JPH03215697A - Method for sealing metallic material - Google Patents

Method for sealing metallic material

Info

Publication number
JPH03215697A
JPH03215697A JP1009690A JP1009690A JPH03215697A JP H03215697 A JPH03215697 A JP H03215697A JP 1009690 A JP1009690 A JP 1009690A JP 1009690 A JP1009690 A JP 1009690A JP H03215697 A JPH03215697 A JP H03215697A
Authority
JP
Japan
Prior art keywords
pmta
methanol
plated
group
relationship
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP1009690A
Other languages
Japanese (ja)
Inventor
Kazunari Saiki
一成 才木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Meidensha Corp
Meidensha Electric Manufacturing Co Ltd
Original Assignee
Meidensha Corp
Meidensha Electric Manufacturing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Meidensha Corp, Meidensha Electric Manufacturing Co Ltd filed Critical Meidensha Corp
Priority to JP1009690A priority Critical patent/JPH03215697A/en
Publication of JPH03215697A publication Critical patent/JPH03215697A/en
Pending legal-status Critical Current

Links

Landscapes

  • Electroplating Methods And Accessories (AREA)

Abstract

PURPOSE:To produce a sealed metallic material having high corrosion resistance by electrolyzing the metal-plated metallic material by using an org. compd. having an SH group. CONSTITUTION:A copper alloy element, for example, is plated with Ni as the base plating and then plated with gold as the finish plating to form a connector for the electronic circuit, etc. An electrolyte consisting of about 1-4g/l of an org. compd. having an SH group (e.g. 1-phenyl-5-mercaptotetrazole), about 10-20% methanol and about 80-90% of an aq. NaOH soln. (at <= about pH9) is used to seal the pinholes generated at this time, and electrolysis is carried out at about 2-3mA/dm<2> and with the electrolyzing time of about 2-3min and electrolyte temp. of about 20-30 deg.C. Consequently, a sealed connector for the electronic circuit having high corrosion resistance or the like is obtained.

Description

【発明の詳細な説明】 A,産業上の利用分野 本発明は金属材料の封孔処理方法に関し、更に詳細には
金属メッキを施こした金属材料の封孔処理方法に関する
DETAILED DESCRIPTION OF THE INVENTION A. Field of Industrial Application The present invention relates to a method for sealing metal materials, and more particularly to a method for sealing metal materials plated with metal.

B・.発明の概要 本発明は金属材料の封孔処理方法であって、特に金属メ
ッキを施こした金属材料にSH基を有する有機化合物を
用いて電解処理することにより、 高い耐食性を有する封孔処理品を得ることを可能とする
B.. Summary of the Invention The present invention is a method for sealing a metal material, and in particular, a sealing product having high corrosion resistance is obtained by electrolytically treating a metal material plated with an SH group using an organic compound having an SH group. It is possible to obtain

C、従来の技術 従来、電子部品の電気接続用として使用されるコネクタ
の表面処理はコネクタ素地である銅合金に下地メッキと
してNiメッキ数μm.仕上メッキとして金メッキ0,
1〜0.5μmをそれぞれ施している。ここで、仕上メ
ッキとして金メッキを施すのは、電子回路用コネクタは
微弱電流を流すために接触抵抗の低い金を使用すること
が多いからである。
C. Prior Art Conventionally, the surface treatment of connectors used for electrical connection of electronic components involves plating a copper alloy, which is the base material of the connector, with Ni plating of several micrometers as an underplating. Gold plating as finishing plating 0,
1 to 0.5 μm, respectively. Here, gold plating is applied as the final plating because gold, which has low contact resistance, is often used in connectors for electronic circuits to allow a weak current to flow therethrough.

ところが、金はコストが高いため、メッキの厚さを薄く
する必要があり、そのため金メッキ層に多くのピンホー
ルが生じ、このピンホールを通じて水などが進入しコネ
クター素地である銅合金を腐食する。
However, due to the high cost of gold, it is necessary to reduce the thickness of the plating, which causes many pinholes to form in the gold plating layer, through which water enters and corrodes the copper alloy that is the base of the connector.

この対策のため、金メッキ層に皮膜を形成させてピンホ
ールを封止する方法が考案されている。
To counter this problem, a method has been devised in which a film is formed on the gold plating layer to seal the pinhole.

この方法は封止処理と呼ばれて、一般に′n−オクタデ
シルアミン(ODA)などの有機アミンに代表される有
機皮膜と、クロム酸皮膜とを形成する方法に大別される
This method is called a sealing treatment, and is generally divided into a method of forming an organic film typified by an organic amine such as 'n-octadecylamine (ODA), and a method of forming a chromic acid film.

D.発明か解決しようとする課題 しかしながらこれらの処理方法により得られるいずれの
皮膜も腐食防止効果が小さいという欠点があった。
D. Problems to be Solved by the Invention However, all of the coatings obtained by these treatment methods have the drawback of having a small corrosion-preventing effect.

例えば水処理場ではH,Sが大量に存在するためこのH
 t Sが金メッキのピンポールを通過してコネクタ素
子である銅合金と反応し硫化銅を生成させている。
For example, in water treatment plants, large amounts of H and S exist, so this H
tS passes through the gold-plated pin pole and reacts with the copper alloy that is the connector element, producing copper sulfide.

この結果、コネクタ素子である銅合金は約1年程で黒変
し腐食するため電子回路用コネクタとして長時間使用す
ることが困難であった。
As a result, the copper alloy that is the connector element turns black and corrodes in about one year, making it difficult to use it as an electronic circuit connector for a long time.

本発明はこのような問題点に着目して創案されたもので
あって、 金属メッキを施こした金属材料にSH基を有すろ有機化
合物を用いて電解処理することにより、高い耐食性を有
する金属材料の封孔処理方法を提供することを目的とす
る。
The present invention was devised by focusing on these problems, and it is possible to produce a metal with high corrosion resistance by electrolytically treating a metal plated metal material using a filter organic compound having an SH group. The purpose of the present invention is to provide a method for sealing a material.

E.課題を解決するための手段 本発明者は上記課題を解決するために鋭意研究した結果
、SH基を有する有機化合物を用いて電解処理すること
により優れた特性を有する金属材料が得られることを見
い出し、本発明を完成した。
E. Means for Solving the Problems As a result of intensive research to solve the above problems, the present inventor discovered that a metal material with excellent properties can be obtained by electrolytically treating an organic compound having an SH group. , completed the invention.

即ち本発明に係る金属材料の封孔処理方法は金属メッキ
を施こした金属材料にSH基を有する有機化合物を用い
て電解処理することを、その解決手段としている。
That is, the method for sealing a metal material according to the present invention is to electrolytically treat a metal material plated with an SH group using an organic compound having an SH group.

以下、本発明について更に詳細に説明する。The present invention will be explained in more detail below.

まず、本発明で使用する金属メッキを施こした金属材料
とは電気メッキ,溶融メッキなどの方法により金属の表
面を金属の薄膜で密着被覆して仕上げたものである。具
体的には銅合金素子に下地メッキとしてNiメッキ,仕
上メッキとして金メッキで表面処理して電子回路用コネ
クタなどが挙げられる。
First, the metal plated metal material used in the present invention is one that has been finished by closely covering the surface of the metal with a thin metal film by a method such as electroplating or hot-dip plating. Specifically, connectors for electronic circuits are produced by surface-treating a copper alloy element with Ni plating as a base plating and gold plating as a final plating.

しかし、仕上メッキとして金メッキ層が薄いときはその
層にピンホールが多く、そのため素子である銅合金を腐
食する。このため本発明に係る方法ではこのピンホール
を封止するため、次のように封孔処理する。
However, when the gold plating layer is thin as a final plating, there are many pinholes in that layer, which corrodes the copper alloy that is the element. Therefore, in the method according to the present invention, in order to seal this pinhole, the following sealing treatment is performed.

即ち本発明に係る方法では封孔処理剤としてSH基を有
する有機化合物を用いる。この化合物としては脂肪族炭
化水素の水素原子をSH基で置換した化合物であるいわ
ゆるメルカブタン、又は芳香族炭化水素の水素原子をS
H基で置換した化合物であるいわゆるチオフェノールな
どが挙げられる。具体的にはメルカブタンとしてメルカ
プト酢酸、メルカプトシク口メキサンなどを、チオフェ
ノールとして!−フェニルー5−メルカプトテトラゾー
ル,メルカブトナフトール.メルカブトジフェニルメタ
ンなどをそれぞれ挙げることができ、好ましくは1−フ
ェニルー5−メルカプトテトラゾール(以下、PMTA
という)を用いうる。このP M T Aは一般に銀の
変色防止剤といて知られているが、本発明に係る方法で
は次の方法によりP M T Aを溶解し、これを電解
処理することにより封孔処理に用いる。
That is, in the method according to the present invention, an organic compound having an SH group is used as a sealing agent. Examples of this compound include so-called merkabutane, which is a compound in which the hydrogen atom of an aliphatic hydrocarbon is replaced with an SH group, or a compound in which the hydrogen atom of an aromatic hydrocarbon is replaced with an SH group.
Examples include so-called thiophenol, which is a compound substituted with an H group. Specifically, mercaptoacetic acid, mercaptosic mexane, etc. as mercaptan, and thiophenol! -Phenyl-5-mercaptotetrazole, mercabutonaphthol. Examples include mercaptodiphenylmethane, and preferably 1-phenyl-5-mercaptotetrazole (hereinafter referred to as PMTA).
) can be used. This PMT A is generally known as a discoloration inhibitor for silver, but in the method according to the present invention, PMT A is dissolved by the following method and used for sealing treatment by electrolytic treatment. .

( +)PMT,Aの溶解方法 まずPMTAを有機溶剤、例えばメタノールに溶解し、
次にアルカリ水溶液、例えばNaOH,KOHを加えて
電解液とする。
(+) Method for dissolving PMT,A First, PMTA is dissolved in an organic solvent such as methanol,
Next, an aqueous alkaline solution such as NaOH or KOH is added to form an electrolytic solution.

このことはPMTAは有機溶剤にしか溶けず、また、水
溶性にしなければ電解処理が行なえないためである。こ
のためPMTAをまず有機溶剤に溶かし、次にアルカリ
水溶液を加えて電解液とする。このようにして得られる
PMTAの電解液組成はP M T Aが1〜4g/I
2、好ましくは1.5g/LメタノールがlO〜20%
、好ましくは20%、NaOH水溶液が80〜90%、
好ましくは80%である。ここでPMTAを1〜4g/
2としたのはlg/I2未満では接触抵抗が大きくなり
、例えば微弱電流を流すために電子部品に使用できなく
なるからであり、また4g/ffを超えるとPMTAが
メタノールなどの有機溶剤に溶けにくくなるためである
This is because PMTA is only soluble in organic solvents, and electrolytic treatment cannot be performed unless it is made water-soluble. For this purpose, PMTA is first dissolved in an organic solvent, and then an aqueous alkaline solution is added to form an electrolyte. The PMTA electrolyte composition obtained in this way has a PMTA of 1 to 4 g/I.
2. Preferably 1.5g/L methanol is lO~20%
, preferably 20%, NaOH aqueous solution 80-90%,
Preferably it is 80%. Here, add 1 to 4 g of PMTA/
The reason for setting 2 is that if it is less than lg/I2, the contact resistance will be large and it cannot be used in electronic parts, for example, to pass a weak current.If it exceeds 4g/ff, PMTA will be difficult to dissolve in organic solvents such as methanol. To become.

また、メタノールを10〜20%としたのは10%未満
ではPMTAが溶けにくくなるからであり、20%を超
えると電解液の電流密度が著しく低下するためである。
Moreover, the reason why methanol is set to 10 to 20% is because PMTA becomes difficult to dissolve when it is less than 10%, and because when it exceeds 20%, the current density of the electrolytic solution is significantly reduced.

なお、N a O H水溶液のpHは9以上、好ましく
は9〜IOの範囲である。
Note that the pH of the NaOH aqueous solution is 9 or more, preferably in the range of 9 to IO.

このことはpHが9未満では電解液の電流密度が著しく
低下するためと、酸性領域ではPMTAが溶けにくくな
るためである。
This is because the current density of the electrolytic solution decreases significantly when the pH is less than 9, and because PMTA becomes difficult to dissolve in an acidic region.

ところで本発明に係る方法による電解処理方法は特にそ
の理論にこだわるつもりはないが次のような反応と考え
られる。
Incidentally, the electrolytic treatment method according to the present invention is thought to involve the following reaction, although it is not intended to be particular about the theory.

即ち、SH基を有する有機化合物は電解液中でSH”イ
オンとして存在することからコンタクトを正極(÷極)
とし、ステンレスを陰極(一極)とし、電解することで
金属材料の表面にあるピンホールに有機化合物が被膜を
形成することによる。
In other words, since organic compounds with SH groups exist as SH" ions in the electrolyte, the contact is connected to the positive electrode (÷ electrode).
By using stainless steel as the cathode (single pole) and electrolyzing it, an organic compound forms a film on the pinholes on the surface of the metal material.

この被膜形成は金属材料と有機化合物とのキレート形成
と考えられる。
This film formation is considered to be chelate formation between the metal material and the organic compound.

以下にPMTAとCuの反応によるキレート形(2)電
解処理条件 上記(1)に記載のPMTAの溶解方法により得られる
電解液中に金属メッキを施こした金属材料を浸漬して次
の条件により電解処理して封孔処理被膜を形成する。
Chelate form (2) electrolytic treatment conditions resulting from the reaction of PMTA and Cu: A metal material plated with metal is immersed in the electrolytic solution obtained by the PMTA dissolution method described in (1) above, and the following conditions are applied. Electrolytic treatment is performed to form a sealing film.

即ち、電解条件は電流密度が2〜3 m A / d 
m ”好ましくは3 m A / d m″で、電解時
間が2〜3分間、溶度が常温、好ましくは20〜30℃
である。
That is, the electrolytic conditions are a current density of 2 to 3 mA/d.
m "preferably 3 m A/d m", electrolysis time 2 to 3 minutes, solubility at room temperature, preferably 20 to 30 °C
It is.

ここで電流密度を2〜3 m A / d m ”とし
たのは上記メタノール濃度との関係からであり、これ以
上の電流密度を得られないためである。但し、電流密度
は高い方が好ましくないことから、3mA/dm’を使
用するのが好ましい。また溶温を常温とするのはあまり
温度が高いとメタノールが蒸発してPMTAが溶解しに
くくなるためである。
The reason why the current density is set to 2 to 3 mA/dm'' is because of the relationship with the methanol concentration mentioned above, and because a higher current density cannot be obtained. However, a higher current density is preferable. Therefore, it is preferable to use 3 mA/dm'.The reason why the melting temperature is set to room temperature is that if the temperature is too high, methanol will evaporate and PMTA will be difficult to dissolve.

こうして本発明に係る電解処理により得られる封孔処理
した金属材料は耐食性が高いことから電気部品などに好
適に使用できる。
The sealed metal material obtained by the electrolytic treatment according to the present invention has high corrosion resistance and can be suitably used for electrical parts and the like.

F、実施例 以下、本発明に係る金属材料の封孔処理方法の詳細な説
明を実施例に基づいて説明する。
F. Examples Hereinafter, a detailed explanation of the method for sealing a metal material according to the present invention will be explained based on examples.

実施例l メタノール密度とP M T A溶解の関係
メタノールにNAOH水溶液(pH9.0)を加えてメ
タノールδ度がそれぞれ0.1θ%.20%.30%.
40%になるように調整し、メタノール濃度とPMTA
溶解度の関係を調べた。その結果を第1図に示す。第1
図に示すようにメタノール濃度が高いほどPMTA溶解
度も高いことがわかる。
Example 1 Relationship between methanol density and PMT A dissolution When an aqueous NAOH solution (pH 9.0) was added to methanol, the methanol δ degree was 0.1θ%. 20%. 30%.
Adjust the methanol concentration and PMTA to 40%.
The relationship between solubility was investigated. The results are shown in FIG. 1st
As shown in the figure, it can be seen that the higher the methanol concentration, the higher the PMTA solubility.

実施例2 メタノール濃度と電流濃度の関係実施例!で
得られた結果から、PMTAの最終濃度が2g/12と
なるように、メタノールにNAOH水溶液(pH9.0
)を加えてメタノール濃度がそれぞれO.10%,20
%,30%,40%.50%となるように調整し、メタ
ノール濃度と電解電流密度を調べた。
Example 2 An example of the relationship between methanol concentration and current concentration! From the results obtained, an aqueous NAOH solution (pH 9.0) was added to methanol so that the final concentration of PMTA was 2 g/12
) to make the methanol concentration O. 10%, 20
%, 30%, 40%. The methanol concentration and electrolytic current density were examined.

その結果を第2図に示す。第2図に示すようにメタノー
ル濃度が20%を超えると著しく電流密度が低下するこ
とがわかる。これに対し実施例!で示した第1図からメ
タノール濃度が20%未満ではP M T A溶解度が
著しく減少する。従ってより高い電流密度を得ること及
びより高いPMTA溶解度を得ること双方の条件を満た
す調和点としてメタノール濃度20%が最適であること
がわかる。
The results are shown in FIG. As shown in FIG. 2, it can be seen that when the methanol concentration exceeds 20%, the current density decreases significantly. Example for this! As shown in FIG. 1, when the methanol concentration is less than 20%, the PMT A solubility decreases significantly. Therefore, it can be seen that a methanol concentration of 20% is optimal as a harmonious point that satisfies both the conditions of obtaining a higher current density and obtaining a higher PMTA solubility.

なお、第1図からメタノール濃度20%におけろPMT
A溶解度は約2g/Qとなることがわかる。但し、本発
明に係る方法では十分にPMTAを溶解する必要性があ
ることがらPMTA濃度!.5g/i2が最適であると
判断した。
In addition, from Figure 1, at a methanol concentration of 20%, PMT
It can be seen that the solubility of A is approximately 2 g/Q. However, in the method according to the present invention, it is necessary to sufficiently dissolve PMTA, so the PMTA concentration! .. It was determined that 5 g/i2 was optimal.

実施例3 電解液のpHと電流密度の関係実施例2で得
られた結果からP M T Aの最終濃度が1.5g/
12及びメタノールの最終濃度が20%になるようにN
aOH水溶液を加えてそのpHがそれぞれ6.7,8,
9,10.11及び12となるように電解液を調整し、
電解液のpHと電流密度の関係について調べた。
Example 3 Relationship between electrolyte pH and current density From the results obtained in Example 2, the final concentration of PMT A was 1.5 g/
12 and N such that the final concentration of methanol is 20%.
When aOH aqueous solution was added, the pH was 6.7, 8, and 6.7, respectively.
Adjust the electrolyte so that it becomes 9, 10.11 and 12,
The relationship between the pH of the electrolyte and current density was investigated.

その結果を第3図に示す。第3図に示すようにpHが9
以上で最も高い電流密度が得られることがわかる。本発
明に係る方法ではpH領域を調製しやすい点を考慮して
最適pHを9〜IOの範囲と判断した。
The results are shown in FIG. As shown in Figure 3, the pH is 9.
It can be seen that the highest current density can be obtained in the above manner. In the method according to the present invention, the optimum pH was determined to be in the range of 9 to IO, taking into account the ease of adjusting the pH range.

実施例4PMTA濃度と接触抵抗の関係下地メッキとし
てNiを厚さ2μmに、仕上メッキとして金を厚さ0.
2μmにそれぞれメッキしたリン青銅をメタノールにP
MTAを溶解し、それぞれ最終濃度0.5g/l2、I
g/12.2g/ρ.3 g/(1. 4 g/(!ト
L、実施例1〜3で得られたメタノール濃度20%、N
AOH水溶液(pH9.0)に調製しf二電解液に浸漬
した。
Example 4 Relationship between PMTA concentration and contact resistance Ni was used as the base plating to a thickness of 2 μm, and gold was used as the final plating to a thickness of 0.0 μm.
Phosphor bronze plated to 2μm in methanol
Dissolve MTA, final concentration 0.5 g/l2, I
g/12.2g/ρ. 3 g/(1.4 g/(!tL, methanol concentration 20% obtained in Examples 1 to 3, N
An AOH aqueous solution (pH 9.0) was prepared and immersed in f-2 electrolyte.

次に電流密K 3 m A / d m ’で25℃に
て2分間電解処理し、得られfコ封孔処理したリン青銅
をSOzia度10ppm,40°C.相対湿度80%
にて耐食性試験を行い接触抵抗を測定した。
Next, electrolytic treatment was performed at 25°C for 2 minutes at a current density of K 3 mA/dm', and the resulting pore-sealed phosphor bronze was treated with an SOZIA degree of 10 ppm at 40°C. Relative humidity 80%
A corrosion resistance test was conducted and the contact resistance was measured.

その結果を第4図に示す。第I図に示すようにPMTA
濃度は1〜4g,Q!で接触抵抗が低いことかわかる。
The results are shown in FIG. PMTA as shown in Figure I
Concentration is 1-4g, Q! You can see that the contact resistance is low.

なお、実施例2に示しf二P M T A溶解度、メタ
ノール濃度及び電流密度の関係からPMTAm度1.5
/&が最適であった。
In addition, from the relationship between f2 PMT A solubility, methanol concentration, and current density shown in Example 2, PMTAm degree is 1.5.
/& was optimal.

実施例5 SO,暴露試験と接触抵抗 実施例4で得られた本発明に係る封孔処理したリン青銅
について従来品である封孔処理品(力一ドエッジュコネ
クタ.メーカ:ケル(昧))及び無処理品を比較側とし
て実施例4と同様な方法によりSO2暴露試験と接触抵
抗との関係を調べた。
Example 5 SO, exposure test and contact resistance Regarding the sealed phosphor bronze according to the present invention obtained in Example 4, a conventional sealed product (Rikiichi Dodge Connector. Manufacturer: KEL) ) and an untreated product were used as comparison sides, and the relationship between the SO2 exposure test and the contact resistance was investigated in the same manner as in Example 4.

その結果を第5図に示す。第5図に示すように本発明に
係る方法による封孔処理したリン青銅は従来品である封
孔処理品及び無処理品に比しそれぞれ1.5〜2倍,1
0〜20倍の耐食性を有することがわかる。
The results are shown in FIG. As shown in Fig. 5, the phosphor bronze sealed by the method of the present invention is 1.5 to 2 times and 1.
It can be seen that the corrosion resistance is 0 to 20 times higher.

G.発明の効果 本発明は金属メッキを施こした金属材料にSH基を有す
る有機化合物、特にPMTAを用いて電解処理すること
により高い耐食性を有する封孔処理品を得ることができ
る。
G. Effects of the Invention According to the present invention, a sealed product having high corrosion resistance can be obtained by electrolytically treating a metal plated metal material using an organic compound having an SH group, particularly PMTA.

従って本発明に係る方法による封孔処理品によれば、腐
食防止効果が大きいことから、例えばH,Sが大量に存
在する水処理場などでも硫化物を生成することはない。
Therefore, the pore-sealing product produced by the method of the present invention has a great corrosion prevention effect, and therefore does not generate sulfides even in water treatment plants where large amounts of H and S are present.

このことから、本発明に係る方法による封孔処理品を例
えば電子回路用コネクタなどに用いた場合でも黒変によ
る腐食が生ぜず、そのため長時間にわたって使用できる
Therefore, even when the pore-sealed product according to the method of the present invention is used in, for example, an electronic circuit connector, corrosion due to blackening does not occur, and therefore it can be used for a long time.

【図面の簡単な説明】[Brief explanation of drawings]

第1図はメタノール濃度とPMTA溶解変の関係を示オ
グラフ、第2図はメタノール濃度と電流密変の関係を示
すグラフ、第3図は電解液のpHと電流密変の関係を示
すグラフ、第4図はP M TAa度と接触抵抗の関係
を示すグラフ、第5図はS O 2暴露試験と接触抵抗
の関係を示すグラフである。 第1図 メタノール濃度とPMTA溶解度の関係メタノール(%
)/アルカリ水溶液 第2図 メタノール濃度と電流密度の関係 メタノール(%)/アルカリ水溶液 第3図 電解液のpHと電流密度の関係 0 1 2 3 4 5 6 フ 8 9 10 11 12 (ρH) 電解液のpH 第4図 PMTA濃度と接触抵抗の関係 O 1 2 3 4 (9/息) P〜ITAjl度 第5図 S O t暴露試験と接触抵抗の関係 SOI暴露試験
Figure 1 is a graph showing the relationship between methanol concentration and PMTA dissolution change, Figure 2 is a graph showing the relationship between methanol concentration and current density change, and Figure 3 is a graph showing the relationship between electrolyte pH and current density change. FIG. 4 is a graph showing the relationship between P M TAa degree and contact resistance, and FIG. 5 is a graph showing the relationship between S O 2 exposure test and contact resistance. Figure 1 Relationship between methanol concentration and PMTA solubility Methanol (%
) / Alkaline aqueous solution Figure 2 Relationship between methanol concentration and current density Methanol (%) / Alkaline aqueous solution Figure 3 Relationship between pH of electrolyte and current density 0 1 2 3 4 5 6 F8 9 10 11 12 (ρH) Electrolysis pH of solution Figure 4 Relationship between PMTA concentration and contact resistance O 1 2 3 4 (9/breath) P~ITAjl degree Figure 5 S O t Relationship between exposure test and contact resistance SOI exposure test

Claims (2)

【特許請求の範囲】[Claims] (1)金属メッキを施こした金属材料にSH基を有する
有機化合物を用いて電解処理することを特徴とする金属
材料の封孔処理方法。
(1) A method for sealing a metal material, which comprises electrolytically treating a metal plated metal material using an organic compound having an SH group.
(2)SH基を有する有機化合物が1−フェニル−5−
メルカプトテトラゾールである請求項第(1)項記載の
金属材料の封孔処理方法。
(2) The organic compound having an SH group is 1-phenyl-5-
The method for sealing a metal material according to claim (1), wherein mercaptotetrazole is used.
JP1009690A 1990-01-19 1990-01-19 Method for sealing metallic material Pending JPH03215697A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1009690A JPH03215697A (en) 1990-01-19 1990-01-19 Method for sealing metallic material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1009690A JPH03215697A (en) 1990-01-19 1990-01-19 Method for sealing metallic material

Publications (1)

Publication Number Publication Date
JPH03215697A true JPH03215697A (en) 1991-09-20

Family

ID=11740796

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1009690A Pending JPH03215697A (en) 1990-01-19 1990-01-19 Method for sealing metallic material

Country Status (1)

Country Link
JP (1) JPH03215697A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005073435A1 (en) * 2004-01-30 2005-08-11 Nippon Mining & Metals Co., Ltd. Sealing agent, method of sealing and printed circuit board treated with the sealing agent
JP2007066998A (en) * 2005-08-29 2007-03-15 Kyocera Corp Wiring board
KR100796891B1 (en) * 2004-01-30 2008-01-22 닛코킨조쿠 가부시키가이샤 Sealing agent, method of sealing and printed circuit board treated with the sealing agent
JP2011122236A (en) * 2009-09-25 2011-06-23 Rohm & Haas Electronic Materials Llc Anti-displacement hard gold composition

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005073435A1 (en) * 2004-01-30 2005-08-11 Nippon Mining & Metals Co., Ltd. Sealing agent, method of sealing and printed circuit board treated with the sealing agent
KR100796891B1 (en) * 2004-01-30 2008-01-22 닛코킨조쿠 가부시키가이샤 Sealing agent, method of sealing and printed circuit board treated with the sealing agent
JP2007066998A (en) * 2005-08-29 2007-03-15 Kyocera Corp Wiring board
JP4721827B2 (en) * 2005-08-29 2011-07-13 京セラ株式会社 Wiring board manufacturing method
JP2011122236A (en) * 2009-09-25 2011-06-23 Rohm & Haas Electronic Materials Llc Anti-displacement hard gold composition

Similar Documents

Publication Publication Date Title
JP4945193B2 (en) Hard gold alloy plating solution
TWI325022B (en)
US20070029206A1 (en) Non-cyanogen type electrolytic solution for plating gold
TWI468556B (en) An acidic gold alloy plating solution
US5552031A (en) Palladium alloy plating compositions
BR112019015198A2 (en) METHOD FOR ELECTROLYTICALLY PASSIVING MORE EXTERNAL CHROME LAYER OR MORE EXTERNAL CHROME ALLOY LAYER TO INCREASE THE RESISTANCE TO CORROSION OF THE SAME
JP6773079B2 (en) Non-cyan electrolytic gold plating solution
EP0037535B1 (en) Plating bath for depositing coatings of gold and gold alloys
US2693444A (en) Electrodeposition of chromium and alloys thereof
JPH03215697A (en) Method for sealing metallic material
JPH0257153B2 (en)
JP2008285732A (en) Nickel plating solution, electroplating method using the same, and chip component with nickel-plated film formed by the electroplating method
US4082620A (en) Process for chromating metallic surfaces
JPS58153795A (en) Suppressing of gas generation from anode in trivalent chromium plating bath
EP0619386A1 (en) Electroplating of palladium alloys
JPS6053118B2 (en) Method for increasing the corrosion resistance of electrodeposited palladium-nickel alloys
NL8200907A (en) BATH FOR THE GALVANIC SEPARATION OF A PALLADIUM / NICKEL ALLOY.
JP2000345359A (en) Electroless gold plating solution
JPH05222568A (en) Plating solution composition
CN114108031B (en) Environment-friendly cyanide-free alkaline copper plating refiner and preparation method thereof
JPS5836071B2 (en) Manufacturing method for silver-plated iron and iron alloys
RU2071997C1 (en) Electrolyte for zinc-cobalt alloy deposition
JP2654715B2 (en) Electroless tin and tin-lead alloy plating bath and plating method
JP4127879B2 (en) Silver electrolytic stripping solution and electrolytic stripping method using the same
JP2015134960A (en) Copper strike plating solution