JPH03215928A - Exposure device - Google Patents

Exposure device

Info

Publication number
JPH03215928A
JPH03215928A JP2011528A JP1152890A JPH03215928A JP H03215928 A JPH03215928 A JP H03215928A JP 2011528 A JP2011528 A JP 2011528A JP 1152890 A JP1152890 A JP 1152890A JP H03215928 A JPH03215928 A JP H03215928A
Authority
JP
Japan
Prior art keywords
projection
wafer
hand
illuminance
optical system
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2011528A
Other languages
Japanese (ja)
Inventor
Yukio Tokuda
幸夫 徳田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Priority to JP2011528A priority Critical patent/JPH03215928A/en
Publication of JPH03215928A publication Critical patent/JPH03215928A/en
Pending legal-status Critical Current

Links

Landscapes

  • Exposure And Positioning Against Photoresist Photosensitive Materials (AREA)
  • Exposure Of Semiconductors, Excluding Electron Or Ion Beam Exposure (AREA)

Abstract

PURPOSE:To avoid the enlargement of an XY stage and the elongation of stroke while enabling the illumination intensity distribution on a projection surface to be rapidly measured with high precision by making use of the output signals from a photodetector provided on a part of a wafer carrier hand. CONSTITUTION:A wafer carrier hand 2 is driven in the y axial direction by a specific amount along the driving feed screw 93 by a wafer hand motor 94 with the wafer carrier hand 2 holding no wafers at all while the position relative to the Z direction is adjusted. At this time, the shifting of a wafer carrier arm 92 in the y and Z directions is controlled so that a photodetector 31 comprising a unidimentional sensor provided on a part of said arm 92 may be positioned on the effective projection picture 8b. Through these procedures, the enlargement of an XY stage and the elongation of stroke can be avoided while the illumination intensity and distribution thereof in the arbitrary region on the effective projection picture 8b can rapidly be measured by a projection optical system with high precision, thereby enabling the projection printing process to be performed with high precision.

Description

【発明の詳細な説明】 (産業」二の利用分野) 本発明は半導体製造用の露光装置に関し、特にレチクル
面」二に形成されている回路パターンを投影光学系によ
り投影面であるウエハ而に所定の倍率で投影露光する際
の該投影面内の照度及び照度分布を測定する照度測定手
段を設けた露光装置に関するものである。
Detailed Description of the Invention (Field of Application in Industry) The present invention relates to an exposure apparatus for semiconductor manufacturing, and in particular, a circuit pattern formed on a reticle surface is projected onto a wafer, which is a projection surface, using a projection optical system. The present invention relates to an exposure apparatus provided with an illuminance measuring means for measuring illuminance and illuminance distribution within a projection plane during projection exposure at a predetermined magnification.

(従来の技術) 最近の半導体製造技術は電子回路の高集積化に伴い、解
像パターン線幅も例えばlμm以下となり、光学的な露
光装置においても従来に比べてより高解像力化されたも
のが要望されている。
(Prior art) In recent semiconductor manufacturing technology, as electronic circuits have become highly integrated, the resolution pattern line width has become, for example, 1 μm or less, and optical exposure equipment has also become more resolving power than before. It is requested.

般にレチクル面上の回路パターンを投影光学系を介して
ウエハ面(投影面)」二に投影する際回路パターンの解
像線幅は使用波長や投影光学系のN Δ等と共に投影面
上における照度分布の均−性の良否が大きく影響してく
る。
Generally, when projecting a circuit pattern on a reticle surface onto a wafer surface (projection surface) via a projection optical system, the resolution line width of the circuit pattern is determined by the wavelength used, NΔ of the projection optical system, etc. on the projection surface. The uniformity of the illuminance distribution has a great influence.

この為従来の多くの露光装置てはウエハを載置ずるXY
ステーシ面上に照度削を配置して投影面上における照度
分布を種々の方法により測定している。
For this reason, many conventional exposure devices do not place the wafer in the XY
The illuminance distribution on the projection plane is measured by various methods by placing an illuminance cutter on the stationary surface.

例えば (イ)ウエハを載置するXYステーシの一部に照度泪な
’A着しておき、必要に応して、xYステーシ上の照度
計を投影面上に移動させて照度分布を測定する方法。
For example, (a) place a low illuminance 'A' on a part of the XY station on which the wafer is placed, and measure the illuminance distribution by moving the illumination meter on the xY station onto the projection plane as necessary. Method.

(口)xYステーシ面上の一部に測定に際してその都度
照度計を載置し、XYステーシを移動させながら投影面
内の照度分41を測定する方法。
(Explanation) A method in which an illuminance meter is placed on a part of the xY station surface each time a measurement is made, and the illuminance 41 within the projection plane is measured while moving the XY station.

等か用いられている。etc. are used.

(発明か解決しようとする問題点) 投影面における照度分布を測定する方法のうち前記(イ
)の方法はXYステーシ面」二に照度計を常備ずる為X
Yステーシが大型化し、XYステーシの駆動力か増加し
てくる。この為移動速度(加速度)を照度計を載置する
前と同様に設定しようとするとxYステーシの加振力か
増大し、装置全体の振動か増大し、アライメント精度が
低下すると共に解像力か低下してくる。又露光装置の振
動か収束するまて待つとスループットか低下してくると
いう問題点かあった。
(Problem to be solved by the invention) Of the methods for measuring the illuminance distribution on the projection plane, the method (a) above is
As the Y station becomes larger, the driving force of the XY station increases. Therefore, if you try to set the moving speed (acceleration) to the same value as before installing the illumination meter, the excitation force of the xY station will increase, the vibration of the entire device will increase, the alignment accuracy will decrease, and the resolution will decrease. It's coming. There was also the problem that if the exposure device vibrations were to settle down, the throughput would drop.

又XYステーシ上に載置した照度創を投影領域全体にわ
たり移動させねばならすXYステーシの可動ストローク
か増大すると共にxYスデーシの加工範囲か増大し高精
度な移動か難しくなってくるという問題点かあった。
There is also the problem that as the movable stroke of the XY station increases, which requires moving the illumination wound placed on the XY station over the entire projection area, the processing range of the xY station increases, making it difficult to move with high precision. Ta.

方前記(口)の方法はXYステーシの大型化及び可動ス
トロークの増大化は防止されるか、測定の際にその都度
ウエハーチャックを取り列し、照度81をXYステーシ
面上に装着しな番プればならずスループッ1・か低下す
ると共にウエハーチャックの着脱操作の繰り返しにより
ウエハーチャックと投影光学系の投影面との平行度か変
化してきて、解像力か低下してくるという問題点かあっ
た。
However, with the method mentioned above, is it possible to prevent the increase in the size of the XY station and the increase in the movable stroke? If the wafer chuck is attached/detached repeatedly, the throughput decreases, and the parallelism between the wafer chuck and the projection surface of the projection optical system changes, resulting in a decrease in resolution. .

本発明は露光装置内のウエハをXYステーシ」一に搬入
ずる為のウエハ搬入ハンドの一部に光検出部を設け、該
光検出部からの出力信号を利用することによりXYステ
ージの大型化、長ストローク化を防止しつつ投影面内に
おける照度及び照度分布を迅速にしかも高精度に測定す
ることができ高解像力の投影焼付けが可能な露光装置の
提供を目的とする。
The present invention provides a photodetector in a part of the wafer loading hand for loading the wafer in the exposure apparatus onto the XY stage, and uses the output signal from the photodetector to increase the size of the XY stage. It is an object of the present invention to provide an exposure apparatus capable of quickly and highly accurately measuring illuminance and illuminance distribution within a projection plane while preventing the stroke from becoming long, and capable of high-resolution projection printing.

(問題点を解決するための手段) 本発明の露光装置は照明系からの光束で被照射而」二に
載置した投影物体を照明し、該投影物体を投影光学系に
より、搬送ハンドで投影面上に搬入された被投影物体面
上に所定倍率で投影するようにした露光装置において、
該搬送ハンドの一部に光検出部を配置し、該搬送ハンド
を利用することにより該投影面」一における照度又は/
及び照度分布を測定するようにした照度測定手段を設け
たことを特徴としている。
(Means for Solving the Problems) The exposure apparatus of the present invention illuminates a projection object placed on an irradiated object with a light beam from an illumination system, and projects the projection object using a projection optical system using a conveying hand. In an exposure apparatus configured to project at a predetermined magnification onto an object to be projected onto a surface,
A light detection section is disposed in a part of the transport hand, and by using the transport hand, the illuminance or /
The present invention is characterized in that an illuminance measuring means for measuring the illuminance distribution is provided.

この他本発明では前記光検出部を複数の素子を1次元方
向に配置した1次元センサーにより構成し、前記搬送ハ
ンドを前記投影光学系の光軸と直交する平面内を移動さ
せたごとを特徴としている。
In addition, the present invention is characterized in that the photodetecting section is constituted by a one-dimensional sensor in which a plurality of elements are arranged in a one-dimensional direction, and the carrying hand is moved within a plane perpendicular to the optical axis of the projection optical system. It is said that

(実施例) 第1図は本発明の第1実施例の要部概略図、第2図は第
1図の一部分の拡大説明図である。
(Embodiment) FIG. 1 is a schematic view of a main part of a first embodiment of the present invention, and FIG. 2 is an enlarged explanatory view of a portion of FIG. 1.

第1、第2図において1は照明系てある。照明系1は超
高圧水銀灯又はエキシマレーザから成る光源101と、
該光源101からの光束をハーフミラー103とミラー
104,105を介して被照射面上に配置した投影物体
てあるレチクル5面上を均−照射する照明光学系102
を有している。
In FIGS. 1 and 2, reference numeral 1 indicates an illumination system. The illumination system 1 includes a light source 101 consisting of an ultra-high pressure mercury lamp or an excimer laser;
An illumination optical system 102 uniformly irradiates the light beam from the light source 101 through a half mirror 103 and mirrors 104 and 105 onto the surface of a reticle 5, which is a projection object placed on an irradiated surface.
have.

又本実施例ては光源101からの光束の一部をハーフミ
ラー103て反射し,集光レンズ106により光源10
1の放射強度を測定する為の受光素子107に導光して
いる。
Further, in this embodiment, a part of the light beam from the light source 101 is reflected by the half mirror 103, and the light beam from the light source 101 is reflected by the condensing lens 106.
The light is guided to a light receiving element 107 for measuring the radiation intensity of 1.

レチクル5面上には被投影物体てあるウェハ9に投影転
写する為の回路パターンか石英板上に数倍に拡大されて
形成されている。
On the surface of the reticle 5, a circuit pattern to be projected and transferred onto the wafer 9, which is the object to be projected, is formed on a quartz plate and enlarged several times.

8は投影レンズ系てあり、レチクル5面上の回路パター
ンをウエハ9面上に所定の倍率て投影している。8aは
投影レンズ系8の光軸、8bは投影レンズ系8の投影有
効画面である。
A projection lens system 8 projects the circuit pattern on the reticle 5 onto the wafer 9 at a predetermined magnification. 8a is the optical axis of the projection lens system 8, and 8b is the effective projection screen of the projection lens system 8.

2はウエハ搬送ハンドであり、ウエハ9を搬送する際に
ウエハ9を保持ずるウエハ保持部9lとウエハ保持部9
1を支持するウエハ搬送アーム92を有している。
Reference numeral 2 denotes a wafer transfer hand, which includes a wafer holding section 9l and a wafer holding section 9 that hold the wafer 9 when transferring the wafer 9.
It has a wafer transfer arm 92 that supports wafer 1.

93はウエハハンド駆動用送りネジであり、ウエハ搬送
ハンド2の移動を規制している。
Reference numeral 93 is a feed screw for driving the wafer hand, which regulates movement of the wafer transfer hand 2.

94はウエハハンド駆動用モータでありウエハ搬送ハン
ド2をウエハハンド駆動用送りネジ93に沿って駆動さ
せている。
Reference numeral 94 denotes a wafer hand drive motor that drives the wafer transfer hand 2 along the wafer hand drive feed screw 93.

ウエハハンド駆動用モータ94の一部にはウエハハンド
駆動エンコーダ(不図示)が設けられており、ウエハ搬
送ハンド2の移動量を検出している。また、ウエハハン
ド2は、投影レンズ系8の光軸方向(Z方向)に移動可
能である。3は照度測定手段である。照度検出手段3は
ウエハ搬送アーム92の一部に装着されている光検出部
31、ブリアンブ32、照度分布演算部33そして照度
計34を有している。光検出部3lは複数の素子を1次
元方向に(X方向)に配置した1次元センサーより成っ
ている。4lはX方向の移動を行うXステージ、42は
Y方向の移動を行うYステーシてある。
A wafer hand drive encoder (not shown) is provided in a part of the wafer hand drive motor 94 to detect the amount of movement of the wafer transfer hand 2 . Further, the wafer hand 2 is movable in the optical axis direction (Z direction) of the projection lens system 8. 3 is an illuminance measuring means. The illuminance detection means 3 includes a photodetector section 31 mounted on a part of the wafer transfer arm 92, a briambe 32, an illuminance distribution calculation section 33, and an illuminance meter 34. The photodetector 3l is composed of a one-dimensional sensor in which a plurality of elements are arranged in one-dimensional direction (X direction). 4l is an X stage that moves in the X direction, and 42 is a Y station that moves in the Y direction.

Xステーシ41はYステーシ42により支持されている
The X stay 41 is supported by the Y stay 42.

43はステーシ定盤てあり、Xステージ4lとYステー
ジ42を支持している。
A stationary surface plate 43 supports the X stage 4l and the Y stage 42.

6はDCサーボモータであり、Yステージ42に支持さ
れ、Xステーシ4lをX方向に駆動させている。
A DC servo motor 6 is supported by the Y stage 42 and drives the X station 4l in the X direction.

44はベース定盤てありウェハ搬送ハンド2やウエハハ
ンド駆動用モータ94そしてXステージ、Yステーシ等
の各要素を載置している。
Reference numeral 44 denotes a base surface plate on which various elements such as the wafer transfer hand 2, the wafer hand drive motor 94, the X stage, and the Y stage are mounted.

7は鏡筒定盤であり照明系lや投影レンズ系8を支持し
ている。
Reference numeral 7 denotes a lens barrel surface plate that supports the illumination system 1 and the projection lens system 8.

本実施例においてレチクル5面−1−の回路パターンを
投影レンズ系8によりウェハ9面」二に投影露光する場
合にはウエハ供給ハンド(不図示)によりウエ八カセッ
ト(不図示)からウェハ9をウエハ搬送ハンド2のウエ
ハ保持部9lに供給する。そして真空吸着され保持され
る。ウエハ9を載置したウエハ搬送ハンド2はウエハハ
ンド駆動用モータ94でウエハハンド駆動用送りネジ9
3に沿ってy軸方向に駆動されこれによりウェハ9はX
Yステージ上に載置される。そしてxYステージの駆動
によりレヂクル5とウエハ9との位置合わせが行われる
。その後照明系lからの露光光により照明されたレヂク
ル5面上の回路パターンを投影レンズ系8によりウエハ
9面上に投影露光している。
In this embodiment, when projecting and exposing the circuit pattern on the 5th surface of the reticle 1- to the 9th wafer surface 2 using the projection lens system 8, the wafer 9 is transferred from the wafer 8 cassette (not shown) using a wafer supply hand (not shown). It is supplied to the wafer holding section 9l of the wafer transfer hand 2. Then, it is vacuum-adsorbed and held. The wafer transfer hand 2 on which the wafer 9 is placed is connected to the wafer hand drive feed screw 9 by a wafer hand drive motor 94.
The wafer 9 is driven in the y-axis direction along the
It is placed on the Y stage. Then, the resicle 5 and the wafer 9 are aligned by driving the xY stage. Thereafter, the circuit pattern on the resicle 5 surface illuminated by the exposure light from the illumination system 1 is projected onto the wafer 9 surface by the projection lens system 8 and exposed.

レチクル5とウエハ9との位置合わせから投影露光まで
の工程を複数回繰り返すことにょりウエハ9全面にレチ
クル5面上の回路パターンを投影露光している。
By repeating the process from alignment of the reticle 5 and wafer 9 to projection exposure multiple times, the circuit pattern on the surface of the reticle 5 is projected and exposed onto the entire surface of the wafer 9.

そしてウエハ9全面の投影露光が終了したらウエハ搬送
ハンド2によりxYステージからウェハ9を回収し、該
ウエハを装置外に搬出してぃる。
After the projection exposure of the entire surface of the wafer 9 is completed, the wafer 9 is recovered from the xY stage by the wafer transfer hand 2 and carried out of the apparatus.

次に投影レンズ系8による投影面(レチクルパターンの
像面に相当)内における照度又は/及び照度分布を測定
する場合にはレチクルハンド(不図示)によりレチクル
5をレチクルステージより搬出する。
Next, when measuring the illuminance and/or illuminance distribution within the projection plane (corresponding to the image plane of the reticle pattern) by the projection lens system 8, the reticle 5 is carried out from the reticle stage by a reticle hand (not shown).

そしてウエハ搬送ハンドに2にウエハを保持していない
状態でウエハハンド駆動用モータ94により、ウエハ搬
送ハンド2を所定量y軸方向に駆動用送りネジ92に沿
って駆動させる。またZ方向に関する位置を調整する。
Then, while no wafer is held in the wafer transfer hand 2, the wafer hand drive motor 94 drives the wafer transfer hand 2 by a predetermined amount in the y-axis direction along the driving feed screw 92. Also, the position in the Z direction is adjusted.

このときウエハ搬送アーム92の一部に設けた1次元セ
ンサーにより成る光検出部31が投影レンズ系8の投影
有効画面8b内に位置するようにy及びZ方向へのアー
ム92の移動が制御される。
At this time, the movement of the arm 92 in the y and Z directions is controlled so that the photodetector 31, which is a one-dimensional sensor provided on a part of the wafer transfer arm 92, is located within the effective projection screen 8b of the projection lens system 8. Ru.

次いで光源101を点燈し、照明系lからの光束で投影
レンズ系8の投影有効画面8b内を照明する。そして光
検出部3lが投影有効画面8b内のy軸方向を走査する
ようにウエハ搬送ハンド2をy軸方向に移動させること
により投影画面内の照度を順次測定している。
Next, the light source 101 is turned on, and the inside of the effective projection screen 8b of the projection lens system 8 is illuminated with the light beam from the illumination system 1. The illuminance within the projection screen is sequentially measured by moving the wafer transfer hand 2 in the y-axis direction so that the photodetector 3l scans the y-axis direction within the effective projection screen 8b.

このとき光検出部31で光電変換された信号をプレアン
プ32を介し照度分布演算部33に順次伝送する。そし
て照度分布演算部33て照度計34からの信号を参照し
て投影光学系8による投影面内の照度分布を測定してい
る。
At this time, the signals photoelectrically converted by the photodetector 31 are sequentially transmitted to the illuminance distribution calculation section 33 via the preamplifier 32. Then, the illuminance distribution calculating section 33 refers to the signal from the illuminance meter 34 and measures the illuminance distribution within the projection plane by the projection optical system 8.

尚本実施例において光検出部31を複数の素子を2次元
的に配列した2次元センサーより構成しても良い。この
とき2次元センサーの有効受光面か投影光学系の有効投
影面上より大きい場合はウエハ搬送ハンド2により2次
元センサーを有効投影面上に移動させれば、その後はウ
ェハ搬送ハンド2は固定のままて照度分布を測定するこ
とかてきる。
In this embodiment, the photodetecting section 31 may be constituted by a two-dimensional sensor in which a plurality of elements are two-dimensionally arranged. At this time, if the effective light receiving surface of the two-dimensional sensor is larger than the effective projection surface of the projection optical system, the two-dimensional sensor can be moved onto the effective projection surface using the wafer transfer hand 2, and then the wafer transfer hand 2 can be fixed. You can also measure the illuminance distribution.

又小さい場合はウエハ搬送ハンド2を移動させて各領域
における照度を測定し,照度分布演算部33により各測
定位置における照度と照度計34からの信号とを参照し
て投影面内の照度分布を求めるようにしている。
If it is too small, move the wafer transfer hand 2 to measure the illuminance in each area, and use the illuminance distribution calculation unit 33 to calculate the illuminance distribution in the projection plane by referring to the illuminance at each measurement position and the signal from the illuminance meter 34. I try to ask for it.

尚、本実施例において投影レンズの代わりに凹面鏡と凸
面鏡を有するミラー系を用いても本発明l1 は適用ずることかてきる。
In this embodiment, the present invention 11 can be applied even if a mirror system having a concave mirror and a convex mirror is used instead of the projection lens.

(発明の効果) 本発明によれば前述の如くウエハ搬送ハンドの一部に照
度測定手段の一部てある光検出部を設け、該ウエハ搬送
ハンドを利用することによりXYステーシの大型化及び
長ストローク化を防止し、投影光学系による有効投影面
−トにおける任意のψ域の照度及び照度分布を迅速にし
かも高精度に測定することかてき、高精度な投影焼付け
か可能な露光装置を達成することがてきる。
(Effects of the Invention) According to the present invention, as described above, a photodetector which is part of the illuminance measurement means is provided in a part of the wafer transfer hand, and by using the wafer transfer hand, the XY station can be made larger and longer. Achieved an exposure device that can prevent stroke formation and quickly and highly accurately measure the illuminance and illuminance distribution in any ψ range on the effective projection surface by the projection optical system, and can perform highly accurate projection printing. I can do that.

【図面の簡単な説明】 第1図は本発明の第1実施例の要部概略図、第2図は第
1図の一部分の拡大説明図ある。 図中1は照明系,2はウエハ搬送ハンド、3は照度測定
手段,5はレチクル、6はDCサーボモータ、7は鏡筒
定盤、8は投影レンズ系、9はウエハ、101は光源、
107は受光素子102は照明光学系、3lは光検出部
、32はプレアンプ、33は照度分布演算部、34は照
度計、4lはXステーシ,42はYステーシ、43はス
テ−12 ジ定盤、44はベース定盤、9lはウエハ保持部、92
はウエハ搬送アーム、93はウエハハンド駆動用ネジ、
94はウエハハンド駆動用モータてある。
BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 is a schematic diagram of a main part of a first embodiment of the present invention, and FIG. 2 is an enlarged explanatory diagram of a portion of FIG. 1. In the figure, 1 is an illumination system, 2 is a wafer transfer hand, 3 is an illuminance measuring means, 5 is a reticle, 6 is a DC servo motor, 7 is a lens barrel surface plate, 8 is a projection lens system, 9 is a wafer, 101 is a light source,
107 is a light receiving element 102 is an illumination optical system, 3l is a photodetector, 32 is a preamplifier, 33 is an illuminance distribution calculation unit, 34 is an illumination meter, 4l is an X station, 42 is a Y station, 43 is a stage 12 surface plate , 44 is a base surface plate, 9l is a wafer holding part, 92
is the wafer transfer arm, 93 is the wafer hand drive screw,
Reference numeral 94 denotes a wafer hand driving motor.

Claims (3)

【特許請求の範囲】[Claims] (1)照明系からの光束で被照射面上に載置した投影物
体を照明し、該投影物体を投影光学系により、搬送ハン
ドで投影面上に搬入された被投影物体面上に所定倍率で
投影するようにした露光装置において、該搬送ハンドの
一部に光検出部を配置し、該搬送ハンドを利用すること
により該投影面上における照度又は/及び照度分布を測
定するようにした照度測定手段を設けたことを特徴とす
る露光装置。
(1) A projection object placed on the irradiation surface is illuminated with a light flux from the illumination system, and the projection object is transferred to the projection object surface by the projection optical system onto the projection surface with a predetermined magnification. In an exposure apparatus configured to project on the projection surface, a light detection unit is disposed in a part of the transport hand, and the illuminance and/or illuminance distribution on the projection surface is measured by using the transport hand. An exposure apparatus characterized by being provided with a measuring means.
(2)前記光検出部を複数の素子を1次元方向に配置し
た1次元センサーより構成し、前記搬送ハンドを前記投
影光学系の光軸と直交する平面内を移動させたことを特
徴とする請求項1記載の露光装置。
(2) The photodetector is configured with a one-dimensional sensor in which a plurality of elements are arranged in one-dimensional direction, and the transport hand is moved in a plane perpendicular to the optical axis of the projection optical system. An exposure apparatus according to claim 1.
(3)前記光検出部を前記投影光学系による有効投影面
と略同等の面積を有する2次元センサーより構成したこ
とを特徴とする請求項1記載の露光装置。
(3) The exposure apparatus according to claim 1, wherein the light detection section is constituted by a two-dimensional sensor having an area substantially equivalent to an effective projection surface by the projection optical system.
JP2011528A 1990-01-20 1990-01-20 Exposure device Pending JPH03215928A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011528A JPH03215928A (en) 1990-01-20 1990-01-20 Exposure device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011528A JPH03215928A (en) 1990-01-20 1990-01-20 Exposure device

Publications (1)

Publication Number Publication Date
JPH03215928A true JPH03215928A (en) 1991-09-20

Family

ID=11780469

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011528A Pending JPH03215928A (en) 1990-01-20 1990-01-20 Exposure device

Country Status (1)

Country Link
JP (1) JPH03215928A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8826595B2 (en) 2010-11-08 2014-09-09 Yachiyo Industry Co., Ltd. Window regulator in which a means for fixing and supporting a drive motor, a means for fixing and supporting a guide rail, a means for holding an orbit of an elongate push-pull member in an idle path, and a means for mounting on an object are integrally formed
JP2018110271A (en) * 2009-05-15 2018-07-12 株式会社ニコン Mobile device, exposure device, device manufacturing method, and method for manufacturing flat panel display

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018110271A (en) * 2009-05-15 2018-07-12 株式会社ニコン Mobile device, exposure device, device manufacturing method, and method for manufacturing flat panel display
US8826595B2 (en) 2010-11-08 2014-09-09 Yachiyo Industry Co., Ltd. Window regulator in which a means for fixing and supporting a drive motor, a means for fixing and supporting a guide rail, a means for holding an orbit of an elongate push-pull member in an idle path, and a means for mounting on an object are integrally formed

Similar Documents

Publication Publication Date Title
US4861162A (en) Alignment of an object
KR100530676B1 (en) Projection Exposure Method
US5914774A (en) Projection exposure apparatus with function to measure imaging characteristics of projection optical system
JP3181050B2 (en) Projection exposure method and apparatus
EP0793073B1 (en) Surface position detecting method and scanning exposure method using the same
US6975384B2 (en) Exposure apparatus and method
US20090123874A1 (en) Exposure method, exposure apparatus, and method for manufacturing device
TWI654493B (en) Sensor system, substrate handling system and lithographic apparatus
JP5507875B2 (en) Exposure apparatus, exposure method, and device manufacturing method
US6130751A (en) Positioning method and apparatus
KR20190114787A (en) Lithography apparatus, pattern forming method, and article manufacturing method
JPH10242041A (en) Position detection method and apparatus, and aligner
JPH03211812A (en) Exposure aligner
KR20200088529A (en) Inspection system for extreme ultra violet lithography pellicle
JPH03215928A (en) Exposure device
JP2019200444A (en) Lithography deice, pattern formation method, and manufacturing method of article
Clube et al. P‐40: 0.5 μm Enabling Lithography for Low‐Temperature Polysilicon Displays
JP3008591B2 (en) Exposure apparatus and circuit manufacturing method using the same
JP3337823B2 (en) Projection exposure apparatus and semiconductor device manufacturing method using the same
JPH03215927A (en) Exposure device
JP2022191012A (en) Adjustment method of foreign matter inspection device, exposure device and article manufacturing method
JP2024062787A (en) Exposure apparatus and article manufacturing method
KR20230150342A (en) Optical systems, mounting devices, and methods for measuring the position of a measurement object
JP2021036347A (en) Lithography deice, pattern formation method, and manufacturing method of article
JPH02126629A (en) Production aligner