JPH03215311A - Electrically conductive silicic anhydride fine powder and its production - Google Patents

Electrically conductive silicic anhydride fine powder and its production

Info

Publication number
JPH03215311A
JPH03215311A JP1017590A JP1017590A JPH03215311A JP H03215311 A JPH03215311 A JP H03215311A JP 1017590 A JP1017590 A JP 1017590A JP 1017590 A JP1017590 A JP 1017590A JP H03215311 A JPH03215311 A JP H03215311A
Authority
JP
Japan
Prior art keywords
silicic anhydride
fine powder
silicic
conductive
anhydride
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP1017590A
Other languages
Japanese (ja)
Inventor
Toshiaki Uenishi
上西 利明
Toshihiro Yoshinaga
好永 俊宏
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Titan Kogyo KK
Original Assignee
Titan Kogyo KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Titan Kogyo KK filed Critical Titan Kogyo KK
Priority to JP1017590A priority Critical patent/JPH03215311A/en
Publication of JPH03215311A publication Critical patent/JPH03215311A/en
Pending legal-status Critical Current

Links

Landscapes

  • Silicon Compounds (AREA)

Abstract

PURPOSE:To improve electrical conductivity of fine powder of silicic anhydride by simultaneously adding a solution of SnCl4 and SbCl3 in hydrochloric acid and an alkali to heated suspension of silicic anhydride so as to maintain the suspension at a specific pH and coating silicic anhydride with SnO2 and Sb2O3. CONSTITUTION:A suspension of silicic anhydride having >= about 15nm average particle diameter is heated to about 50-100 deg.C, a solution of SnCl4 and SbCl3 in hydrochloric acid and an alkali such as ammonia water are simultaneously added to the suspension while maintaining the suspension at pH 3-9. 50-300wt.% based on silicic anhydride of a coating layer comprising 1-20wt.% Sb2O3 and the rest of SnO2 is formed, dried and then at about 500-700 deg.C to give electrically conductive fine powder of silicic anhydride.

Description

【発明の詳細な説明】 皮1允」 本発明は、無水ケイ酸の表面をアンチモン固溶酸化錫に
て均一に被覆した、透明性で、しかも導電性を有する微
粉末に関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a transparent and electrically conductive fine powder in which the surface of silicic anhydride is uniformly coated with antimony solid solution tin oxide.

本発明による導電性微粉末は透明な合成樹脂フイルムな
いしは塗膜に透明性を損うことなく、これらに良好な導
電性を付与するのに有用であることは勿論のこと、電子
写真現像剤において用いられている導電剤としても使用
可能である。
The conductive fine powder of the present invention is of course useful for imparting good conductivity to transparent synthetic resin films or coatings without impairing their transparency, and is also useful in electrophotographic developers. It can also be used as a conductive agent.

支東へ11 導電性付与剤としては、Tie2やチタン酸カリウムの
表面を導電性物質で被覆した白色導電粉やアンチモン固
溶酸化錫粉末、雲母やカオリナイト等の無機平板状物質
の表面を導電性物質で被覆した透明導電粉末が提案され
ている。
11 To Shito Transparent conductive powders coated with conductive materials have been proposed.

が ゛しようと る 題 近年、透明導電性フィルムや透明導電性塗料は表示用電
極、保護膜、静電防止フィルム、透明発熱体などの製造
に広く利用されている。
In recent years, transparent conductive films and transparent conductive paints have been widely used in the production of display electrodes, protective films, antistatic films, transparent heating elements, etc.

フィルムや塗料等の導電性の付与剤としては金属粉、炭
素粉あるいは白色導電粉が広く用いられているが、これ
らは、それ自体が灰色又は黒色を呈していたり、隠ペイ
性の強い粉体である為フイルムや塗膜の透明性を保持す
ることができない.一方、透明導電粉としては、酸化錫
にアンチモンを固溶させた粉末や雲母やカオリナイト等
の平板状物質の表面を導電性物質で被覆したものが知ら
れている。しかし、酸化錫にアンチモンを固溶させた導
電性粉末は、平均粒径が0,1μ以下と微細なため樹脂
に均一に分散させるのに長時間分散させる必要があり、
そして酸化錫は屈折率が樹脂の屈折率に比べかなり高い
為樹脂膜が厚くなると透明性が損なわれてくる等の欠点
がある。
Metal powder, carbon powder, or white conductive powder is widely used as an agent for imparting conductivity to films, paints, etc., but these powders themselves are gray or black, or have strong pay-hiding properties. Therefore, the transparency of the film or coating cannot be maintained. On the other hand, known transparent conductive powders include powders in which antimony is dissolved in tin oxide, and those obtained by coating the surface of a flat material such as mica or kaolinite with a conductive substance. However, conductive powder made by dissolving antimony in tin oxide has a fine average particle size of 0.1μ or less, so it is necessary to disperse it for a long time to uniformly disperse it in the resin.
Since tin oxide has a much higher refractive index than the refractive index of resin, it has drawbacks such as loss of transparency when the resin film becomes thicker.

又、平板状物質の表面を導電性物質で被覆した導電性粉
末は、基材として屈折率の低い物質を用いているので透
明性は良好であるが、1〜100μと粒子径が大きく、
璧開性を有する為塗料に用いた場合表面平滑性の良好な
塗膜を得ることが難しく、更に平滑な塗膜を得る為分散
を強化すると粒子の破砕が起り導電性が劣化してくる等
の欠点がある. 以上のように、これまでの導電性粉末には透明性及び導
電性をともに満足するものはなくその改良が望まれてい
る. 題を ゛ るための 周知のように無水ケイ酸は屈折率が1.45程度と樹脂
の屈折率に近く、そして比重が小さく、かさ密度が大き
いという特徴がある。
In addition, conductive powder, which is obtained by coating the surface of a tabular material with a conductive material, has good transparency because it uses a material with a low refractive index as a base material, but has a large particle size of 1 to 100 μm.
Due to its openness, it is difficult to obtain a coating film with good surface smoothness when used in paints, and if dispersion is strengthened to obtain a smoother coating film, particle fragmentation occurs and conductivity deteriorates. There are drawbacks to this. As mentioned above, there is no conductive powder to date that satisfies both transparency and conductivity, and improvements are desired. As is well known, silicic anhydride has a refractive index of about 1.45, which is close to that of resin, and has a low specific gravity and high bulk density.

この為ビヒクルに分散したときはほとんど透明になり、
又、少量の充填量でビヒクルの増粘や補強に効果がある
ということでゴムの補強剤や塗料及び合成樹脂の充填剤
として多量に使用されている 本発明者らは無水ケイ酸の特徴に注目し無水ケイ酸を基
材としその表面に導電性物質を被覆することを検討した
For this reason, it becomes almost transparent when dispersed in a vehicle,
In addition, the present inventors have discovered the characteristics of silicic anhydride, which is used in large quantities as a reinforcing agent for rubber, a filler for paints, and synthetic resins because it is effective in thickening and reinforcing vehicles with a small amount of filling. We focused on the idea of using silicic anhydride as a base material and coating the surface with a conductive material.

その結果、1次粒子の平均粒径が15nm以上の無水ケ
イ酸を基材に使用し、無水ケイ酸の加熱懸濁液に、酸化
錫と塩化アンチモンを溶解した希塩酸溶液とアルカリと
を懸濁液のpHをコントロールしながら同時添加すれば
、アンチモンと錫の加水反応生成物が無水ケイ酸表面に
均一に沈着し、この生成物を水洗、乾燥、焼成したもの
は無水ケイ酸の特徴を保持して分散性が良好で、樹脂に
分散した場自良好な透明性を有するとともに他の球状粒
子を基祇な場合に比べ少量の充填量で良好な導電性が得
られることを見い出した。
As a result, we used silicic anhydride with an average primary particle diameter of 15 nm or more as a base material, and suspended a dilute hydrochloric acid solution in which tin oxide and antimony chloride were dissolved in a heated suspension of silicic anhydride and an alkali. If they are added simultaneously while controlling the pH of the solution, the hydration reaction product of antimony and tin will be deposited uniformly on the surface of silicic anhydride, and when this product is washed with water, dried, and calcined, it retains the characteristics of silicic anhydride. It has been found that it has good dispersibility, good transparency in situ when dispersed in a resin, and good conductivity can be obtained with a smaller amount of filling compared to other cases based on spherical particles.

本発明は上記知見に基づいて開発されたものであって、
加水分解を防止するに足りる希塩酸溶液中に塩化錫と塩
化アンチモンを溶解した溶液とアルカリとを温度50〜
100℃に調整した無水ケイ酸懸濁液中に、懸濁液のp
Hを3〜9に維持しながら同時添加することによって、
アンチモンを1〜20重量%含有し、残りが酸化錫から
成る被覆層を無水ケイ酸に対し50〜300℃重量%処
理し、口過、水洗後熱処理することを特徴とする透明導
電性微粉末及びその製造法に関するものである。
The present invention was developed based on the above findings, and
A solution of tin chloride and antimony chloride dissolved in a dilute hydrochloric acid solution sufficient to prevent hydrolysis and an alkali are heated at a temperature of 50 to
In a silicic anhydride suspension adjusted to 100°C, the suspension's p
By simultaneously adding H while maintaining it between 3 and 9,
A transparent conductive fine powder comprising a coating layer containing 1 to 20% by weight of antimony and the remainder consisting of tin oxide, which is treated with silicic anhydride at 50 to 300°C, and then subjected to heat treatment after filtration and water washing. and its manufacturing method.

本発明に於いて使用しうる無水ケイ酸としては、四塩化
ゲイ素を水素と酸素又は空気中1000℃前後で反応さ
せた乾式法で製造したものが好ましいが、湿式法で得ら
れた含水ケイ酸を600〜1000℃の温度で焼成した
ものも使用出来る.無水ケイ酸の粒子径は1次粒子の平
均径15r++s以上のものが適当で15ns+以下の
場合は分散が困難となり、ひいては導電性、透明性を低
下させることになるので望ましくない。又、純度は出来
るだけ高い方が望ましいが、少量の不純物を含有してい
るものでも使用出来る。
The anhydrous silicic acid that can be used in the present invention is preferably one produced by a dry method in which silicon tetrachloride is reacted with hydrogen and oxygen or in air at around 1000°C, but hydrated silicic acid obtained by a wet method is preferable. An acid calcined at a temperature of 600 to 1000°C can also be used. The particle diameter of the silicic anhydride is suitably one in which the average primary particle diameter is 15 r++s or more; if it is less than 15 ns+, dispersion becomes difficult and conductivity and transparency are undesirably reduced. Further, although it is desirable that the purity is as high as possible, it can be used even if it contains a small amount of impurities.

本発明において無水ケイ酸に良好な導電性を付与する為
には均一な被覆層を生成させることが必要である。
In the present invention, in order to impart good electrical conductivity to silicic anhydride, it is necessary to form a uniform coating layer.

この為には水懸濁液の温度は50〜100℃に維持する
ことが望ましく、又処理時のpHは3〜9好ましくは6
.5〜8.5に維持して同時添加することが望ましい。
For this purpose, it is desirable to maintain the temperature of the aqueous suspension at 50 to 100°C, and the pH during treatment is preferably 3 to 9, preferably 6.
.. It is desirable to maintain the ratio between 5 and 8.5 and add them simultaneously.

pHを調整する為に添加するアルカリとしてはアンモニ
ア水、アンモニアガス、水酸化ナトリウム、水酸化カリ
ウム、炭酸ナトリウム、炭酸カリウムなどが使用出来る
As the alkali added to adjust the pH, aqueous ammonia, ammonia gas, sodium hydroxide, potassium hydroxide, sodium carbonate, potassium carbonate, etc. can be used.

被覆層のアンチモン含有量については1%以下では良好
な導電性を得ることが出来ず、一方20%以上にすると
透明性、導電性とも悪くなるので好ましくない。
Regarding the antimony content of the coating layer, if it is less than 1%, good conductivity cannot be obtained, whereas if it is more than 20%, both transparency and conductivity become poor, which is not preferable.

実質的に被覆層の残部は酸化錫であれば良く、本発明の
目的を達成することができれば少量の不純物を含んでい
ても差しつかえない。
Substantially, the remaining portion of the coating layer may be tin oxide, and may contain a small amount of impurities as long as the object of the present invention can be achieved.

被覆層の処理量は、基材とする無水ケイ酸に対し50〜
300重量%好ましくは150〜250重量%である。
The processing amount of the coating layer is 50~
300% by weight, preferably 150-250% by weight.

被覆量が上記範囲より少ない場合には良好な導電性を確
保できず、また上記範囲以上に多くてもそれに応じた導
電性の向上が期待できず、さらに透明性が悪くなるので
好ましくない。
If the coating amount is less than the above range, good conductivity cannot be ensured, and if it is greater than the above range, a corresponding improvement in conductivity cannot be expected, and furthermore, transparency deteriorates, which is not preferable.

酸化錫及び酸化アンチモンで被覆された無水ケイ酸はそ
の後必要に応じてpHを6〜8に調整し口過、洗浄を行
って可溶性塩を除去し、乾燥後500〜700℃の温度
で焼成し粉砕を行って導電性無水ケイW!i微粉末とす
る。焼成温度が500℃以下の場きは良好な導電性が得
られず、そして700℃以上の場合は導電性が悪くなる
とともに焼結して透明性も悪くなるので好ましくない. 本発明により得られた導電性無水ケイ酸微粉末は粉体抵
抗値が数Ω〜数百Ωの良好な導電性を示し、又樹脂や塗
料に配合した場合は透明性を損うことなく表面抵抗値1
05〜10llΩ/Sqの良好な導電性を付与できるの
で透明導電性フィルムや透明導電性塗料の導電性付与剤
として有用である.又、導電性無水ケイ酸微粉末は粒径
が微細でかさ密度が高いという特徴があるので、電子写
真用現像剤において用いられている導電剤としても有用
である。
The anhydrous silicic acid coated with tin oxide and antimony oxide is then adjusted to a pH of 6 to 8 as necessary, filtered and washed to remove soluble salts, dried and then calcined at a temperature of 500 to 700°C. Conductive anhydrous silicon by pulverization! i Make it into a fine powder. If the firing temperature is less than 500°C, good conductivity cannot be obtained, and if it is more than 700°C, the conductivity deteriorates and sintering occurs, resulting in poor transparency, which is not preferable. The conductive silicic anhydride fine powder obtained by the present invention exhibits good conductivity with a powder resistance value of several ohms to several hundred ohms, and when added to resins or paints, it can be applied to the surface without impairing transparency. Resistance value 1
It is useful as a conductivity-imparting agent for transparent conductive films and transparent conductive paints because it can impart good conductivity of 0.05 to 10 Ω/Sq. Furthermore, since the conductive silicic anhydride fine powder is characterized by its fine particle size and high bulk density, it is also useful as a conductive agent used in electrophotographic developers.

以下に実施例を挙げて本発明をさらに詳細に説明するが
、本発明は勿論これらに限定されるものではない。
The present invention will be explained in more detail with reference to Examples below, but the present invention is of course not limited to these.

K1鮭 実施例1. 比表面積sow2/g、1次粒子径40nsを有する無
水ケイ酸SO,,を水1.5Lに分散させたスラリーを
70℃に加熱した。この中に塩化スズ(Sn(1.・5
H20)232.8f!及び塩化7 ン+ モ’l (
 S ba!3 )15 .0fIを2N塩酸35ml
に溶解した液と25%アンモニア水とを系のpHを7〜
9に維持しながら90分間にわたって添加して無水ケイ
酸粒子表面に酸化スズ及び酸化アンチモンから成る被覆
層を形成させた。生成物を口過・洗浄・乾燥後650℃
にて15分間焼成し、本発明による被覆粉末を製造した
。この結果得られた粉末は、比抵抗27Ω・c1lを有
するものであった。
K1 salmon example 1. A slurry in which silicic anhydride SO, having a specific surface area of 2/g and a primary particle diameter of 40 ns was dispersed in 1.5 L of water, was heated to 70°C. In this, tin chloride (Sn(1..5)
H20) 232.8f! and chloride 7 + mo'l (
S ba! 3)15. 0fI in 2N hydrochloric acid 35ml
and 25% ammonia water to bring the pH of the system to 7~7.
9 for 90 minutes to form a coating layer consisting of tin oxide and antimony oxide on the surface of the silicic anhydride particles. After filtering, washing and drying the product, 650℃
The coated powder according to the present invention was produced by calcination for 15 minutes. The resulting powder had a specific resistance of 27Ω·c1l.

実施例2. 塩化スズ232.8g、塩化アンチモン56.81F、
2N塩1ji70allに変更した以外は、実施例1.
と同様に処理・製造した.この結果得られた粉末は比抵
抗60Ω・c11を有するものであった。
Example 2. Tin chloride 232.8g, antimony chloride 56.81F,
Example 1 except that the 2N salt was changed to 1 to 70 all.
It was processed and manufactured in the same manner. The resulting powder had a specific resistance of 60Ω·c11.

実施例3. 塩化スズ232.81F、塩化アンチモン56.8,、
2N塩酸75wlとし、25%アンモニア水を7.5N
水酸化ナトリウム溶液に変更した以外は、実施例1と同
様に処理・製造した。この結果得られた粉末は、比抵抗
210Ω・ellを有するものであった。
Example 3. Tin chloride 232.81F, antimony chloride 56.8,
Add 75 wl of 2N hydrochloric acid and 7.5N of 25% ammonia water.
The treatment and production were carried out in the same manner as in Example 1, except that the sodium hydroxide solution was used. The resulting powder had a specific resistance of 210Ω·ell.

実施例4. 比表面積130m2/g、1次粒径16nmを有する無
水ゲイ素50gを、水4Lに分散させたスラリーを80
℃に加熱した.この中に塩化スズ291g及び塩化アン
チモン18.8,を2N塩@90mlに溶解した液と2
5%アンモニア水とを系のpHを7〜9に維持しながら
120分間にわたって添加し、無水ケイ素粒子表面に酸
化スズ及び酸化アンチモンから成る被覆層を形成させた
.生成物は冥施例1.と同様に処理し、650℃にて6
0分間焼成した.この結果、得られた粉末は比抵抗95
Ω・CI1を有するものであった. 比較例1. メタノール: 300eeにSnα.: 86.4,と
sbα,:10.4,とを溶解したものからなる溶液と
、5Nアンモニア水溶液(アルカリ水溶液): 300
ccとを、温度:90℃に加熱保持した水・3000e
eに、激しい撹拌を加えながら、2時間かけてゆっくり
と注入してsb含有Sn02粉末を析出生成せしめ(な
お、この反応中、反応溶液のpH・濃度は前記アンモニ
ア水溶液によって8〜9に保持された。》引続いて、こ
の結果得られたsb含有S n O 2微粉末を枦別し
、洗浄した後、結晶粒を向上させる目的で空気中、温度
:500℃に2時間保持の加熱処理を施すことによって
sb含有SnO2微粉末を製造した.得られた粉末は比
抵抗1.8Ω・cmを有するものであった。
Example 4. A slurry prepared by dispersing 50 g of anhydrous silicon having a specific surface area of 130 m2/g and a primary particle size of 16 nm in 4 L of water was
It was heated to ℃. In this, 291 g of tin chloride and 18.8 g of antimony chloride were dissolved in 2N salt @90 ml, and 2
5% ammonia water was added over 120 minutes while maintaining the pH of the system at 7 to 9 to form a coating layer consisting of tin oxide and antimony oxide on the surface of the anhydrous silicon particles. The product is similar to Example 1. 6 at 650°C.
Baked for 0 minutes. As a result, the obtained powder has a specific resistance of 95
It had Ω・CI1. Comparative example 1. Methanol: 300ee and Snα. : 86.4, and sbα, : 10.4, and a 5N ammonia aqueous solution (alkaline aqueous solution): 300
cc and water heated and maintained at a temperature of 90℃・3000e
e was slowly injected over 2 hours with vigorous stirring to precipitate sb-containing Sn02 powder (during this reaction, the pH and concentration of the reaction solution were maintained at 8 to 9 by the ammonia aqueous solution). >>Subsequently, the resulting sb-containing S n O 2 fine powder was separated, washed, and then heated in air at a temperature of 500°C for 2 hours in order to improve the crystal grain size. An sb-containing SnO2 fine powder was produced by applying the following steps.The obtained powder had a specific resistance of 1.8 Ω·cm.

比較例2. 比表面積50M2/I?、1次粒径30nsを有する二
酸化チタン100.を水2Lに分散させたスラリーを7
0℃に加熱した。この中に塩化スズ232.8g及び塩
化アンチモン56.8 9を2N塩酸35mlに溶解し
た液と25%アンモニア水とを系のpHを7〜9に維持
しながら90分間にわたって添加して、二酸化チタン粒
子表面に酸化スズ及びアンチモンから成る被覆層を形成
させた。生成物を口過・洗浄・乾M後550℃にて15
分間焼成し、被覆粉末を製造した。得られた粉末は比抵
抗18Ω・cmを有するものであった。
Comparative example 2. Specific surface area 50M2/I? , titanium dioxide 100. with a primary particle size of 30 ns. 7 liters of slurry dispersed in 2 liters of water.
Heated to 0°C. A solution prepared by dissolving 232.8 g of tin chloride and 56.89 of antimony chloride in 35 ml of 2N hydrochloric acid and 25% ammonia water were added to this solution over a period of 90 minutes while maintaining the pH of the system at 7 to 9. A coating layer consisting of tin oxide and antimony was formed on the particle surface. After filtering, washing and drying the product, it was heated at 550°C for 15 minutes.
A coated powder was produced by firing for a minute. The obtained powder had a specific resistance of 18 Ω·cm.

比較例3. 比表面Wl7lI2/g、1次粒径200nmを有する
酸化アルミニウム100gについて塩化スズ88.1 
1?、塩化アンチモン7.83を2N塩酸50dに溶解
した液を添加した以外は実施例1.と同様に処理し、5
50℃で15分間焼成した。得られた粉末は比抵抗12
Ω・ci+を有するものであった。
Comparative example 3. Tin chloride 88.1 for 100 g of aluminum oxide with specific surface Wl7lI2/g, primary particle size 200 nm
1? , Example 1 except that a solution prepared by dissolving 7.83 of antimony chloride in 50 d of 2N hydrochloric acid was added. Process in the same way as 5
It was baked at 50°C for 15 minutes. The obtained powder has a specific resistance of 12
It had Ω·ci+.

前記実施例及び比較例の導電性微粉末についてその性能
を試験し、表−1の結果を得た。なお、表−1の評価は
次のようにして行った。
The conductive fine powders of the Examples and Comparative Examples were tested for their performance, and the results shown in Table 1 were obtained. Note that the evaluation in Table 1 was performed as follows.

(1)粉末抵抗 粉末を200kg7cm2で加圧した状態で横河・ヒュ
ーレットパッカード(株)製LCRメーターにて抵抗を
測定した。
(1) Powder Resistance The resistance of the powder was measured using an LCR meter manufactured by Yokogawa-Hewlett-Packard Co., Ltd. under a pressure of 200 kg and 7 cm 2 .

(2)表面抵抗 粉末を塩ビー酢ビ共重合樹脂に混和して塗料化した後、
2mil ドクターブレードでポリエステルフィルムに
塗布し、風乾後塗膜の表面抵抗をL C Rメーターに
て測定した。
(2) After mixing the surface resistance powder with vinyl chloride vinyl acetate copolymer resin and making it into a paint,
It was applied to a polyester film using a 2 mil doctor blade, and after air drying, the surface resistance of the coating film was measured using an LCR meter.

(3》透明性 ポリエステルフイルムに塗布した塗膜について、スガ試
験機(株)製直読ヘーズコンピューターにて全光線透過
率(%)及びヘーズ(%)を測定した。
(3) The total light transmittance (%) and haze (%) of the coating film applied to the transparent polyester film were measured using a direct reading haze computer manufactured by Suga Test Instruments Co., Ltd.

l呼@立1 本発明による導電性無水ケイ酸は表−1から明らかなよ
うに、粉体抵抗が低く樹脂媒体に配合した堝きは透明性
及び導電性とも良好であった。
As is clear from Table 1, the conductive silicic anhydride according to the present invention had low powder resistance, and when mixed in a resin medium, the silica had good transparency and conductivity.

( 外4名 》( 4 people outside 》

Claims (1)

【特許請求の範囲】 1、無水ケイ酸粒子の表面に、酸化アンチモンを1〜2
0重量%含有し、実質的に残りが酸化錫からなる被覆層
を、無水ケイ酸に対して50〜300重量%有すること
を特徴とする導電性無水ケイ酸微粉末。 2、無水ケイ酸の粒子径が1次粒子の平均径で15nm
以上であることを特徴とする特許請求の範囲第1項に記
載の導電性無水ケイ酸微粉末。 3、無水ケイ酸を分散させた加熱水溶液に、塩化錫と塩
化アンチモンとを溶解した塩酸溶液とアルカリとを懸濁
液のpHが3〜9を維持するように同時添加することに
よって、酸化アンチモンを1〜20重量%含有し、実質
的に残りが酸化錫からなる被覆層を無水ケイ酸に対して
50〜300重量%有することを特徴とする導電性無水
ケイ酸微粉末の製造方法。
[Claims] 1. 1 to 2 antimony oxides are added to the surface of the silicic anhydride particles.
1. A conductive fine powder of silicic anhydride, characterized in that the coating layer contains 50 to 300% by weight of silicic anhydride, with the remainder substantially consisting of tin oxide. 2. The particle size of silicic anhydride is 15 nm as the average diameter of primary particles.
The conductive silicic anhydride fine powder according to claim 1, which is as follows. 3. Antimony oxide is produced by simultaneously adding a hydrochloric acid solution in which tin chloride and antimony chloride are dissolved and an alkali to a heated aqueous solution in which silicic anhydride is dispersed so as to maintain the pH of the suspension between 3 and 9. 1. A method for producing conductive silicic acid anhydride fine powder, characterized in that the conductive silicic acid anhydride fine powder contains 1 to 20% by weight of the anhydrous silicic acid, and has a coating layer substantially consisting of tin oxide in an amount of 50 to 300% by weight based on the silicic anhydride.
JP1017590A 1990-01-19 1990-01-19 Electrically conductive silicic anhydride fine powder and its production Pending JPH03215311A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1017590A JPH03215311A (en) 1990-01-19 1990-01-19 Electrically conductive silicic anhydride fine powder and its production

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1017590A JPH03215311A (en) 1990-01-19 1990-01-19 Electrically conductive silicic anhydride fine powder and its production

Publications (1)

Publication Number Publication Date
JPH03215311A true JPH03215311A (en) 1991-09-20

Family

ID=11742950

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1017590A Pending JPH03215311A (en) 1990-01-19 1990-01-19 Electrically conductive silicic anhydride fine powder and its production

Country Status (1)

Country Link
JP (1) JPH03215311A (en)

Similar Documents

Publication Publication Date Title
JP3524550B2 (en) Improved process for producing silica-coated inorganic particles
TW455568B (en) Process for the preparation of acicular electroconductive tin oxide fine particles
JP3357107B2 (en) White conductive titanium dioxide powder and method for producing the same
JPH04228426A (en) Acicular or plate lower titanium oxide and its production
JPH08501764A (en) Conductive material and method
JP3305405B2 (en) Rod-shaped fine particle conductive titanium oxide and method for producing the same
JP3609159B2 (en) Acicular conductive antimony-containing tin oxide fine powder and method for producing the same
JPS61141616A (en) Electrically conductive titanium dioxide fine powder, and production thereof
JPH09249820A (en) White electroconductive powder and its production
JPH03215311A (en) Electrically conductive silicic anhydride fine powder and its production
JP3647929B2 (en) Method for producing conductive antimony-containing tin oxide fine powder
JPS6049136B2 (en) Manufacturing method of white conductive composite powder
JP3365883B2 (en) Needle-like conductive tin oxide fine powder and method for producing the same
JP3515625B2 (en) Needle-like conductive tin oxide fine powder and method for producing the same
JP4688286B2 (en) Titanium dioxide pigment and method for producing the same
JPH0370322B2 (en)
JPH0789721A (en) Spherical conductive titanium compound and its production
JPH0292824A (en) Acicular low oxidized titanium and production thereof
JPS63285118A (en) Powder of complex electroconductors and its production
JP2844012B2 (en) Conductive fine powder and method for producing the same
JP2004143022A (en) Tin-containing indium oxide particle and its production method, conductive coating film, and conductive sheet
JPH10316429A (en) Electroconductive titanium oxide, production thereof, and plastic composition containing the same
JPH06192592A (en) Conductive filler and its preparation
JP3394556B2 (en) Conductive barium sulfate filler and method for producing the same
JPH08217446A (en) Strip type (leaflet) electroconductive powder, production and use thereof