JPH03215730A - Gas detector using optical fiber - Google Patents

Gas detector using optical fiber

Info

Publication number
JPH03215730A
JPH03215730A JP833890A JP833890A JPH03215730A JP H03215730 A JPH03215730 A JP H03215730A JP 833890 A JP833890 A JP 833890A JP 833890 A JP833890 A JP 833890A JP H03215730 A JPH03215730 A JP H03215730A
Authority
JP
Japan
Prior art keywords
optical fiber
gas
light
core
concentration
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP833890A
Other languages
Japanese (ja)
Inventor
Shigeru Hirai
茂 平井
Nobuhiro Akasaka
伸宏 赤坂
Yuji Kubo
祐二 久保
Tomoyuki Hattori
知之 服部
Toshiaki Zatsunodo
雑喉 利明
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Electric Industries Ltd
Original Assignee
Sumitomo Electric Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Electric Industries Ltd filed Critical Sumitomo Electric Industries Ltd
Priority to JP833890A priority Critical patent/JPH03215730A/en
Publication of JPH03215730A publication Critical patent/JPH03215730A/en
Pending legal-status Critical Current

Links

Landscapes

  • Investigating Or Analysing Materials By Optical Means (AREA)

Abstract

PURPOSE:To increase the mechanical strength, to improve the accuracy and to expand the gas detection range by forming the sensor and of an optical fiber member which is exposed to inspection gas by using only a core and forming other light propagation parts by providing a core and a clad. CONSTITUTION:The sensor part of the optical fiber member 20 which is exposed to the inspection gas along the longitudinal direction is formed of only the core and other light propagation parts are formed while equipped with the core and clad. A gas cell 30 is arranged in a state incorporating the sensor part 22 of the member 20. The inspection gas is admitted to the gas cell 30 through an entrance pipe 31 and guided out through an exist pipe 32. Laser beam which is propagated in the member 20 is emitted from the right end of the member 20 to reach a germanium photodetector 42 through a V-groove connection part 40 and a quartz dummy optical fiber 41. The photodetector 42 outputs a detection signal corresponding to the intensity of the photodetected laser beam. The detection signal is amplified by an amplifier 50 and inputted to a computer 51.

Description

【発明の詳細な説明】 く産業上の利用分舒〉 本発明は、光ファイバに沿い伝搬する光が検査ガスによ
り吸収されろことを利用してガス濃度を検出する光ファ
イバを用いたガス検出装置に関するものである。
[Detailed Description of the Invention] Industrial Applications The present invention relates to gas detection using an optical fiber, which detects gas concentration by utilizing the fact that light propagating along the optical fiber is absorbed by a test gas. It is related to the device.

く従来の技術〉 光ファイバを用いてガス濃度を検出する従来技術トシテ
ハ、論文rOPTIcs LETTERS Vol.1
2. & 6 P. 437〜439 (1987) 
Jに示されるものがある。この論文に示されている実験
装置の概要を、第4図を参照して説明する。同図におい
て、光ファイバ1は、センサ部分1aを除き、コアの直
径が50μmでク,ラツドの直径が125μmとなって
おり、全長は40cmないし、これより短い程度として
いる。センサ部分1aは加熱処理と引き伸ばし処理によ
り細径にされており、直径が1.8〜7μmで長さが5
〜10mとしている。なおセンサ部分1aにもコアとク
ラッドが存在する。
Conventional technology> Conventional technology for detecting gas concentration using an optical fiber. 1
2. & 6 P. 437-439 (1987)
There is one shown in J. The outline of the experimental apparatus shown in this paper will be explained with reference to FIG. In the figure, the optical fiber 1 has a core diameter of 50 μm, a core diameter of 125 μm, and a total length of 40 cm or shorter, excluding the sensor portion 1a. The sensor portion 1a is made thinner by heating and stretching, and has a diameter of 1.8 to 7 μm and a length of 5 μm.
~10m. Note that the sensor portion 1a also includes a core and a cladding.

レーザ発振Wi2から出力された光(波長3.392μ
m)は、ミラーやレンズによりガイドされて光ファイバ
1の−#4(図中では右端に入射され、光ファイバ1中
を伝搬し、他端(図中では左端)から出射されてレンズ
を介し光センサ3に散る。光が光ファイバ1の中を伝搬
する際には、光波は大部分がコア、部がクラッド中を進
行する。更に光波の一部がコア及びクラッド以外の外部
領域を伝搬する状況もあり、この光波をエバネッシエン
ト波(evanescent w a v e )と称
しテイル。x ハネ.)+ >二ント波は、ファイバ中
心から径方向外側に離れるにつれてその強度が急激に減
衰する分布状態でもって進行する。
Light output from laser oscillation Wi2 (wavelength 3.392μ
m) is guided by mirrors and lenses, enters the -#4 (right end in the figure) of the optical fiber 1, propagates through the optical fiber 1, exits from the other end (left end in the figure), and passes through the lens. Scattered into the optical sensor 3. When light propagates in the optical fiber 1, most of the light waves travel through the core and some through the cladding.Furthermore, some of the light waves propagate through the external region other than the core and cladding. In some situations, this light wave is called an evanescent wave.Tail. Proceed with that.

光センサ3は、受光した光強度に応じた光電流を発生し
、この光電流はアンプ4で増幅され、光電流値(受光し
た光強度}がレコーダ5で記鎌される。
The optical sensor 3 generates a photocurrent according to the intensity of the received light, this photocurrent is amplified by the amplifier 4, and the photocurrent value (the intensity of the received light) is recorded by the recorder 5.

ガスミキサー6は、メタンガスと窒素ガスを所要の割合
で昆合し、混合ガスをダクト7ヲ介してセノサ部分1a
に吹き出す。このため、セノサ部分1alよ混合ガス雰
囲気に包まれろ。
The gas mixer 6 combines methane gas and nitrogen gas in a required ratio, and passes the mixed gas through the duct 7 to the cenosa portion 1a.
burst into speech. For this reason, the Senosa part 1al should be surrounded by a mixed gas atmosphere.

セ冫サ部分1&が混合ガスに晒されると、光ファイバ1
に沿い伝搬する光、持にエバネッンエノト彼がメタンガ
スに吸収される。このため光ファイバ1に沿い伝搬する
光の強度が減少する。
When the sensor portion 1& is exposed to the mixed gas, the optical fiber 1
As the light propagates along, it is absorbed by the methane gas. Therefore, the intensity of light propagating along the optical fiber 1 decreases.

この装置において、メタンガスの濃度を変えて;)<と
、この変化割合に応じて受光する光強度が変化していっ
た。したがって逆に考えれば、受光した光強度を検出す
ることによ9、セレサ部分1aが晒されている雰囲気の
メタンガス濃度を検出てきる。なお、検出できろ最低1
度:よ1%である。
In this device, by changing the concentration of methane gas, the intensity of the received light changed according to the rate of change. Therefore, conversely, by detecting the intensity of the received light, the methane gas concentration of the atmosphere to which the Ceresa portion 1a is exposed can be detected. In addition, it is possible to detect at least 1
Frequency: 1%.

く発明が解決しようとする11211>ところで上述し
た従来技術で1よ、センサ部分1aの外径が1.8〜7
μmと極めて細径てあるため、外力に対して4くセンサ
部分1aが破断しやすいという欠点があった。
11211>By the way, in the above-mentioned prior art, the outer diameter of the sensor portion 1a is 1.8 to 7.
Since it has an extremely small diameter of μm, there is a drawback that the sensor portion 1a is easily broken by external force.

またセンサ部分1aにおいて大きな光伝送損失が生じる
ため、1本の光ファイバ1にセンサ部分11!を襖数形
成したとすると、伝送損失が極めて大きくなり濃度検出
ができなくなってし1うっしたがって1本の光ファイバ
1に{.?1つのセンサ部分しか形成することができず
、ガス濃度検出ができる範囲は、センサ部分1aの周囲
に限定されてしまい、広笥寒にIってガス濃度検知をす
ることは困難であった。
Also, since a large optical transmission loss occurs in the sensor portion 1a, the sensor portion 11! If a number of sliding doors were formed, the transmission loss would become extremely large, making concentration detection impossible. ? Only one sensor portion can be formed, and the range in which gas concentration can be detected is limited to the area around the sensor portion 1a, making it difficult to detect gas concentration in a wide area.

本発明は、上記従来技術に鑑み、機械的強度が寓くて精
度が良ク、シかもdス検出範囲を広くすることのできる
光ファイバを用いたガス検出装置を提供することを目的
とする。
SUMMARY OF THE INVENTION In view of the above-mentioned prior art, it is an object of the present invention to provide a gas detection device using an optical fiber that has low mechanical strength, high accuracy, and can widen the detection range. .

<s!Iを屏決するための手段〉 上記!!堰を解決する本発明の構成は、長手方向に沿う
部分のうち、検査ガスに晒すセンサ部分はコアだけで形
成し、他の光伝搬部分はコアとクラッドを備えて形成し
た光ファイバ部材と、 この光ファイバ部材の一端に検査光を入射する光入射部
と、 前記光ファ1′バ部材の中を伝搬してきて光ファイバ部
材の他端から出射した検査光を受光し、受光した検査光
の光強度を検出する受光部と、 この受光部で険出した光強度を基に検査ガスの濃度を求
める判定部と、 を有することを待黴とする。
<s! Means to decide I> Above! ! The structure of the present invention that solves the problem of the weir is that among the longitudinal parts, the sensor part exposed to the test gas is formed by only the core, and the other light propagation parts are formed by an optical fiber member having a core and a cladding. A light incidence part that inputs a test light into one end of the optical fiber member; The present invention preferably includes a light receiving section that detects light intensity, and a determining section that determines the concentration of the test gas based on the light intensity that increases at the light receiving section.

く作   用〉 本見明で{よ、光ファイバ部材に沿い伝搬する検査光の
一部は、センサ部分において、検査ガスにより吸収され
る。検査光の吸収度合は、検査ガスの濃度に対応してい
るため、光ファイバ部材を伝搬してきた検査光の光度を
基に、検査ガスの濃度を求めろことができろ。
Effect> In the present view, a portion of the test light propagating along the optical fiber member is absorbed by the test gas in the sensor portion. Since the degree of absorption of the test light corresponds to the concentration of the test gas, the concentration of the test gas can be determined based on the luminous intensity of the test light that has propagated through the optical fiber member.

〈実 施 例〉 以下に本発明の実施例を図面に基づき詳細に説明する。<Example> Embodiments of the present invention will be described in detail below based on the drawings.

第1図は本発明の実施例5こ係ろガス検出装置を示す。FIG. 1 shows a filter gas detection device according to a fifth embodiment of the present invention.

このガス検出装W1はメタンガスの濃度を検出する。同
図において、半導体レーザ発振謬10は波長が1.66
μmのレーザ光(検査光)を出力し、このレーザ光は石
英系ダミー光ファイバ11及びV溝接続部12を介して
光ファイバ部材20の左端に入射される。このレーザ光
の波長(1.66μm)はメタンガスの赤外振勤吸収波
長の倍振動に設定してある。このような設定にしておく
と、レーザ光がメタンガス中を進行した際に、レーザ光
の一部がメタンガスにより吸収される。
This gas detection device W1 detects the concentration of methane gas. In the same figure, the semiconductor laser oscillation error 10 has a wavelength of 1.66
A μm laser beam (inspection light) is output, and this laser beam is input to the left end of the optical fiber member 20 via the quartz-based dummy optical fiber 11 and the V-groove connection portion 12. The wavelength (1.66 μm) of this laser beam is set to double the infrared vibrational absorption wavelength of methane gas. With this setting, when the laser beam travels through methane gas, a portion of the laser beam is absorbed by the methane gas.

光ファイバ部材20は、光伝搬部分21,23とセンサ
部分22とで構成されている。
The optical fiber member 20 is composed of light propagation parts 21 and 23 and a sensor part 22.

拡大図である第2図にも示すように、光伝搬部分21,
23は通常の石英系光ファイバであり、それぞれSiO
2ガラスでなるコア21a,23aと、フッ素添加Si
02ガラスでなるクラッド2lb,23bと、コーティ
ング21c,23cとで形成されている。コ121a 
,  23mとクラッド21b,23bとの屈折率差C
よ0.7%であり、コア2 1 m ? 2 3 mの
直径ば100Atrn,クラッド2lb,23bの直径
は140μm1コーティング21c,23cの直径は2
50μmである。一方、センサ部分22はSin2ガラ
スでなるコアのみの構成となっていろ。センサ部分22
は、その直径がi 0 0 ,qmでありコア21m,
23aの直径と等しく、その長さは20傭である。セン
サ部分22の長さが20cITIであると、この中をレ
ーザ光(波長1.66μm)が伝搬したとき、光損失;
よ30KB/kmであり比較的低損失である。なお、セ
ンサ部分22の長さを長くすると損失は増大するがガス
濃度検知の感度は向上する。したがって検査目的に合せ
てセンサ部分22の最適な長さを決める。このセンサ部
分22は、SIO2ガラスロッドを裸ファイバとして線
引きすることにより作製する。そしてセンサ部分22の
両端は、それぞれ光伝搬部分21,23のコア21m,
23aに融着接続されている。
As shown in FIG. 2, which is an enlarged view, the light propagation portion 21,
23 is a normal silica-based optical fiber, each of which is made of SiO
Cores 21a and 23a made of two glasses and fluorine-doped Si
It is formed of claddings 2lb and 23b made of 02 glass and coatings 21c and 23c. Ko121a
, 23m and the refractive index difference C between the claddings 21b and 23b
0.7%, core 2 1 m? The diameter of 2 3 m is 100 Atrn, the diameter of cladding 2lb, 23b is 140 μm, the diameter of coating 21c, 23c is 2
It is 50 μm. On the other hand, the sensor portion 22 should consist only of a core made of Sin2 glass. Sensor part 22
has a diameter of i 0 0, qm and a core of 21 m,
It is equal to the diameter of 23a, and its length is 20 mm. When the length of the sensor portion 22 is 20 cITI, when a laser beam (wavelength 1.66 μm) propagates through it, there is an optical loss;
It has a relatively low loss of 30 KB/km. Note that when the length of the sensor portion 22 is increased, the loss increases, but the sensitivity of gas concentration detection improves. Therefore, the optimum length of the sensor portion 22 is determined depending on the inspection purpose. This sensor portion 22 is fabricated by drawing an SIO2 glass rod as a bare fiber. Both ends of the sensor portion 22 are connected to the cores 21m and 21m of the light propagation portions 21 and 23, respectively.
23a by fusion splicing.

ガスセル30は、光ファイバ部材20のセンサ部分22
を内部に含む状態で配置されている。このガスセル30
内には入口管31を通してメタンガス(検査ガス)が導
入され、ガスセル30内のガスは出口管32を通して外
部に導出される。
The gas cell 30 is connected to the sensor portion 22 of the optical fiber member 20.
It is arranged so that it contains inside. This gas cell 30
Methane gas (test gas) is introduced into the gas cell 30 through an inlet pipe 31, and the gas inside the gas cell 30 is led out through an outlet pipe 32.

光ファイバ部材20中を伝搬してきたレーザ光は、光フ
ァイバ部材20の右端から出射した後、■溝接続部40
及び石英系ダミー光ファイバ41を介してゲルマニウム
光検出蕃42に達する。ゲルマニウム光検出v#42は
、受光したレーザ光の強度に応じた検出信号を出力する
。この検出信号は増輻藩50で増幅されてコンピュータ
51に入力される。
The laser beam that has propagated through the optical fiber member 20 is emitted from the right end of the optical fiber member 20, and then reaches the groove connecting portion 40.
The light then reaches the germanium photodetection plate 42 via a quartz-based dummy optical fiber 41. The germanium light detection v#42 outputs a detection signal according to the intensity of the received laser light. This detection signal is amplified by an amplifier 50 and input to a computer 51.

上述した構成となっている本実施例のガス検出装置を用
いて行なったガス濃賓検出実験の態様及び結果を、ここ
で述べておく。この実験中は、半導体レーザ発振器10
からレーザ光(波長1.66μm)を出力させて光ファ
イバ部材20中を伝階させる。レーザ光がセンサ部分2
2を通るときには、レーザ光の一部はセンサ部分22の
周囲にしみ出した状態、即ちエバネッシエント波の状態
となって伝搬する。ガスセル30内は、はじめは空気に
しておき、ゲルマ二ウム光検出器42で受光したレーザ
光の強度を調べた。その後、ガスセル30内に5vo#
%濃度のメタンガスを充満させた。この結果センサ部分
22で生じたエバネッシェント波の一部がメタンガスで
吸収され、受光強V(レベル)が4dB減衰した。
The mode and results of a gas-rich guest detection experiment conducted using the gas detection device of this example having the above-described configuration will now be described. During this experiment, the semiconductor laser oscillator 10
Laser light (wavelength: 1.66 μm) is output from the optical fiber member 20 and transmitted through the optical fiber member 20. Laser light is sensor part 2
2, a portion of the laser beam propagates in a state where it seeps out around the sensor portion 22, that is, in the state of an evanescent wave. The gas cell 30 was initially filled with air, and the intensity of the laser light received by the germanium photodetector 42 was examined. After that, 5vo# is placed in the gas cell 30.
% concentration of methane gas. As a result, a part of the evanescent wave generated in the sensor portion 22 was absorbed by methane gas, and the received light intensity V (level) was attenuated by 4 dB.

その後、メタンガスの濃度を減少させつつ受光強度を検
出したところ、第3図にも示すように、受光強度はメタ
ンガス濃度が減少するにつれて減少することが検出され
た。そして受光強度が検出限界である0.02dBのと
きにメタン濃度!t O.03 voj%であった。し
たがってこの装置によれば、最小検出濃度として0.0
3vo#%を達成したことになる。
Thereafter, the received light intensity was detected while decreasing the methane gas concentration, and as shown in FIG. 3, it was detected that the received light intensity decreased as the methane gas concentration decreased. Then, when the received light intensity is 0.02 dB, which is the detection limit, the methane concentration! tO. 03 voj%. Therefore, according to this device, the minimum detectable concentration is 0.0
This means that you have achieved 3vo#%.

上述した実験からわかるように、第3図に示す受光レベ
ルとメタンガス濃度との対応関係を、コンピュータ51
にあらかじめ設定しておけば、受光レベルを検出するこ
とによりガスセル30内に導入したメタンガスの濃度を
検出することができる。
As can be seen from the experiment described above, the correspondence between the received light level and the methane gas concentration shown in FIG.
If set in advance, the concentration of methane gas introduced into the gas cell 30 can be detected by detecting the level of received light.

本装置ではセンサ部分22がコアのみでありクラッドが
無いためこの部分の直径が100μmと大きいにもかか
わらず、センサ部分22外にしみ出る光波、っまりエバ
ネッシェント波が多く生じ、検出精度が高くなる。また
センサ部分22の直径が大きいので機械的強度が高く、
前述した実験中及び実験後に長期保存している間、光フ
ァイバ部材20が破断することはなかった。
In this device, the sensor part 22 is only a core and has no cladding, so even though the diameter of this part is as large as 100 μm, many light waves, evanescent waves, seep out of the sensor part 22, resulting in high detection accuracy. . In addition, since the sensor portion 22 has a large diameter, its mechanical strength is high.
During the experiment described above and during long-term storage after the experiment, the optical fiber member 20 did not break.

また本装置では、光伝搬部分21,23のコア21a,
23aの直径とセンサ部分22の直径を等しくしている
ため、光ファイバ部材20自体で生じる損失は少ない。
In addition, in this device, the core 21a of the light propagation portions 21 and 23,
Since the diameter of the optical fiber member 23a and the diameter of the sensor portion 22 are made equal, the loss occurring in the optical fiber member 20 itself is small.

よって、1本の光ファイバ部材20にセンサ部分を複数
設けても濃度検出が可能であり、このようにすることに
より広範囲に亘ってガス濃度検知をすることができる。
Therefore, the concentration can be detected even if a plurality of sensor parts are provided in one optical fiber member 20, and by doing so, the gas concentration can be detected over a wide range.

なお上記j!浩例では、光伝搬部分21,23を石英系
光ファイバとしたが、フノ化物光ファイバ(Zr,Ba
,La, Al jNap Hf ,pb等)としても
よいっよた光ファイバ部材20の製造方法:よ前述した
ものに限るものでなく、要はセンサ部分がコアのみで形
成されろものであれば、池の方法により製造してもよい
In addition, the above j! In the example, the light propagation parts 21 and 23 were made of silica-based optical fibers, but fluoride optical fibers (Zr, Ba
, La, Al jNap Hf , pb, etc.) Method of manufacturing the optical fiber member 20: The method for manufacturing the optical fiber member 20 is not limited to the above-mentioned method, but in short, as long as the sensor part is formed only by the core, It may also be produced by Ike's method.

もちろん本装置は、メタンガスのみならず、他のガスの
濃度を検出するのにも利用することができる。他のガス
の濃度を検出するときには、そのガスの赤外振動吸収波
長にほぼ等しい波長のレーザ光を用いろようζζする。
Of course, this device can be used to detect the concentration of not only methane gas but also other gases. When detecting the concentration of another gas, it is recommended to use a laser beam with a wavelength approximately equal to the infrared vibrational absorption wavelength of that gas.

く発明の効果〉 以上実施例とともに具体的に説明したように本発明によ
れば、次のような効果を奏する。
Effects of the Invention> As specifically explained above in conjunction with the embodiments, the present invention provides the following effects.

イ) センサ部分の径を大さくとれるので、機械的強度
が高く、実用ラこ供しても充分な強度を有して5)る, ロ) センサ部分の径が大きいにもかかわらずこの部分
にクラッドがないので多くのエバネッシェント波が生じ
、この結果、検査ガスの濃度が小さくても濃度検出がで
きるとともに、検出精度が高い。
b) Since the diameter of the sensor part can be made large, it has high mechanical strength and has sufficient strength even when used in practical use.B) Despite the large diameter of the sensor part, this part has high mechanical strength. Since there is no cladding, many evanescent waves are generated, and as a result, the concentration can be detected even if the concentration of the test gas is small, and the detection accuracy is high.

拘 光ファイバ部材は、コアを絞っているわけではない
ので、光ファイバ部材自身で生じる光損失は小さい。よ
ってセンサ部分を多く設けることができ、広範囲に亘る
濃度検出ができる。
Since the constrained optical fiber member does not have a narrowed core, the optical loss caused by the optical fiber member itself is small. Therefore, a large number of sensor parts can be provided, and concentration can be detected over a wide range.

二) また光ファイバ部材自身で生じる光損失が小さい
ので、遠隔操作により濃度検出ができる。例えば都市ガ
ス配管のガス漏れを遠隔操作により発見することなどに
利用することができる。
2) Also, since the optical loss caused by the optical fiber itself is small, concentration can be detected by remote control. For example, it can be used to discover gas leaks in city gas pipes by remote control.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の実施例を示す構成図、第2図は光ファ
イバ部材の要部を示す拡大図、第3図は受光レベルとメ
タンガス濃度との関係を示す特性図、第4図は従来技術
を示す構成図であ面  中、 0は半導体レーザ発振器、 Oは光ファイバ部材、 1,23は光伝搬部分、 2Cよセンサ部分、 21ゲルマニウム光検出器、 Oは増幅器、 1はコンピュータである。
Fig. 1 is a configuration diagram showing an embodiment of the present invention, Fig. 2 is an enlarged view showing the main parts of the optical fiber member, Fig. 3 is a characteristic diagram showing the relationship between light reception level and methane gas concentration, and Fig. 4 is This is a configuration diagram showing the conventional technology, where 0 is a semiconductor laser oscillator, O is an optical fiber member, 1 and 23 are light propagation parts, 2C is a sensor part, 21 is a germanium photodetector, O is an amplifier, and 1 is a computer. be.

Claims (1)

【特許請求の範囲】 長手方向に沿う部分のうち、検査ガスに晒すセンサ部分
はコアだけで形成し、他の光伝搬部分はコアとクラッド
を備えて形成した光ファイバ部材と、 この光ファイバ部材の一端に検査光を入射する光入射部
と、 前記光ファイバ部材の中を伝搬してきて光ファイバ部材
の他端から出射した検査光を受光し、受光した検査光の
光強度を検出する受光部と、この受光部で検出した光強
度を基に検査ガスの濃度を求める判定部と、 を有することを特徴とする光ファイバを用いたガス検出
装置。
[Claims] An optical fiber member in which a sensor portion exposed to the test gas in the longitudinal direction is formed only by a core, and other light propagation portions are formed by having a core and a cladding; a light input section that inputs inspection light into one end; and a light receiving section that receives inspection light that has propagated through the optical fiber member and exits from the other end of the optical fiber member, and detects the light intensity of the received inspection light. A gas detection device using an optical fiber, comprising: a determination unit that determines the concentration of a test gas based on the light intensity detected by the light receiving unit.
JP833890A 1990-01-19 1990-01-19 Gas detector using optical fiber Pending JPH03215730A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP833890A JPH03215730A (en) 1990-01-19 1990-01-19 Gas detector using optical fiber

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP833890A JPH03215730A (en) 1990-01-19 1990-01-19 Gas detector using optical fiber

Publications (1)

Publication Number Publication Date
JPH03215730A true JPH03215730A (en) 1991-09-20

Family

ID=11690414

Family Applications (1)

Application Number Title Priority Date Filing Date
JP833890A Pending JPH03215730A (en) 1990-01-19 1990-01-19 Gas detector using optical fiber

Country Status (1)

Country Link
JP (1) JPH03215730A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002350335A (en) * 2001-05-28 2002-12-04 Tama Tlo Kk Refractive index sensor, sensor system and optical fiber
WO2003021239A1 (en) * 2001-08-28 2003-03-13 Matsushita Electric Industrial Co., Ltd. Apparatus for measuring information on particular component

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002350335A (en) * 2001-05-28 2002-12-04 Tama Tlo Kk Refractive index sensor, sensor system and optical fiber
WO2003021239A1 (en) * 2001-08-28 2003-03-13 Matsushita Electric Industrial Co., Ltd. Apparatus for measuring information on particular component
JPWO2003021239A1 (en) * 2001-08-28 2004-12-16 松下電器産業株式会社 Information measuring device for specific components

Similar Documents

Publication Publication Date Title
Jin et al. Gas detection with micro-and nano-engineered optical fibers
US11947159B2 (en) Interferometric fibre optic gyroscopes using hollow core optical fibre and methods thereof
US20030030786A1 (en) Optical waveguide monitoring
TW200307121A (en) Method and apparatus for enhanced evanescent field exposure in an optical fiber resonator for spectroscopic detection and measurement of trace species
JPH05241039A (en) Optical fiber having internal partial mirror
KR20130019889A (en) Reflective probe type apparatus for detecting gas and method for detecting gas using optical fiber with hollow core
JPS63273042A (en) Optical measuring instrument
CN105372206B (en) Parallel remote optical fiber sensing system for the detection of multiple gases refractive index
JPH03215730A (en) Gas detector using optical fiber
CN104765100A (en) Small-diameter solid core polarization-maintaining photonic crystal fiber of four-layer structure
US6959131B2 (en) Achromatic fiber-optic power splitter and related methods
WO2023151112A1 (en) Optical fiber humidity sensor having temperature calibration capability
Wei et al. Numerical analysis of waveguide coupling between photonic crystal fiber and single-mode fiber
Ravaille et al. In-situ measurement of backscattering in hollow-core fiber based resonant cavities
US7103250B1 (en) Optical fiber with high small-angle scatter and sensor using same
JPH02278135A (en) Light reflection method for measuring transmission loss of optical fiber light guide
Ghatak et al. Optical waveguides and fibers
JPH0756041A (en) Dual core optical fiber and temperature measuring instrument using the same
Song et al. Low-loss low-back-reflection coupling of hollow-core photonic bandgap fiber with integrated-optic circuit in fiber optic gyroscope
JPS5915905A (en) Optical fiber which maintains plane of plarization
JPH04230707A (en) Optical fiber having eccentric core
JPS6033513A (en) Single linear polarization optical fiber
JP2511999B2 (en) Liquid detection optical fiber and liquid detection system using the same
JPS5992332A (en) Moisture detector
JPH0221563B2 (en)