JPH03215343A - Molding of fine ceramic and molding device - Google Patents

Molding of fine ceramic and molding device

Info

Publication number
JPH03215343A
JPH03215343A JP2004610A JP461090A JPH03215343A JP H03215343 A JPH03215343 A JP H03215343A JP 2004610 A JP2004610 A JP 2004610A JP 461090 A JP461090 A JP 461090A JP H03215343 A JPH03215343 A JP H03215343A
Authority
JP
Japan
Prior art keywords
molding
mold
kneaded
force
soil
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2004610A
Other languages
Japanese (ja)
Inventor
Yasuo Shibazaki
靖雄 芝崎
Hiroyuki Mizuta
水田 博之
Kazuyuki Oshima
大嶋 一之
Tatsuro Takeuchi
竹内 辰郎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Coorstek KK
National Institute of Advanced Industrial Science and Technology AIST
Takeda Pharmaceutical Co Ltd
Original Assignee
Agency of Industrial Science and Technology
Takeda Chemical Industries Ltd
Toshiba Ceramics Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Agency of Industrial Science and Technology, Takeda Chemical Industries Ltd, Toshiba Ceramics Co Ltd filed Critical Agency of Industrial Science and Technology
Priority to JP2004610A priority Critical patent/JPH03215343A/en
Publication of JPH03215343A publication Critical patent/JPH03215343A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To carry out uniaxial press, to shorten lead time and to reduce cost by kneading fine ceramic powder with a specific plasticity imparting agent to give kneaded soil and press molding the kneaded soil by porous molds. CONSTITUTION:Fine ceramic powder is kneaded with 0.1-10wt.% plasticity imparting agent selected from an organic binder (e.g. paramylon) of polysaccharides produced by microorganisms and a methyl cellulose-based binder and water by Dalton mixer and a vacuum soil kneader to give kneaded soil 1. Then the kneaded soil is set at the center of a porous bottom force 2 made of synthetic resin, provided with a bottom layer with coarse communicating holes having 50-200mum and a molding face layer having <=10mum particle diameters. A top force 3 made of the same mold material is laid and the kneaded soil is press molded while sucking the top force 3 and the bottom force 2 in vacuum to give a molded article 4. Then, vacuum suction of the bottom force 2 is stopped, the top force 3 is raised while sending air to the molding face of the bottom force, released, vacuum suction of the top force 3 is suspended, compressed air is sent to the mold, the molded article 4 is released, dried and sintered.

Description

【発明の詳細な説明】 産業上の利用分野 本発明はファインセラミックスの成形方法及び成形装置
に関する。
DETAILED DESCRIPTION OF THE INVENTION Field of the Invention The present invention relates to a method and apparatus for molding fine ceramics.

従来の技術 従来、陶器や食器等は、工業生産においては粘土の可塑
性を利用して成形を行ってきた。
BACKGROUND OF THE INVENTION Conventionally, ceramics, tableware, etc. have been molded using the plasticity of clay in industrial production.

セラミック粉体に可塑性が発現するのは、粘土を含有し
ているからである。型としては、主に石こう型を用いて
きた。
Ceramic powder exhibits plasticity because it contains clay. As for molds, plaster molds have mainly been used.

ファインセラミックスの成形に石、こう型を使用すると
、不純物が成形品に混入しやすくなる。
When stones or molds are used to mold fine ceramics, impurities tend to get mixed into the molded product.

他方、ファインセラミックスの成形方法としては、スプ
レードライヤー粉末を用いた一軸式プレス成形、CIP
成形、スリップキャスティング成形、射出成形、押出し
成形などが採用されてきた。
On the other hand, methods for forming fine ceramics include uniaxial press forming using spray dryer powder and CIP.
Molding, slip casting, injection molding, extrusion, etc. have been employed.

発明が解決しようとする問題点 また、前述のような従来のファインセラミックス成形方
法には次のような問題があった。
Problems to be Solved by the Invention Furthermore, the conventional fine ceramic molding method as described above has the following problems.

1)一軸プレス成形 単一形状を多量生産するには有効であるが、現状では単
純形状に限られている。
1) Uniaxial press forming Although it is effective for mass production of single shapes, it is currently limited to simple shapes.

と《にスプレードライヤー粉末を使用する場合には、製
品内の肉厚差が大きいと、充てん率を均一にすることが
難しく、均一な成形体が得られない。
When using spray dryer powder for and <<, if there is a large difference in wall thickness within the product, it is difficult to make the filling rate uniform, and a uniform molded body cannot be obtained.

さらに、型材に非多孔質材料を用いた場合、水分を含ん
だ練土では離型が困難であり、成形体が歪み、所定形状
の製品を得ることができない。
Furthermore, when a non-porous material is used for the mold material, it is difficult to release the mold from wet clay, the molded body becomes distorted, and a product with a predetermined shape cannot be obtained.

2)CIP成形 比較的均一な成形体が得られるが、成形体の加工を必要
とするため、歩留まりが悪く、生産コストの上昇を招く
2) CIP molding A comparatively uniform molded body can be obtained, but since processing of the molded body is required, the yield is poor and production costs increase.

3)スリップキャスティング成形 均質性の良い成形体が得られるが、石こう型を用いた場
合、型の強度が低いため、自動化で取り扱うことが困難
であり、大量生産向きでない。
3) Slip casting molding A molded body with good homogeneity can be obtained, but when a plaster mold is used, the strength of the mold is low, making it difficult to handle with automation, and it is not suitable for mass production.

4)射出成形 比較的複雑な形状の大量生産に向いているが、成形後の
脱脂の問題がある。大型形状を作る場合に、装置が大が
かりになり、高価である等の問題もある。
4) Injection molding Although suitable for mass production of relatively complex shapes, there is a problem with degreasing after molding. When producing large shapes, there are also problems such as the equipment being large-scale and expensive.

5)押出し成形 大量生産は可能であるが、形状がパイプ、ハニカムや板
類の形状に制約される。
5) Extrusion molding Mass production is possible, but the shape is limited to pipes, honeycombs, and plates.

発明の目的 本発明の目的は、一軸プレスが可能で、高い生産効率を
確保でき、複雑形状でも適用できるファインセラミック
スの成形方法及び成形装置を提供することである。
OBJECTS OF THE INVENTION An object of the present invention is to provide a method and apparatus for molding fine ceramics that can be uniaxially pressed, ensure high production efficiency, and can be applied even to complex shapes.

発明の要旨 前述の目的を達成するために、本発明は、請求項1およ
び2に記載のファイシセラミックスの成形方法及び成形
装置を要旨としている。
SUMMARY OF THE INVENTION In order to achieve the above-mentioned object, the present invention provides a method and apparatus for molding phiceramics according to claims 1 and 2.

問題点を解決するための手段 本発明において使用される練土に十分な可塑性が付与さ
れていなければ、本発明の成形方法を実施することが困
難な場合がある。
Means for Solving the Problems If the clay used in the present invention is not imparted with sufficient plasticity, it may be difficult to carry out the molding method of the present invention.

従って、使用される可塑性付与剤は、非可塑性無機粉体
に可塑性を付与し、プレス成形に適した十分な成形性を
有する練土を提供し得るものである。
Therefore, the plasticizer used is one that can impart plasticity to the non-plastic inorganic powder and provide a clay having sufficient formability suitable for press molding.

例えば、微生物産生多糖類の有機パインダ−またはメチ
ルセルロース系有機バインターが挙げられる。
Examples include organic binders of polysaccharides produced by microorganisms and organic binders based on methylcellulose.

微生物産生多糖類の有機バインダーとはバインダー成分
として主に微生物産生多糖類を含有したものであり、メ
チルセルロース系有機ハインダーとは主にメチルセルロ
ースを含有したものである。
The organic binder of polysaccharides produced by microorganisms is one that mainly contains polysaccharides produced by microorganisms as a binder component, and the methylcellulose-based organic binder is one that mainly contains methylcellulose.

具体的には、微生物産生多糖類としては、デキストラン
、ジュランガム、キサンタンガム、プルラン、パラミロ
ン、カードラン、スクレノグルカンなどが挙げられる。
Specifically, microorganism-produced polysaccharides include dextran, dulan gum, xanthan gum, pullulan, paramylon, curdlan, screnoglucan, and the like.

なかでも、グルカン系の多糖類が好ましく、パラミロン
、カードラン、スクレノグルカンなどのβ−1,3−グ
リコシドを有するβ一1.3−グルカンが保水性、可塑
性などの面から更に好ましい。
Among these, glucan-based polysaccharides are preferred, and β-1,3-glucans having β-1,3-glycosides such as paramylon, curdlan, and screnoglucan are more preferred from the viewpoint of water retention and plasticity.

また、この微生物産生多糖類の有機バインダーは他の成
分と混合して使用することも可能である。
Further, the organic binder of the microorganism-produced polysaccharide can also be used in combination with other components.

例えば、セルロース系化合物、多価ヒドロキシ化合物や
ポリビニル重合体などを含有していてもよい。
For example, it may contain a cellulose compound, a polyhydric hydroxy compound, a polyvinyl polymer, or the like.

セルロース系化合物としては、メチルセルロース、エチ
ルセルロース、カルボキシメチルセルロース、カルボキ
シメチルセルロースナトリウム、ヒドロキシプ口ピルセ
ルロースなどが挙げられる。
Examples of cellulose-based compounds include methylcellulose, ethylcellulose, carboxymethylcellulose, sodium carboxymethylcellulose, and hydroxypropylcellulose.

多価ヒドロキシ化合物としては、グリセリンやエチレン
グリコールなどのアルキレングリコールや、ポリエチレ
ングリコールなどのポリオキシアルキレングリコール等
が挙げられる。
Examples of the polyhydric hydroxy compound include alkylene glycols such as glycerin and ethylene glycol, and polyoxyalkylene glycols such as polyethylene glycol.

ポリビニル重合体としては、ポリビニルアルコール、ポ
リビニルビロリドン、ポリアクリル酸樹脂などが挙げら
れる。
Examples of the polyvinyl polymer include polyvinyl alcohol, polyvinylpyrrolidone, polyacrylic acid resin, and the like.

混合される他の成分はバインダー総重量の50重量%以
下であるのが好ましい。
Preferably, the amount of other components mixed is not more than 50% by weight of the total weight of the binder.

このように混合物として用いる場合は、特にβ−1,3
−グルカン、セルロース系化合物およびポリオキシアル
キレングリコールの混合物が、本発明の成形方法に適し
ている。
When used as a mixture in this way, especially β-1,3
- Mixtures of glucans, cellulosic compounds and polyoxyalkylene glycols are suitable for the molding method of the invention.

メチルセルロース系有機バインダーも同様に、メチルセ
ルロースの他に上記した成分などを含有した混合物とし
ても使用される。
Similarly, the methylcellulose-based organic binder is also used as a mixture containing the above-mentioned components in addition to methylcellulose.

このような可塑性付与剤はセラミック粉体に対して0.
1〜10重量%、好ましくは0.5〜5重量%の割合で
配合される。
Such plasticizers have a 0.0% plasticity imparting agent for ceramic powder.
It is blended in a proportion of 1 to 10% by weight, preferably 0.5 to 5% by weight.

微生物産生多糖類の有機バインダーとファインセラミッ
ク粉末との混練は各種の方法を採用できるが、好ましく
は、ダルトンミキサーと真空土練機による二段混練法を
採用する。
Various methods can be used to knead the organic binder of the microbially produced polysaccharide and the fine ceramic powder, but preferably a two-stage kneading method using a Dalton mixer and a vacuum kneader is used.

そしてダルトンミキサーと真空土練機による二段混線を
行う際に、充てん密度を60%にすると、最良の結果が
得られる。
The best results can be obtained by setting the packing density to 60% when performing two-stage cross-mixing using a Dalton mixer and a vacuum clay kneader.

プレス成形は、多孔質型を用いて行う。多孔質の型とし
てよく知られているのは、従来から陶磁器や食器の湿式
成形に用いられてきた石こう型であるが、石こう型は機
械的強度が低いため、耐久性及び成形体へのコンタミネ
ーション(石こう型材などが不純物として成形体へ混入
する)等の問題がある。そのため機械的強度が高く、耐
摩耗性に優れ、通気性の高い多孔質型を用いるのが好ま
しい。その一例として合成樹脂製の型が挙げられる。
Press molding is performed using a porous mold. A well-known porous mold is the gypsum mold, which has traditionally been used for wet molding of ceramics and tableware, but because the gypsum mold has low mechanical strength, it has problems with durability and contamination of the molded product. There are problems such as formation (gypsum mold material etc. mixed into the molded product as impurities). Therefore, it is preferable to use a porous type that has high mechanical strength, excellent abrasion resistance, and high air permeability. One example is a mold made of synthetic resin.

一般的に合成樹脂型は石こう型の約10倍以上の強度を
有し、その耐摩耗性は耐用回数にして50〜100倍で
ある。
In general, synthetic resin molds have strength about 10 times or more than plaster molds, and their wear resistance is 50 to 100 times as long as the number of times they can be used.

また、50〜200μmの粗い連通孔を有した下面層と
10μm以下の微細孔を有する成形面層の二層構造にす
ると圧損が少なくなる。
In addition, if the two-layer structure is made of a lower surface layer having coarse communication holes of 50 to 200 .mu.m and a molding surface layer having fine pores of 10 .mu.m or less, the pressure loss will be reduced.

型材が多孔性である効用としては、練土の水分を真空減
圧により脱水したり、圧縮空気により成形体の離型を効
率良く行ったりすることが挙げられる。
The benefits of having a porous mold material include dehydrating the clay by vacuum reduction and efficiently releasing the molded body by compressed air.

実  施  例 第1図に示す可塑成形の工程により実験を行った。実験
に用いた材質はAl203−Zr O 2質である。ま
ずAl203とZ r O 2を所定の割合で秤量し、
AA’203製のポットとA1203製のボールを用い
て18時間混合処理を行った。その際に、水を25vj
%加え、かつ分散剤としてポリカルボン酸アンモニウム
塩を0.3wj%加えた。添加量と水分量については、
混合が効率良く行える範囲内で最も高い粘度を採用した
。分散剤の添加量については見掛粘度の最も低くなる点
を採用した。その後、原料を乾燥し、解砕により0.5
mm以下に整粒した。この原料にバインダーおよび水を
加え、ダルトンミキサーにて一次混練を行った。その後
、真空土練機で二次混練を行い練土とした。
EXAMPLE An experiment was conducted using the plastic molding process shown in FIG. The material used in the experiment was Al203-ZrO2. First, Al203 and ZrO2 were weighed at a predetermined ratio,
Mixing treatment was performed for 18 hours using a pot made of AA'203 and a ball made of A1203. At that time, drink 25vj of water.
%, and 0.3 wj% of polycarboxylic acid ammonium salt was added as a dispersant. Regarding the amount of addition and water content,
The highest viscosity within the range that allows efficient mixing was adopted. Regarding the amount of dispersant added, the point at which the apparent viscosity was the lowest was adopted. After that, the raw material is dried and crushed to give 0.5
The particles were sized to a size of mm or less. A binder and water were added to this raw material, and primary kneading was performed using a Dalton mixer. Thereafter, secondary kneading was performed using a vacuum clay kneading machine to obtain kneaded clay.

前述の練土を第2〜5図に示すようにプレス成形した。The above-mentioned clay was press-molded as shown in FIGS. 2-5.

まず第2図に示すように練土1を前述の型材で作られた
多孔質の下型2の成形面の中央にセットする。ついで、
同じ型材で作った多孔質の上型3をセットする。上型3
と下型2に真空吸引を行いながら第3図に示すようにそ
れらの成形面で加圧成形して成形体4を作る。成形後、
下型2の真空吸引を停止し、第4図に示すように、圧縮
空気を下型2の成形面に送り込みながら上型3を上昇さ
せ下型2の成形面から成形体4を離型させる。その後、
上型3の真空吸引を停止し、第5図に示すように、圧縮
空気を上型3の成形面に送り込みながら成形体4を上型
3の成形面から離型させ、取板5にのせる。その後、成
形体4を40℃〜100℃で十分乾燥させる。ついで焼
成を1600℃で2時間行う。
First, as shown in FIG. 2, clay 1 is set in the center of the molding surface of a porous lower mold 2 made of the aforementioned mold material. Then,
A porous upper mold 3 made of the same mold material is set. Upper mold 3
While applying vacuum suction to the lower mold 2, pressure molding is performed on these molding surfaces as shown in FIG. 3 to produce a molded body 4. After molding,
The vacuum suction of the lower mold 2 is stopped, and as shown in FIG. 4, the upper mold 3 is raised while sending compressed air to the molding surface of the lower mold 2, and the molded product 4 is released from the molding surface of the lower mold 2. . after that,
The vacuum suction of the upper mold 3 is stopped, and as shown in FIG. let Thereafter, the molded body 4 is sufficiently dried at 40°C to 100°C. Then, calcination is carried out at 1600° C. for 2 hours.

前述の実験によって得られた成形体のサンプルについて
水分の添加効果、保水性、可塑性、成形後の保形性を評
価した。
The effect of adding water, water retention, plasticity, and shape retention after molding were evaluated for the samples of the molded bodies obtained in the above experiment.

保水性については、常温,40℃,100℃でそれぞれ
恒量になるまで乾燥を行い、重量減少を測定し、算出し
た。
Water retention was calculated by drying at room temperature, 40° C., and 100° C. until a constant weight was reached, and measuring the weight loss.

可塑性については、直径50mm,長さ60mmのサン
プルを作製し、オートグラフを用いて長さの変形比が2
の値を示す範囲の間の最大荷量により評価をした。第1
表はその試験結果と、本発明の成形法で作製したサンプ
ルの特性値と他の成形法との比較を示す。本発明の成形
法で作製したサンプルの焼結体密度は、従来のスリップ
キャスティング成形法やCIP成形法に比べて同等又は
それ以上であり、有用であると考えられる。
Regarding plasticity, a sample with a diameter of 50 mm and a length of 60 mm was prepared, and an autograph was used to determine the length deformation ratio of 2.
The evaluation was made based on the maximum load within the range showing the value of . 1st
The table shows the test results and a comparison between the characteristic values of the samples made by the molding method of the present invention and other molding methods. The density of the sintered compact of the sample produced by the molding method of the present invention is equivalent to or higher than that of the conventional slip casting molding method or CIP molding method, and is considered to be useful.

発明の効果 1)本発明ではファインセラミックスの成形に微生物産
生多糖類の有機バインダーを用いるので、低圧力で可塑
性を十分有する練土を得ることができる。
Effects of the Invention 1) Since the present invention uses an organic binder of polysaccharides produced by microorganisms for molding fine ceramics, it is possible to obtain kneaded clay with sufficient plasticity at low pressure.

2)本発明の成形法を用いることにより、従来のファイ
ンセラミックスの成形法に比べて大幅なリードタイムの
短縮やコストダウンが可能である。
2) By using the molding method of the present invention, it is possible to significantly shorten lead time and reduce costs compared to conventional molding methods for fine ceramics.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明方法の好適な成形工程の一例を示すフロ
ー図、第2〜5図は本発明方法により成形体をつくる一
連の工程を示す説明図である。 1・・・・・・・・・練 土 2・・・・・・・・・下 型 3・・・・・・・・・上 型 4・・・・・・・・・成形体 5・・・・・・・・・取 板 Fig.1 手 続 補 正 書 (自発)
FIG. 1 is a flowchart showing an example of a preferred molding process of the method of the present invention, and FIGS. 2 to 5 are explanatory diagrams showing a series of steps for producing a molded article by the method of the present invention. 1... Kneading Soil 2... Lower Mold 3... Upper Mold 4... Molded body 5.・・・・・・・・・Top plate Fig. 1 Procedural amendment (voluntary)

Claims (2)

【特許請求の範囲】[Claims] 1.ファインセラミック粉末に可塑性付与 剤として微生物産生多糖類の有機バインダー又はメチル
セルロース系バインダーを加えて混練して練土をつくり
、その練土を多孔質型によってプレス成形することを特
徴とするファインセラミックスの成形方法。
1. Molding of fine ceramics characterized by adding an organic binder of microbially produced polysaccharide or a methyl cellulose binder as a plasticizer to fine ceramic powder, kneading it to make kneaded clay, and press-molding the kneaded clay using a porous mold. Method.
2.上型と下型を組合わせて、それらの上 型の成形面と下型の成形面との間でプレスしてファイン
セラミックスの練土を成形してファインセラミックスの
成形体をつくる成形装置において、上型と下型を多孔質
の型材で作り、型材を介して成形面を真空減圧して成形
面から練土の水分を脱水したり、型材を介して成形面に
圧縮空気を送って成形面から成形体を離型する構成にし
たファインセラミックスの成形装置。
2. In a molding device that combines an upper mold and a lower mold and presses between the molding surface of the upper mold and the molding surface of the lower mold to mold fine ceramics clay into a fine ceramic molded body, The upper and lower molds are made of porous mold material, and the molding surface is vacuum depressurized through the mold material to remove moisture from the kneaded soil from the molding surface, or compressed air is sent to the molding surface through the mold material to remove water from the molding surface. A fine ceramics molding device configured to release the molded body from the mold.
JP2004610A 1990-01-16 1990-01-16 Molding of fine ceramic and molding device Pending JPH03215343A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004610A JPH03215343A (en) 1990-01-16 1990-01-16 Molding of fine ceramic and molding device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004610A JPH03215343A (en) 1990-01-16 1990-01-16 Molding of fine ceramic and molding device

Publications (1)

Publication Number Publication Date
JPH03215343A true JPH03215343A (en) 1991-09-20

Family

ID=11588822

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004610A Pending JPH03215343A (en) 1990-01-16 1990-01-16 Molding of fine ceramic and molding device

Country Status (1)

Country Link
JP (1) JPH03215343A (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS52135314A (en) * 1976-05-10 1977-11-12 Ito Seisakushiyo Kk Ceramics press metal molds and method
JPS62105948A (en) * 1985-10-31 1987-05-16 信越化学工業株式会社 Manufacture of ceramic extrusion formed body and compositiontherefor
JPS6465066A (en) * 1987-06-19 1989-03-10 Rhone Poulenc Chimie Manufacture of product from split matter
JPH01287203A (en) * 1988-05-13 1989-11-17 Sumitomo Electric Ind Ltd Method for compacting powder and mold for compacting powder

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS52135314A (en) * 1976-05-10 1977-11-12 Ito Seisakushiyo Kk Ceramics press metal molds and method
JPS62105948A (en) * 1985-10-31 1987-05-16 信越化学工業株式会社 Manufacture of ceramic extrusion formed body and compositiontherefor
JPS6465066A (en) * 1987-06-19 1989-03-10 Rhone Poulenc Chimie Manufacture of product from split matter
JPH01287203A (en) * 1988-05-13 1989-11-17 Sumitomo Electric Ind Ltd Method for compacting powder and mold for compacting powder

Similar Documents

Publication Publication Date Title
US4784812A (en) Ceramics binder and production of ceramics articles
KR20070119544A (en) Extrusion or injection molding composition and method for preparing molded part
JPH02160656A (en) Body composition for forming inorganic powder and calcined product obtained by calcining the same
KR100650035B1 (en) Method for preparing ceramic composition
KR100854713B1 (en) Manufacture method for ceramic filter body of diatomaceous earth
DE3942666A1 (en) Injection moulded ceramic article prodn. - involving hydrostatic pressing before organic binder removal
CN115893980B (en) Process for preparing porous support ceramic by using nodulizer micropowder
JPH03215343A (en) Molding of fine ceramic and molding device
JP3105524B2 (en) Manufacturing method of whiteware ceramic products
RU2731751C1 (en) Method of making porous articles of spherical shape based on zirconium dioxide
US20160083298A1 (en) Selected binders for the extrusion of ultra-thin wall cellular ceramics
JPS63123851A (en) Cement composition for extrusion molding
JP3282500B2 (en) Method for producing slurry for casting
JPH02279553A (en) Ceramic molded body and its production
JPH0354157A (en) Inorganic powdering oxide superconductor for body and burned material obtained by burning same composition
JP3672598B2 (en) Plastic molding slurry composition, method for producing the plastic molding slurry composition, plastic molding clay obtained by subjecting the plastic molding slurry composition to dehydration and kneading, and use of the plastic molding clay Molding method of plastic molded body, plastic molded body molded by the molding method, and dried plastic molded body obtained by drying the plastic molded body
JPH0238360A (en) Ceramic raw material for dry molding and production of molded article of ceramic using said raw material
JPH0283263A (en) Production of sintered material of silicon nitride
JPH061673A (en) Production of porous ceramic
Chen et al. Colloidal in-situ consolidation forming of Al2O3 ceramics using modified starch
Hemra et al. Preparation of micro-porous alumina sheet support for ceramic membrane by extrusion
JP2003165762A (en) Moisture-adsorbing and releasing inorganic formed body
JP2000211979A (en) Production of silica porous body
JPH04243943A (en) Light-weight high-strength asbestos-free composition for extrusion molding
JPS62191458A (en) Manufacture of ceramic formed body