが目標車速Voとな
るように吸気系スロツトル弁の開度を制御する車
速自動制御機構により、その吸気系スロツトル弁
の開度がアイドリング開度に維持されている走行
期間において、実際の車速Vrと目標車速Voとを
比較し、Vr−Vo≧A1(但し、A1は正の所定値)
であれば、無段変速機の速度比eを上記目標車速
Voと実際の車速Vrとの偏差Vo−Vrに応じてそ
の減少側へ徐々に変更することにある。
Second Means for Solving the Problems The gist of the second invention for achieving the above object is to control the opening degree of the intake system throttle valve so that the actual vehicle speed Vr becomes the target vehicle speed Vo. During the driving period when the automatic vehicle speed control mechanism maintains the opening of the intake system throttle valve at the idling opening, the actual vehicle speed Vr and the target vehicle speed Vo are compared, and Vr−Vo≧A1 (however, A1 is positive predetermined value)
If so, set the speed ratio e of the continuously variable transmission to the target vehicle speed above.
The purpose is to gradually change the deviation between Vo and the actual vehicle speed Vr to the decreasing side according to the deviation Vo - Vr.

作用および第2発明の効果 このようにすれば、車速自動制御機構により吸
気系スロツトル弁の開度がアイドリング開度に維
持されている走行期間においてVr−Vo≧A1とな
ると、無段変速機の速度比eが減少側へ徐々に変
更される。このため、無段変速機の速度比が減少
させられて無段変速機が減速側へシフトさせられ
るので、機関の吸収トルクが増大して降坂走行時
のエンジンブレーキ作用が効果的に得られる。ま
た、上記のように無段変速機の速度比eが目標車
速Voと実際の車速Vrとの偏差Vo−Vrに応じて
その減少側へ徐々に変更されることから、降坂走
行時に目標車速Vo付近の車速を維持するための
エンジンブレーキ作用がスロツトル開度が0%の
状態で得られるように無段変速機が減速側へ適切
な幅だけシフトされるので、段階的なシフトダウ
ンをすることにより降坂走行時のエンジンブレー
キ作用を生させる場合に比較して、目標車速Vo
を得るためにスロツトル弁を開いて燃費を低下さ
せることがなく、しかも、急激なシヨツクを伴う
ことなくエンジンブレーキ作用を発生させて実際
の車速Vrを目標車速Voに近づけることができ
る。
Operation and Effect of the Second Invention With this arrangement, when Vr−Vo≧A1 during the driving period in which the opening of the intake system throttle valve is maintained at the idling opening by the vehicle speed automatic control mechanism, the continuously variable transmission The speed ratio e is gradually changed to the decreasing side. Therefore, the speed ratio of the continuously variable transmission is reduced and the continuously variable transmission is shifted to the deceleration side, which increases the absorption torque of the engine and effectively provides engine braking action when driving downhill. . In addition, as mentioned above, the speed ratio e of the continuously variable transmission is gradually changed to the decreasing side according to the deviation Vo - Vr between the target vehicle speed Vo and the actual vehicle speed Vr. The continuously variable transmission is shifted to the deceleration side by an appropriate amount so that the engine braking effect to maintain the vehicle speed near Vo can be obtained even when the throttle opening is 0%, so it is possible to downshift in stages. Compared to the case where engine braking effect is produced when driving downhill, the target vehicle speed
It is possible to bring the actual vehicle speed Vr closer to the target vehicle speed Vo by generating an engine braking action without reducing fuel efficiency by opening the throttle valve to obtain the desired speed, and without causing a sudden shock.

なお速度比eは本明細書において次のように定
義する。
Note that the speed ratio e is defined in this specification as follows.

e=Nout/Nin ただしNout:無段変速機の出力軸の回転速度 Nin:無段変速機の入力軸の回転速度 図面を参照して本発明の実施例を説明する。 e=Nout/Nin However, Nout: Rotational speed of the output shaft of the continuously variable transmission Nin: Rotational speed of the input shaft of the continuously variable transmission Embodiments of the present invention will be described with reference to the drawings.

実施例 第1図において、機関1のクランク軸2にクラ
ツチ3を介して無段変速機(以下CVTと称す
る。)4の入力軸5へ接続されている。1対の入
力側デイスク6a,6bは互いに対向的に設けら
れ、一方の入力側デイスク6aは入力軸5に軸線
方向へ相対移動可能に設けられ、他方の入力側デ
イスク6bは入力軸5に固定されている。また、
1対の出力側デイスク7a,7bも互いに対向的
に設けられ、一方の出力側デイスク7aは出力軸
8に固定され、他方の出力側デイスク7bは出力
軸8に軸線方向へ移動可能に設けられている。ベ
ルト9は、等脚台形の横断面を有し、入力側デイ
スク6a,6bと出力側デイスク7a,7bの間
に掛けられている。入力側デイスク6a,6bの
対向面、および出力側デイスク7a,7bの対向
面は半径方向外方へ進むに連れて両者間の距離が
増大するようなテーパ断面に形成される。対向面
間の距離の増減に関係して、入力側および出力側
デイスク6a,6b,7a,7bにおけるベルト
9の掛かり半径が増減し、速度比および伝達トル
クが変化する。オイルポンプ14は油溜め15か
ら吸込んだオイルを調圧弁16へ送る。リニアソ
レノイド式の調圧弁16はドレン17へのオイル
の排出量を制御して油路18のライン圧を制御す
る。油路18は出力側デイスク7bの油圧サーボ
へ接続されている。リニアソレノイド式流量制御
弁19は入力側デイスク6a,6b間の押圧力を
増大させて速度比を増大させる場合には入力側デ
イスク6aの油圧サーボへの油路20と油路18
との間の流通断面積を増大し、かつ油路20とド
レン17との接続を断ち、入力側デイスク6a,
6b間の押圧力を減少させて速度比を減少させる
場合には油路18と20との接続を断ち、油路2
0とドレン17との間の流通断面積を制御する。
回転角センサ23,24はそれぞれ入力側デイス
ク6bおよび出力側デイスク7aの回転速度を検
出する。出力側デイスク7bのサーボ油圧、すな
わちライン圧はベルト9が滑らずにトルク伝達を
確保できる最小の圧力に制御され、ポンプ14の
駆動損失が抑制される。入力側デイスク6aへの
オイルの流量によりCVT4の速度比が制御され
る。なお出力側デイスク7bのサーボ油圧入力
側デイスク6aのサーボ油圧であるが、サーボピ
ストンの受圧面積は入力側>出力側であり、1以
上の速度比が実現可能である。水温センサ25は
機関1の冷却水温度を検出する。スロツトル開度
センサ26は、加速ペダル27に連動する吸気系
スロツトル弁の開度を検出する。シフト位置セン
サ28は座席29近傍のシフトレバーのレンジを
検出する。
Embodiment In FIG. 1, a crankshaft 2 of an engine 1 is connected to an input shaft 5 of a continuously variable transmission (hereinafter referred to as CVT) 4 via a clutch 3. A pair of input side disks 6a and 6b are provided opposite to each other, one input side disk 6a is provided so as to be movable relative to the input shaft 5 in the axial direction, and the other input side disk 6b is fixed to the input shaft 5. has been done. Also,
A pair of output side disks 7a and 7b are also provided opposite to each other, one output side disk 7a is fixed to the output shaft 8, and the other output side disk 7b is provided on the output shaft 8 so as to be movable in the axial direction. ing. The belt 9 has an isosceles trapezoidal cross section and is stretched between the input side disks 6a, 6b and the output side disks 7a, 7b. The opposing surfaces of the input side disks 6a, 6b and the opposing surfaces of the output side disks 7a, 7b are formed into tapered cross sections such that the distance between them increases as they proceed radially outward. In relation to an increase or decrease in the distance between the opposing surfaces, the radius of engagement of the belt 9 on the input side and output side disks 6a, 6b, 7a, 7b increases or decreases, and the speed ratio and the transmitted torque change. The oil pump 14 sends oil sucked from the oil reservoir 15 to the pressure regulating valve 16. The linear solenoid type pressure regulating valve 16 controls the amount of oil discharged to the drain 17 to control the line pressure of the oil passage 18 . The oil passage 18 is connected to a hydraulic servo of the output side disk 7b. When increasing the speed ratio by increasing the pressing force between the input side disks 6a and 6b, the linear solenoid type flow control valve 19 connects the oil passage 20 and the oil passage 18 to the hydraulic servo of the input side disk 6a.
The flow cross-sectional area between the input side disk 6a,
In order to reduce the speed ratio by reducing the pressing force between the oil passages 6b and 6b, the oil passages 18 and 20 are disconnected, and the oil passage 2
0 and the drain 17.
Rotation angle sensors 23 and 24 detect the rotation speeds of input side disk 6b and output side disk 7a, respectively. The servo oil pressure of the output side disk 7b, that is, the line pressure, is controlled to the minimum pressure that can ensure torque transmission without the belt 9 slipping, and drive loss of the pump 14 is suppressed. The speed ratio of the CVT 4 is controlled by the flow rate of oil to the input side disk 6a. Note that regarding the servo oil pressure of the output side disk 7b and the servo oil pressure of the input side disk 6a, the pressure receiving area of the servo piston is input side>output side, and a speed ratio of 1 or more can be realized. The water temperature sensor 25 detects the temperature of the cooling water of the engine 1. The throttle opening sensor 26 detects the opening of an intake system throttle valve that is linked to the accelerator pedal 27. The shift position sensor 28 detects the range of the shift lever near the seat 29.

第2図は電子制御装置のブロツク図である。
CPU32、RAM33、ROM34、I/F(イン
タフエース)35、A/D(アナログ/デジタル
変換器)36、およびD/A(デジタル/アナロ
グ変換器)37はバス38により互いに接続され
ている。回転角センサ23,24およびシフト位
置センサ28の出力パルスはインタフエース35
へ送られ、水温センサ25およびスロツトル開度
センサ26のアナログ出力はA/D36へ送ら
れ、D/A37の出力は調圧弁16および流量制
御弁19へ送られる。
FIG. 2 is a block diagram of the electronic control unit.
The CPU 32, RAM 33, ROM 34, I/F (interface) 35, A/D (analog/digital converter) 36, and D/A (digital/analog converter) 37 are connected to each other by a bus 38. The output pulses of the rotation angle sensors 23, 24 and the shift position sensor 28 are sent to the interface 35.
The analog outputs of the water temperature sensor 25 and throttle opening sensor 26 are sent to the A/D 36, and the output of the D/A 37 is sent to the pressure regulating valve 16 and flow control valve 19.

第3図はスロツトル開度θ、すなわち吸気系ス
ロツトル弁の開度θと目標機関回転速度Noとの
関係を示している。CVT付き車両では機関の要
求馬力をスロツトル開度θの関数と定義し、各要
求馬力を最小の燃料消費率で達成できる機関回転
速度が目標回転速度Noとして設定されている。
FIG. 3 shows the relationship between the throttle opening θ, that is, the opening θ of the intake system throttle valve, and the target engine rotational speed No. In a vehicle equipped with a CVT, the required horsepower of the engine is defined as a function of the throttle opening θ, and the engine rotation speed that can achieve each required horsepower with the minimum fuel consumption rate is set as the target rotation speed No.

車速自動制御機構の非作動期間では運転者によ
る加速ペダルの踏込みの量によつて指示されるス
ロツトル開度θに関係して目標機関回転速度No
が計算される。こうして実際の機関回転速度Nr
が目標機関回転速度Noとなるように流量制御弁
19から入力側デイスク6aの油圧サーボへ送ら
れるオイルの流量が制御され、これによりCVT
4の速度比eが変更される。なお非作動期間の制
御の詳細は前述の先願としての特願昭57−67362
号等に記載されているとおりである。
During the non-operation period of the automatic vehicle speed control mechanism, the target engine rotational speed No.
is calculated. In this way, the actual engine rotation speed Nr
The flow rate of oil sent from the flow control valve 19 to the hydraulic servo of the input side disk 6a is controlled so that the target engine rotational speed No.
The speed ratio e of 4 is changed. The details of the control during the non-operating period can be found in the aforementioned earlier patent application, Patent Application No. 57-67362.
As stated in the No.

車速自動制御機構の作動期間では実際の車速
Vrが目標車速Voとなるようにスロツトル開度θ
が制御される。すなわちスロツトル開度θの制御
範囲内ではVr>Voの場合はスロツトル開度θを
減少させ、Vr<Voの場合はスロツトル開度θを
減少させる。
During the operation period of the automatic vehicle speed control mechanism, the actual vehicle speed
Throttle opening θ so that Vr becomes the target vehicle speed Vo
is controlled. That is, within the control range of the throttle opening θ, when Vr>Vo, the throttle opening θ is decreased, and when Vr<Vo, the throttle opening θ is decreased.

車速自動制御機構の作動期間に車両が降坂状態
になると、車速Vrが増大するために車速自動制
御機構の作動によりスロツトル開度θは0%にさ
れる。第3図の特性線上のC点に対応する目標機
関回転速度NoはN1であるので、従来方法では
CVT4の速度比eが制御範囲の上限に達するま
では実際の機関回転速度NrがN1に維持されたま
まeが増大し、車速Vrが増大するばかりで適切
なエンジンブレーキが得られない、そこで本発明
では実際の車速Vrと目標車速Voとを比較し、Vr
−Vo>A1(ただしA1は正の所定値)になるNoを
第3図の特性線上のC点における値N1からN1よ
り大きい値に変更するかあるいはCVT4の速度
比e(=Nout/Nin)をC点に対応する値e1から
e1より小さい値に変更する。この結果、機関1の
吸収トルクが増大し、車速Vrが減少する。新た
な目標機関回転速度Noあるいは速度比eにおい
てVo−VrA2(ただしA2は0<A2<A1の範囲
の所定値)であればNoあるいはeはその値に維
持されるか、Noは減少され、eは増大される。
When the vehicle goes downhill during the operation period of the automatic vehicle speed control mechanism, the vehicle speed Vr increases, so the throttle opening degree θ is set to 0% by the operation of the automatic vehicle speed control mechanism. Since the target engine speed No. corresponding to point C on the characteristic line in Figure 3 is N1, the conventional method
Until the speed ratio e of CVT4 reaches the upper limit of the control range, e increases while the actual engine speed Nr is maintained at N1, and the vehicle speed Vr only increases, making it impossible to obtain appropriate engine braking. In the invention, actual vehicle speed Vr and target vehicle speed Vo are compared, and Vr
-Vo>A1 (however, A1 is a positive predetermined value) No. is changed from the value N1 at point C on the characteristic line in Figure 3 to a value larger than N1, or the speed ratio e (=Nout/Nin) of CVT4 is changed. from the value e1 corresponding to point C
Change it to a value smaller than e1. As a result, the absorption torque of the engine 1 increases and the vehicle speed Vr decreases. If Vo-VrA2 (however, A2 is a predetermined value in the range of 0<A2<A1) at the new target engine rotational speed No or speed ratio e, No or e is maintained at that value, or No is decreased, e is increased.

第4図は車速自動制御期間にスロツトル開度が
アイドリング開度にある場合に繰り返し実行され
るプログラムのフローチヤートである。ステツプ
41ではフラグF=1が否かを判定し、F=1で
あればステツプ45へ進み、F=0であればステ
ツプ42へ進む。F=0は目標機関回転速度No
あるいは速度比eが第3図の特性線上のC点に対
応する値N1あるいはe1にあることを意味し、フ
ラグF=1はNo≠N1あるいはe≠e1にあること
を意味する。ステツプ42ではVr−VoA1か否
かを判定し、Vr−VoA1であればステツプ43
へ進み、Vr−Vo<A1であれば以降のステツプの
実行を省略する。ステツプ43ではフラグFをセ
ツトする。ステツプ44ではタイマTmの作動を
開始する。ステツプ45ではVr−VoA2が否か
を判定し、Vr−VoA2であればステツプ46へ
進み、Vr−Vo<A2であればステツプ50へ進
む、ステツプ46ではNoにN1+K1(Vr−Vo)+
K2・Tcを代入するか、eがe1−L1(Vr−Vo)−
L2・Tcとなるようにする。ただしK1,K2,L1,
L2は正の定数、TcはタイマTmの値であり、フ
ラグFがセツトされた時からの経過時間に比例す
る。したがつてNoはVr−Voが大きい程、Vr−
VoA2の期間が長い程、増大され、eはVr−
Voが大きい程、Vr−VoA2の期間が長い程、
減少される。ステツプ50ではフラグFをリセツ
トし、かつタイマTmをリセツトする。ステツプ
51ではNoにN1を代入するか、eがe1となるよ
うにし、こうしてNoを増大させ、あるいはeを
減少させ、これにより車速Vrを増大させ、その
結果、Vr−Vo<A2となると、No,eを再び第
3図のC点に対応する値へ戻す。なおステツプ5
1の実行を省略し、したがつてVr−Vo<A2にな
つた後はNo,eをN1,e1に戻さずにVr−Vo<
A2になつた時の値にそのまま保持してもよい。
FIG. 4 is a flowchart of a program that is repeatedly executed when the throttle opening is at the idling opening during the automatic vehicle speed control period. In step 41, it is determined whether the flag F=1 or not. If F=1, the process proceeds to step 45, and if F=0, the process proceeds to step 42. F=0 is the target engine rotation speed No.
Alternatively, it means that the speed ratio e is at the value N1 or e1 corresponding to point C on the characteristic line in FIG. 3, and the flag F=1 means that No≠N1 or e≠e1. In step 42, it is determined whether or not Vr-VoA1, and if it is Vr-VoA1, step 43 is performed.
If Vr−Vo<A1, the execution of the subsequent steps is omitted. In step 43, flag F is set. In step 44, the timer Tm starts operating. In step 45, it is determined whether or not Vr-VoA2. If Vr-VoA2, the process proceeds to step 46. If Vr-Vo<A2, the process proceeds to step 50. In step 46, N1+K1(Vr-Vo)+
Substitute K2・Tc or e becomes e1−L1(Vr−Vo)−
Make it L2・Tc. However, K1, K2, L1,
L2 is a positive constant, Tc is the value of timer Tm, and is proportional to the elapsed time since flag F was set. Therefore, the larger Vr−Vo is, the more Vr−
The longer the period of VoA2, the more it will be increased, and e will be Vr−
The larger the Vo, the longer the period of Vr−VoA2,
reduced. At step 50, flag F is reset and timer Tm is reset. In step 51, N1 is substituted for No, or e is set to e1, and thus No is increased or e is decreased, thereby increasing the vehicle speed Vr. As a result, when Vr-Vo<A2, Return No. and e to the values corresponding to point C in FIG. 3 again. Note that step 5
1 is omitted, so after Vr−Vo<A2, Vr−Vo<A2 without returning No, e to N1, e1.
You may keep the value as it was when it became A2.

上述のように、本実施例によれば、車速自動制
御期間においてスロツトル開度θがアイドリング
開度にある場合に、実際の車速Vrと目標車速Vo
との差Vr−Voが所定値A1以上となると、第4図
のステツプ46の枠内に示す式の右辺第2項に従
つて目標回転速度Noがその増大側へ上記差Vo−
Vrに応じて徐々に変化させられ、或いは、速度
比eがその減少側へ上記差Vo−Vrに応じて徐々
に変化させられる。これにより、無段変速機が減
速側へシフトさせられて機関回転速度が高められ
るので、期関の吸収トルクが増大させられ、降坂
走行時のエンジンブレーキ作用が効果的に得られ
る。また、上記のように、目標機関回転速度No
或いは無段変速機の速度比eが目標車速Voと実
際の車速Vrとの偏差Vo−Vrに応じて徐々に変更
されることから、降坂走行時に目標車速Vo付近
の車速を維持するためのエンジンブレーキ作用が
スロツトル開度が0%の状態で得られるように無
段変速機が減速側へ適切な幅だけシフトされるの
で、段階的なシフトダウンをすることにより降坂
走行時のエンジンブレーキ作用を発生させる場合
に比較して、目標車速Voを得るためにスロツト
ル弁を開いて燃費を低下させることがなく、しか
も、急激なシヨツクを伴うことなくエンジンブレ
ーキ作用を発生させて実際の車速Vrを目標車速
Voに近づけることができるのである。
As described above, according to this embodiment, when the throttle opening θ is at the idling opening during the vehicle speed automatic control period, the actual vehicle speed Vr and the target vehicle speed Vo
When the difference Vr-Vo from
It is gradually changed according to Vr, or the speed ratio e is gradually changed to the decreasing side according to the above-mentioned difference Vo-Vr. As a result, the continuously variable transmission is shifted to the deceleration side and the engine rotational speed is increased, so that the absorption torque of the transmission is increased, and an effective engine braking effect is obtained when traveling downhill. In addition, as mentioned above, the target engine rotation speed No.
Alternatively, since the speed ratio e of the continuously variable transmission is gradually changed according to the deviation Vo - Vr between the target vehicle speed Vo and the actual vehicle speed Vr, it is necessary to maintain the vehicle speed near the target vehicle speed Vo when driving downhill. The continuously variable transmission is shifted to the deceleration side by an appropriate width so that the engine braking effect is obtained when the throttle opening is 0%, so by downshifting in stages, the engine brake when driving downhill Compared to the case where the engine braking action is generated, there is no need to open the throttle valve to obtain the target vehicle speed Vo and reduce fuel consumption, and moreover, the engine braking action is generated without a sudden shock, and the actual vehicle speed Vr is increased. target vehicle speed
It is possible to get closer to Vo.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明が適用されるCVTの構成図、
第2図は電子制御装置のブロツク図、第3図はス
ロツトル開度と目標機関回転速度との関係を示す
グラフ、第4図は本発明に従うプログラムのフロ
ーチヤートである。 1……機関、4……CVT、27……加速ペダ
ル、32……CPU。
FIG. 1 is a configuration diagram of a CVT to which the present invention is applied.
FIG. 2 is a block diagram of the electronic control device, FIG. 3 is a graph showing the relationship between throttle opening and target engine speed, and FIG. 4 is a flowchart of a program according to the present invention. 1...engine, 4...CVT, 27...accelerator pedal, 32...CPU.

Claims (1)

【特許請求の範囲】 1 実際の車速Vrが目標車速Voとなるように吸
気系スロツトル弁の開度を制御する車速自動制御
機構により、該吸気系スロツトル弁の開度がアイ
ドリング開度に維持されている走行期間におい
て、実際の車速Vrと目標車速Voとを比較し、Vr
−Vo≧A1(但しA1は正の所定値)であれば、目
標機関回転速度Noを該目標車速Voと実際の車速
Vrとの偏差Vo−Vrに応じてその増大側へ徐々に
変更することを特徴とする、無段変速機付き車両
の車速自動制御方法。 2 実際の車速Vrが目標車速Voとなるように吸
気系スロツトル弁の開度を制御する車速自動制御
機構により、該吸気系スロツトル弁の開度がアイ
ドリング開度に維持されている走行期間におい
て、実際の車速Vrと目標車速Voとを比較し、Vr
−Vo≧A1(但しA1は正の所定値)であれば、無
段変速機の速度比eを該目標車速Voと実際の車
速Vrとの偏差Vo−Vrに応じてその減少側へ徐々
に変更することを特徴とする、無段変速機付き車
両の車速自動制御方法。
[Claims] 1. An automatic vehicle speed control mechanism that controls the opening of the intake system throttle valve so that the actual vehicle speed Vr becomes the target vehicle speed Vo maintains the opening of the intake system throttle valve at the idling opening. During the driving period, the actual vehicle speed Vr and the target vehicle speed Vo are compared, and Vr
- If Vo≧A1 (however, A1 is a positive predetermined value), the target engine rotation speed No. is the target vehicle speed Vo and the actual vehicle speed.
An automatic vehicle speed control method for a vehicle with a continuously variable transmission, characterized in that the vehicle speed is gradually changed to the increasing side according to the deviation Vo−Vr from Vr. 2. During the driving period in which the opening of the intake system throttle valve is maintained at the idling opening by the vehicle speed automatic control mechanism that controls the opening of the intake system throttle valve so that the actual vehicle speed Vr becomes the target vehicle speed Vo, Compare the actual vehicle speed Vr and target vehicle speed Vo, and
- If Vo≧A1 (however, A1 is a positive predetermined value), the speed ratio e of the continuously variable transmission is gradually decreased according to the deviation Vo−Vr between the target vehicle speed Vo and the actual vehicle speed Vr. An automatic vehicle speed control method for a vehicle with a continuously variable transmission, characterized in that:
JP57209324A 1982-11-29 1982-12-01 Automatic control method of vehicle speed for vehicle having variable speed transmission Granted JPS59103070A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP57209324A JPS59103070A (en) 1982-12-01 1982-12-01 Automatic control method of vehicle speed for vehicle having variable speed transmission
US06/911,874 US4771656A (en) 1982-11-29 1986-09-26 Cruise control method and apparatus for a vehicle with a continuously variable transmission

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP57209324A JPS59103070A (en) 1982-12-01 1982-12-01 Automatic control method of vehicle speed for vehicle having variable speed transmission

Publications (2)

Publication Number Publication Date
JPS59103070A JPS59103070A (en) 1984-06-14
JPH0321784B2 true JPH0321784B2 (en) 1991-03-25

Family

ID=16571056

Family Applications (1)

Application Number Title Priority Date Filing Date
JP57209324A Granted JPS59103070A (en) 1982-11-29 1982-12-01 Automatic control method of vehicle speed for vehicle having variable speed transmission

Country Status (1)

Country Link
JP (1) JPS59103070A (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61205518A (en) * 1985-03-11 1986-09-11 Japan Electronic Control Syst Co Ltd Constant-speed driving controller for vehicles
JPS61232927A (en) * 1985-04-10 1986-10-17 Japan Electronic Control Syst Co Ltd Device for controlling constant speed traveling for car
JP4867192B2 (en) * 2005-04-14 2012-02-01 三菱自動車工業株式会社 Control device for continuously variable transmission

Also Published As

Publication number Publication date
JPS59103070A (en) 1984-06-14

Similar Documents

Publication Publication Date Title
JP2885939B2 (en) Control method of automatic transmission for vehicle
JPH066978B2 (en) Control device for continuously variable transmission for vehicle
JP5786843B2 (en) Shift control device for continuously variable transmission
US5947862A (en) Device for controlling the gear ratio of a continuously variable transmission
JPH066977B2 (en) Control device for continuously variable transmission for vehicle
JPH0335536B2 (en)
JPH0428947B2 (en)
JPH0327791B2 (en)
GB2263519A (en) System for controlling a continuously-variable transmission for a motor vehicle
JPH0327792B2 (en)
JPH0543896B2 (en)
JPH049936B2 (en)
US5433677A (en) Method for automatic control of an RPM-changing engaging device of a motor vehicle
JPH0428946B2 (en)
JPH0321784B2 (en)
JPS62255247A (en) Automatic clutch control device for vehicle
JP3453986B2 (en) Transmission control device for continuously variable automatic transmission
CN109973643B (en) Automatic transmission idle neutral gear control method based on feedforward PID
JP3695230B2 (en) Shift control device and shift control method for continuously variable transmission for vehicle
JPH0417292B2 (en)
JPH04853B2 (en)
JP2514798B2 (en) Automatic clutch control system for vehicles
JPH0321783B2 (en)
JPS59217050A (en) Control of stepless speed change gear for vehicle
JP3451802B2 (en) Slip control device for direct coupling clutch for vehicles