JPH03215619A - Method for blowing flux into blast furnace - Google Patents

Method for blowing flux into blast furnace

Info

Publication number
JPH03215619A
JPH03215619A JP1088790A JP1088790A JPH03215619A JP H03215619 A JPH03215619 A JP H03215619A JP 1088790 A JP1088790 A JP 1088790A JP 1088790 A JP1088790 A JP 1088790A JP H03215619 A JPH03215619 A JP H03215619A
Authority
JP
Japan
Prior art keywords
flux
pulverized coal
blast furnace
blowing
mixing ratio
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP1088790A
Other languages
Japanese (ja)
Inventor
Sumiyuki Kishimoto
岸本 純幸
Hirohisa Hotta
堀田 裕久
Terutoshi Sawada
澤田 輝俊
Kunihiko Ishii
邦彦 石井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Engineering Corp
Original Assignee
NKK Corp
Nippon Kokan Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NKK Corp, Nippon Kokan Ltd filed Critical NKK Corp
Priority to JP1088790A priority Critical patent/JPH03215619A/en
Publication of JPH03215619A publication Critical patent/JPH03215619A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To prevent the clogging of piping for blowing with flux by mixing pulverized coal to the flux at the specific ratio at the time of blowing MgO, CaO series flux from a tuyere for producing low Si molten iron in a blast furnace. CONSTITUTION:In order to lower the Si content in the molten iron tapped during operating the blast furnace, the MgO, CaO based flux is blown from the tuyere and reacted with SiO2 in molten slag in the vicinity of the blowing tuyere, and by making the stable slag, activity of SiO2 is reduced to prevent the increase of Si in the molten iron with the reduction of SiO2. In this case, in order to prevent the clogging of the flux blowing pipe with the MgO, CaO based flux having high m.p., the pulverized coal is mixed with the flux at 0.07-0.4 ratio. The low Si molten iron can stably be produced with the molten material of flux without clogging of the piping.

Description

【発明の詳細な説明】 二産貰上の利用分野] 二の発明は、微粉炭とフラソクスを混合して高炉羽目よ
り吹き込む高炉へのフランクス吹込み方法に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Application of Nisaku] The second invention relates to a method for blowing flax into a blast furnace by mixing pulverized coal and flax and blowing the mixture through the blast furnace lining.

Σ従来の技術二 コークス比の低下を目的として、高炉羽口から微粉炭を
吹き込むことが行われている。また、製?〜製鋼間のト
ータルコストミニマムの追及および高級鋼製造のニーズ
から、溶銑予備処理技術とともに、高炉低Si操業技術
の一つとして、羽目から粉体を吹込み銑中Siを低下さ
せる羽口粉体吹込み技術が鉄鋼各社で試みられている。
ΣConventional Technology Pulverized coal is injected through the blast furnace tuyeres for the purpose of lowering the coke ratio. Also, made? ~ In pursuit of total cost minimization during steelmaking and the needs of high-grade steel manufacturing, in addition to hot metal pretreatment technology, tuyere powder is introduced as a low-Si operation technology for blast furnaces by injecting powder through the lining to lower Si in the pig iron. Blow-in technology is being tried by various steel companies.

その一つとして、微粉の酸化鉄を溶銑屯当たり5kg以
上吹き込むか、前記酸化鉄を燃料と一緒に吹き込んで、
Siを酸化してSi02に滓化するものく特開昭58−
96803号公報)がある。また、羽口部よりMgO源
やCaO源をフランクスして吹込む方法もある。これは
、高炉内でSiOガスが発生するのは、主として雰囲気
温度の高い羽口先レースウエー近傍であり、 SiO■÷C−SiO+CO の反応によってStが溶銑中に入るものと考えられ、M
gO.CaO系のフラノクスを羽口がら吹き込むことに
より、羽口近傍のスラグ中のSi02の活量を低下させ
、 S  i O 2  ”.  C→ S  i  O+
COの反応と抑制して、銑中Siを低下させると考えら
れている。
One method is to inject 5 kg or more of fine powdered iron oxide per tonne of hot metal, or to inject the iron oxide together with fuel.
Japanese Unexamined Patent Application Publication No. 1983-1988- oxidizes Si and turns it into SiO2 slag
96803). Alternatively, there is a method in which a MgO source or a CaO source is injected through the tuyere by franking. This is because SiO gas is generated in the blast furnace mainly near the tuyere raceway where the ambient temperature is high, and it is thought that St enters the hot metal through the reaction of SiO ÷ C-SiO + CO.
gO. By injecting CaO-based furanox into the tuyere, the activity of Si02 in the slag near the tuyere is reduced, and S i O 2 ”.C→ S i O+
It is thought that this suppresses the reaction of CO and lowers the Si content in the pig iron.

[発明が解決しようとする課題] フラックスを華味で吹き込むと、配管、ベント部やノズ
ルの摩耗の増加および詰まりが増加するという問題があ
るが、これがフラックスと微粉炭を混合することにより
解決されるということは知られている。しかしながら、
フランクスと微粉炭の適正な混合比については明確にさ
れておらず、混合比によっては、配管詰まりが発生する
ことがあった。本発明は、配管詰まりの発生しない適正
な混合比率を提供することを目的とするものである。
[Problems to be Solved by the Invention] When flux is injected in a concentrated manner, there is a problem in that pipes, vents, and nozzles are subject to increased wear and clogging, but this problem can be solved by mixing flux and pulverized coal. It is known that however,
The appropriate mixing ratio of Franks and pulverized coal has not been clarified, and depending on the mixing ratio, pipe clogging may occur. An object of the present invention is to provide an appropriate mixing ratio that does not cause pipe clogging.

[課題を解決するための手段] 本発明は上記のような目的を達成しようとするもので、
高炉羽口から炉内にMgO.Cao系フラックスと微粉
炭を混合して吹き込む高炉へのフラックス吹込み方法に
おいて、フラックスと微粉炭の混合比を0 07〜0 
4の範囲とすることを特徴とする高炉へのフラックス吹
込み方法である。
[Means for Solving the Problems] The present invention aims to achieve the above objects,
MgO from the blast furnace tuyeres into the furnace. In the method of injecting flux into a blast furnace in which Cao-based flux and pulverized coal are mixed and injected, the mixing ratio of flux and pulverized coal is set to 0.07 to 0.
This is a method for injecting flux into a blast furnace, characterized in that the flux is in the range of 4.

[作用] フラックスと微粉炭の混合比を0.07〜0.4の範囲
としたのは、フラソクスと微粉炭の混合比を0.07未
満とすると、微粉炭中のフラックスの濃度が大きく変動
し、銑中Siの低減効果が極めて少なく、また、フラッ
クスと微粉炭の混合比が0.4を越えると、配管内での
流動性が悪化し、配管詰まりが発生して、吹込みが困難
となるからである. [実施例] 本発明の実施例を以下に詳細に説明する。発明者等は、
フラックスと微粉炭の混合物の流動性を調べるなめに、
フラックスと微粉炭の混合比(混合重量比である)を変
化させ、混合物の圧縮度および崩壊角の変化を調査する
試験を行った。ここに、圧縮度および崩壊角が小さい程
、流動性が良く配管内での詰まりは発生しにくいという
ことは周知である。第3図は混合物の圧縮度の変化を示
したもので、微粉炭羊昧(混合比:0)のとき、圧縮度
は34%であり、混合比が増加するにつれて圧縮度も増
加し、混合比が1のとき、圧縮度は41%となった.第
4図は、混合物の崩壊角の変化を示したもので、微粉炭
車味のとき、崩壊角は19度であり、混合比が増加する
につれて崩壊角も増加し、混合比が1のとき崩壊角が2
4度となった。すなわち混合比が増加するにしたがって
流動性が悪化することが判明した。
[Function] The reason why the mixing ratio of flux and pulverized coal is set in the range of 0.07 to 0.4 is that if the mixing ratio of flux and pulverized coal is less than 0.07, the concentration of flux in pulverized coal will fluctuate greatly. However, the effect of reducing Si in pig iron is extremely small, and if the mixing ratio of flux and pulverized coal exceeds 0.4, the fluidity in the pipes deteriorates, causing pipe clogging, making it difficult to blow in. This is because. [Example] Examples of the present invention will be described in detail below. The inventors, etc.
To investigate the fluidity of a mixture of flux and pulverized coal,
A test was conducted to investigate changes in the degree of compaction and collapse angle of the mixture by changing the mixing ratio (mixing weight ratio) of flux and pulverized coal. Here, it is well known that the smaller the degree of compression and the angle of collapse, the better the fluidity and the less clogging occurs in the pipes. Figure 3 shows the change in the degree of compaction of the mixture. When pulverized coal is mixed (mixing ratio: 0), the degree of compaction is 34%, and as the mixing ratio increases, the degree of compaction also increases, and the degree of compaction increases as the mixing ratio increases. When the ratio was 1, the degree of compression was 41%. Figure 4 shows the change in the collapse angle of the mixture.When the mixture tastes like pulverized coal, the collapse angle is 19 degrees, and as the mixture ratio increases, the collapse angle also increases, and when the mixture ratio is 1, the collapse angle is 19 degrees. 2 corners
It became 4 degrees. In other words, it was found that as the mixing ratio increased, the fluidity deteriorated.

更に実際にフラックス吹き込み時に使用する配管を仮設
して、テストを実施したが、混合比が0.4を超えると
配管内に詰まりが発生して吹き込みが不可能となること
がわかった。この時の圧縮変は37?≦、崩壊角は21
度であった。
Furthermore, a test was conducted by temporarily installing piping to be used when injecting flux, and it was found that if the mixing ratio exceeded 0.4, clogging occurred in the piping, making it impossible to inject the flux. The compression change at this time is 37? ≦, the collapse angle is 21
It was degree.

次に、小型試験高炉を使用して、フラックスと微粉炭の
混合比を変化させ、銑中S1の低下量を調査した。第1
図はその結果を示したもので、混自比が0.07までは
銑中Siの低下は殆ど認められず、混合比が0.07以
上になると銑中Siの低下量が、徐マに増加し、混合比
が0.4のとき0.15%になった、混合比が0.4を
越えると、先述のテスト結果と同じく配管詰まりが発生
して、吹込み試験が不可能となった。この試験中、吹込
みランスの上流で、混合物をサンプリングして、各混合
比についての微粉炭中のフラックス濃度のバラッキ(最
大値一最少値)を調査した.第2図はその結果を示した
もので、混合比が0.07未満ではバラッキは大きく、
混合比が0.07以上になるとバラッキは急激に小さく
なることが分かった.これは、混合比が小さいと、フラ
ックスが微粉炭中に均一に混合し難くなることを意味し
、ががる点がらフラックスの微粉炭に対する混合比は0
.07以上にすることが望ましい [発明の効果] 本発明の方法は、フラックスを微粉炭に混合して吹き込
む方法において、配管詰まりが無く、銑中S1を確実に
低下させることができるという効果がある。
Next, using a small test blast furnace, the amount of decrease in S1 in the pig iron was investigated by changing the mixing ratio of flux and pulverized coal. 1st
The figure shows the results. There is almost no decrease in Si in the pig iron until the mixing ratio is 0.07, and when the mixing ratio exceeds 0.07, the amount of decrease in Si in the pig gradually slows down. When the mixing ratio was 0.4, it became 0.15%, and when the mixing ratio exceeded 0.4, pipe clogging occurred as in the previous test result, making the blowing test impossible. Ta. During this test, the mixture was sampled upstream of the injection lance, and the variation in flux concentration in the pulverized coal (maximum value to minimum value) for each mixing ratio was investigated. Figure 2 shows the results; when the mixing ratio is less than 0.07, the variation is large;
It was found that when the mixing ratio exceeded 0.07, the variation decreased rapidly. This means that if the mixing ratio is small, it becomes difficult to mix the flux uniformly into the pulverized coal, and the mixing ratio of the flux to the pulverized coal is 0.
.. 07 or more [Effects of the Invention] The method of the present invention has the effect that, in the method of mixing flux with pulverized coal and blowing it in, there is no piping clogging and S1 in the pig iron can be reliably lowered. .

【図面の簡単な説明】[Brief explanation of drawings]

第1図は混合比(フラ・ノクス/微粉炭)と銑中Si%
の関係を示すグラフ図、第2図は混合比(フラックス/
微粉炭)におけるそのバラツキを示すグラフ図、第3図
は混合比(フラックス/微粉炭)と圧縮度の関係を示す
グラ・フ図、第4図は混合比(フラックス/微粉炭)と
崩壊角の関係を示すグラフ図である.
Figure 1 shows the mixing ratio (furanox/pulverized coal) and Si% in pig iron.
Figure 2 is a graph showing the relationship between the mixing ratio (flux/
Figure 3 is a graph showing the relationship between the mixing ratio (flux/pulverized coal) and degree of compaction; Figure 4 is the graph showing the relationship between the mixing ratio (flux/pulverized coal) and the collapse angle. It is a graph diagram showing the relationship between.

Claims (1)

【特許請求の範囲】[Claims] 高炉羽口から炉内にMgO、CaO系フラックスと微粉
炭を混合して吹き込む高炉へのフラックス吹込み方法に
おいて、フラックスと微粉炭の混合比を0.07〜0.
4の範囲とすることを特徴とする高炉へのフラックス吹
込み方法。
In a method of injecting flux into a blast furnace in which a mixture of MgO, CaO-based flux and pulverized coal is injected into the furnace from the blast furnace tuyere, the mixing ratio of flux and pulverized coal is 0.07-0.
4. A method for injecting flux into a blast furnace.
JP1088790A 1990-01-19 1990-01-19 Method for blowing flux into blast furnace Pending JPH03215619A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1088790A JPH03215619A (en) 1990-01-19 1990-01-19 Method for blowing flux into blast furnace

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1088790A JPH03215619A (en) 1990-01-19 1990-01-19 Method for blowing flux into blast furnace

Publications (1)

Publication Number Publication Date
JPH03215619A true JPH03215619A (en) 1991-09-20

Family

ID=11762831

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1088790A Pending JPH03215619A (en) 1990-01-19 1990-01-19 Method for blowing flux into blast furnace

Country Status (1)

Country Link
JP (1) JPH03215619A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004285397A (en) * 2003-03-20 2004-10-14 Kobe Steel Ltd Method for operating blowing of powdery material into blast furnace

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004285397A (en) * 2003-03-20 2004-10-14 Kobe Steel Ltd Method for operating blowing of powdery material into blast furnace

Similar Documents

Publication Publication Date Title
JPH03215619A (en) Method for blowing flux into blast furnace
JPH03291313A (en) Method for operating blast furnace
JP2612162B2 (en) Blast furnace operation method
JPH03215620A (en) Method for blowing flux into blast furnace
KR970005383B1 (en) Making method of low phosphorous steel
JPS61217513A (en) Dephosphorizing method for molten iron
JPH03191010A (en) Method for blowing into blast furnace
JPH03202408A (en) Method for blowing flux into blast furnace
JPS61261408A (en) Operating method for blast furnace
JPH03191009A (en) Method for blowing flux into blast furnace
JPH05271727A (en) Operating method for injecting pulverized coal from tuyere of blast furnace
Eklund et al. Operation at high pellet ratio and without external slag formers–trials in an experimental blast furnace
JPS61257404A (en) Operating method for blast furnace
JPH0394006A (en) Method for blowing powdery body from tuyere in blast furnace
JP4768921B2 (en) High pulverized coal injection low Si blast furnace operation method
JPH0442447B2 (en)
JPH03215617A (en) Operation of blast furnace using hard-to-reduce ore
JPH03202407A (en) Method for blowing flux into blast furnace
JPH04214808A (en) Method for blowing granulated body from tuyere into blast furnace
JP2899993B2 (en) Converter refining method
JPS6114203B2 (en)
JPH0913109A (en) Operation of blowing large quantity of pulverized fine coal into blast furnace
JPH01168802A (en) Method for operating blast furnace issuing low si-content iron
KR20030042748A (en) A heating agent for molten steel in BOF and the BOF refining method using it
JPH0442448B2 (en)