JPH03215246A - Shimming method by iron shim - Google Patents

Shimming method by iron shim

Info

Publication number
JPH03215246A
JPH03215246A JP2009875A JP987590A JPH03215246A JP H03215246 A JPH03215246 A JP H03215246A JP 2009875 A JP2009875 A JP 2009875A JP 987590 A JP987590 A JP 987590A JP H03215246 A JPH03215246 A JP H03215246A
Authority
JP
Japan
Prior art keywords
magnetic field
iron piece
iron
function system
phik
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2009875A
Other languages
Japanese (ja)
Inventor
Yuji Inoue
井上 勇二
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
GE Healthcare Japan Corp
Original Assignee
Yokogawa Medical Systems Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yokogawa Medical Systems Ltd filed Critical Yokogawa Medical Systems Ltd
Priority to JP2009875A priority Critical patent/JPH03215246A/en
Publication of JPH03215246A publication Critical patent/JPH03215246A/en
Pending legal-status Critical Current

Links

Landscapes

  • Magnetic Resonance Imaging Apparatus (AREA)

Abstract

PURPOSE:To enhance operation speed by reducing the processing quantity of the installation spot by calculating the mounting position of an iron piece correcting the non-uniformity of a magnetic field before the delivery from a factory by measuring the same in such a state that an iron piece having fixed thickness is placed at that position and calculating the thickness of the iron piece corresponding to each function system on the installation spot. CONSTITUTION:The distribution of the magnetic fields at respective measuring points of an iron piece having specific thickness is measured in a factory to form a data file and (k) of a function system phik is set to 1 and the value of the magnetic field at the measuring points in the function system phik are substituted for the non-uniformity (b) of the magnetic field as the value of the magnetic field of a calculation formula from the data file. Next, the thickness of the iron piece at each position realizing each function system phik is calculated using a linear algorithm and a shim group is set and, when (k) is not equal to the max. value, k=k+1 is formed to return to the origin. After a static magnetic field coil is arranged on the installation spot, the distribution b1 of the non-uniformity of the magnetic field is measured and, when the magnetic field is not uniform, the coefficient Ck corresponding to phik when the measured magnetic field b1 is made approximate in the function system #phik is calculated by a linear programming algorithm and the shim group of the function system phik having the corresponding thickness is arranged. When the magnetic field is uniform, a measuring procedure is completed.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明はMHI(磁気共鳴画像撮像装置)の主磁石の鉄
シムによるシミングに関し、特に設置現場において速や
かに実施できる鉄シムによるシミング方法に関する。
DETAILED DESCRIPTION OF THE INVENTION (Field of Industrial Application) The present invention relates to shimming of the main magnet of an MHI (magnetic resonance imaging apparatus) using iron shims, and particularly to a shimming method using iron shims that can be quickly implemented at an installation site.

(従来の技術) 原子核を静磁場中におくと、原子核は磁界の強さと原子
核の種類によって異なる定数に比例した角速度で歳差運
動をする。この静磁場に垂直な軸に前記の周波数の高周
波回転磁場を印加すると磁気共鳴が起こり、前記定数を
有する特定の原子核の集団は共鳴条件を満足する高周波
磁場によって準位間の遷移を生じ、エネルギー準位の高
い方の準位に遷移する。共鳴後高い準位に励起された原
子核は低い準位に戻ってエネルギーの放射を行う。
(Prior art) When an atomic nucleus is placed in a static magnetic field, it precesses at an angular velocity proportional to a constant that varies depending on the strength of the magnetic field and the type of nucleus. Magnetic resonance occurs when a high-frequency rotating magnetic field of the above-mentioned frequency is applied to an axis perpendicular to this static magnetic field, and a group of specific atomic nuclei having the above-mentioned constant undergoes a transition between levels due to the high-frequency magnetic field that satisfies the resonance condition, resulting in energy Transition to the higher level. After resonance, the atomic nucleus excited to a higher level returns to a lower level and radiates energy.

MHIはこの特定の原子核による核磁気共鳴(以下NM
Rという)現象を観察して被検体の断層像を撮像する装
置である。
MHI is nuclear magnetic resonance (NM
This is a device that observes a phenomenon (referred to as R) and captures a tomographic image of a subject.

このMHIにおいて、前記の静磁場を作るための主磁石
の作る磁場は少なくとも被検体の観察しようとする範囲
においては20pp■若しくはそれ以下の均一度が要求
される。この要求を達成するためにシムを用いて磁場の
不均一を補正するが、その方法としては複数のシムコイ
ルを用いる電流シムによる方法と複数の鉄片を磁場内に
おいて補正する鉄シムによる方法がある。シムコイルを
用いる方法は通常16〜18のシムコイルをおいてそれ
ぞれに電源を接続して電流を流す必要があり、設備が比
較的大掛りになり、マグネットのコストアップの原因と
なっている。鉄シムは単に鉄片を置くだけなので装置の
規模は変らないという利点があるため、逐次鉄シムを用
いたシミングが行われるようになっている。この鉄シム
を用いるシミングでは、鉄シムの設置場所、鉄シムの厚
さ等を選択して最適シミングを行う必要がある。
In this MHI, the magnetic field created by the main magnet for creating the static magnetic field is required to have a uniformity of 20 pp or less at least in the range where the object is to be observed. To achieve this requirement, shims are used to correct the non-uniformity of the magnetic field, and there are two methods: a current shim method using multiple shim coils, and an iron shim method that corrects multiple iron pieces within the magnetic field. The method using shim coils usually requires 16 to 18 shim coils, each of which is connected to a power source to supply current, which requires relatively large equipment and increases the cost of the magnet. Iron shims have the advantage that the scale of the equipment does not change because iron shims are simply placed, so shimming using iron shims is now being performed sequentially. In shimming using this iron shim, it is necessary to select the installation location of the iron shim, the thickness of the iron shim, etc., and perform optimal shimming.

従来のシミングの方法として以下に述べる方法がある。Conventional shimming methods include the following methods.

1.球関数展開法 静磁場用コイル内の磁場は球関数の各項に展開すること
ができ、このうち、低次項が不均一の主成分となるため
、各項に対応する磁場成分を発生するようにシムコイル
を作る。このシムコイルの関数系φ、として第6図に示
すようなものが用いられる。第6図に示す関数系は測定
された磁場曲線を補正するための曲線を関数φ1とした
もので、図では、φ1が2軸方向の1次の直線、φ2が
2軸方向の2次曲線、φkが2軸とX軸の積の曲線のそ
れぞれ関数を示している。この方法は計算量が少ないた
め、通常の処理能力を有する計算機を用いて実用的な速
度で処理できる。
1. Spherical function expansion method The magnetic field in the static magnetic field coil can be expanded into each term of a spherical function. Among these, the lower-order terms are the main non-uniform components, so the magnetic field component corresponding to each term is generated. Make a shim coil. As the function system φ of this shim coil, the one shown in FIG. 6 is used. The function system shown in Figure 6 has a function φ1 as a curve for correcting the measured magnetic field curve. , φk indicate the functions of the product curves of the two axes and the X axis, respectively. Since this method requires a small amount of calculation, it can be processed at a practical speed using a computer with normal processing power.

2.最小二乗法 鉄片をコイル表面に細分化して配置するシミングにおい
て、細分化領域に置かれた磁気ベクトルを持つ鉄片がイ
メージ領域の各点に作る磁場を予め計算しておき、均一
度測定データから補正に必要とする各点の磁気ベクトル
量を最小二乗法で求める。
2. In shimming, in which pieces of iron are subdivided and placed on the coil surface, the magnetic field created at each point in the image area by a piece of iron with a magnetic vector placed in the subdivision area is calculated in advance and corrected from the uniformity measurement data. Find the amount of magnetic vector at each point required for this using the least squares method.

3.線形計画法を用いる方法 前記最小二乗法と同様に細分化領域に置かれた各鉄片が
イメージ領域の各点に作る磁場を予めデータファイルと
して有し、均一度測定デ−夕から補正に最適な鉄片の厚
さを線形計画法で求める。
3. Method using linear programming Similar to the least squares method described above, the magnetic field created at each point in the image area by each iron piece placed in the subdivided area is stored in advance as a data file, and the optimal one for correction is calculated from the uniformity measurement data. Find the thickness of the iron piece using linear programming.

(発明が解決しようとする課題) ところで、上記の方法には次のような問題点がある。(Problem to be solved by the invention) However, the above method has the following problems.

1.球関数展開法 前記のように求めた関数系のシムコイルに代えて鉄シム
を用いる場合、その鉄片の配置を求めるのは難しく、目
的とする成分以外の磁場成分が発生してしまい、計算予
想の均一度まで補正するのに何度も繰り返して測定する
所謂試行錯誤を繰り返し行う必要がある。
1. Spherical function expansion method When using iron shims in place of the shim coils of the function system determined as described above, it is difficult to determine the arrangement of the iron pieces, and magnetic field components other than the desired components are generated, resulting in calculation predictions. In order to correct the uniformity, it is necessary to repeat the so-called trial and error process of repeating measurements many times.

2.最小二乗法 この方式は電流シムとは異なり負の厚みは存在しないた
め、負の厚みの解に対しては特別の工夫が必要である。
2. Least Squares Method This method differs from current shims in that there are no negative thicknesses, so special measures are required for solutions with negative thicknesses.

又、鉄片は300〜400個の位置に分割されており、
それに対応した個数の連立方程式を解く必要があって、
下記のような欠点がある。
In addition, the iron piece is divided into 300 to 400 positions,
It is necessary to solve the corresponding number of simultaneous equations,
It has the following drawbacks.

(イ)倍精度という特別の計算精度が要求される。(b) A special calculation precision called double precision is required.

(口)計算量が膨大で、処理速度の速い計算機が要求さ
れる。
(Example) The amount of calculation is enormous, and a computer with high processing speed is required.

3.線形計画法を用いる方法 シム個数が多いため、処理速度が大きな課題となり処理
速度の速い計算機が必要となる。
3. Method using linear programming Because the number of shims is large, processing speed becomes a major issue and a computer with high processing speed is required.

本発明は上記の点に鑑みてなされたもので、その目的は
、設置現場における鉄シムの配置において、繰り返し測
定の回数を少なくし、計算量も少なくてすみ、演算速度
を上げることのできる鉄シムによるシミング方法を実現
することにある。
The present invention has been made in view of the above points, and its purpose is to reduce the number of repeated measurements, reduce the amount of calculation, and increase the calculation speed when arranging iron shims at the installation site. The objective is to realize a shimming method using shims.

(課題を解決するための手段) 前記の課題を解決する本発明は、予め得られた各鉄片が
磁場測定領域内で発生する磁場分布データファイルを用
いて磁場を球関数展開法で近似した各関数φkに対応す
るシムグループを線形計画法アルゴリズムにより求める
工場出荷前に行う段階と、磁場を測定しその均一度を調
べる段階と、前記磁場測定段階で得られたデータから線
形計画アルゴリズムを用いて磁場関数φkの各項の係数
を求める段階と、前記各項の係数に対応した厚みを持つ
各関数系のシムグループを配置する段階とから成る設置
現場において行う段階とから成ることを特徴とするもの
である。
(Means for Solving the Problems) The present invention solves the above-mentioned problems, and each piece of iron has a magnetic field distribution data file generated in the magnetic field measurement area obtained in advance. A step in which a shim group corresponding to the function φk is determined by a linear programming algorithm before shipment from the factory, a step in which the magnetic field is measured and its homogeneity is examined, and a linear programming algorithm is used from the data obtained in the magnetic field measurement step. The method is characterized by comprising a step of determining the coefficient of each term of the magnetic field function φk, and a step of arranging a shim group of each function system having a thickness corresponding to the coefficient of each term, which is performed at the installation site. It is something.

(作用) 工場出荷前に磁場不均一を補正する鉄片の取り付け位置
を各鉄片取り付け位置に一定厚みの鉄片を置いて測定す
ることにより求め、設置現場では前記段階で求められた
各関数系に対応する鉄片の厚みを求めて、設置現場にお
ける処理量を減少させて演算速度の向上を計る。
(Function) Before shipping from the factory, the installation positions of the iron pieces that correct magnetic field inhomogeneity are determined by placing iron pieces of a certain thickness at each iron piece installation position and measuring them, and at the installation site, each function system determined in the above step is used. By determining the thickness of the iron piece to be used, the amount of processing at the installation site can be reduced and calculation speed can be improved.

(実施例) 以下、図面を参照して本発明の実施例を詳細に説明する
(Example) Hereinafter, an example of the present invention will be described in detail with reference to the drawings.

第1図は本発明の一実施例のMRI設置場所の環境によ
る磁場不均一を補正するための鉄シムによる磁場補正の
実施手順のフローチャート、第2図は工場において行う
磁場補正の実施手順のフローチャートである。フローチ
ャートによって実施手順の説明を行う前に、静磁場コイ
ルとそれに取り付ける鉄シムについて第3図によりその
一例を説明する。図において、(イ)図は正面図、(口
)図は側面図、(ハ)図は鉄片を取り付けるためのトレ
ーの図である。図において、1は被検体に静磁場を加え
るための静磁場コイルで、コイルは図示の円形に沿って
巻かれている。2は鉄片3をねじ止め等の方法により取
り付けるためのプラスチック製のトレー、4はトレー2
上に鉄片3を取り付けるための鉄片取り付け位置である
。鉄片3は斜線を入れることによって示されている。
Fig. 1 is a flowchart of the procedure for performing magnetic field correction using iron shims to correct magnetic field non-uniformity due to the environment of the MRI installation location according to an embodiment of the present invention, and Fig. 2 is a flowchart of the procedure for implementing magnetic field correction performed in a factory. It is. Before explaining the implementation procedure using a flowchart, an example of a static magnetic field coil and an iron shim attached thereto will be explained with reference to FIG. In the figures, (a) is a front view, (open) is a side view, and (c) is a view of a tray for attaching iron pieces. In the figure, reference numeral 1 denotes a static magnetic field coil for applying a static magnetic field to the subject, and the coil is wound along the illustrated circle. 2 is a plastic tray for attaching the iron piece 3 by a method such as screwing; 4 is the tray 2;
This is the iron piece attachment position for attaching the iron piece 3 on top. The iron piece 3 is indicated by hatching.

この静磁場コイル1において、トレー2は円周上に30
°間隔に12個取り付けられている。トレー2上には鉄
片3を取り付ける鉄片取り付け位置4が23個設けられ
ていて、結局、鉄片は276個取り付けることができる
ようになっている。
In this static magnetic field coil 1, the tray 2 has 30
There are 12 attached at ° intervals. There are 23 iron piece mounting positions 4 on the tray 2 to which iron pieces 3 are attached, so that in the end, 276 iron pieces can be attached.

静磁場コイル1によって得られる磁場の均一度を所望の
値にするために、鉄片3を鉄片取り付け位置4のどこに
取り付けるか、又、取り付ける鉄片の厚みを幾らにする
かをアルゴリズムによって計算を行って求める。
In order to set the uniformity of the magnetic field obtained by the static magnetic field coil 1 to a desired value, an algorithm is used to calculate where the iron piece 3 should be attached to the iron piece attachment position 4 and how thick the iron piece should be attached. demand.

次に、鉄片3の取り付け位置、取り付ける鉄片3の厚み
等を求めるために磁場の不均一度を求めるが、その測定
の方法は通常NMRプローブを用いて、目的とするシミ
ング領域(例えば直径40釦の球とか直径35(1)の
球等)の各点の磁場を測定する。この測定点の一例を第
4図に示す。図において、(イ)図は静磁場コイル1中
のシミングによって磁場を均一にしようとするシミング
領域5を示した図、(口)図はシミング領域5を13の
平面に分割した状態を示す図、(ハ)図は(口)図の1
3に分割された平面の1つの平面の図である。シミング
領域5は、(イ)図に示すように、例えば直径35cm
の球( 3 5 cm  d.s.v)又は40(1)
d.s.vの球によって設定される。このシミング領域
5を、(口)図に示すように、静磁場コイル1の円筒軸
に直交する13個の平面で截って分割し、(ハ)図に示
すように各1個の平面を15゜間隔の24点に分割して
、球体のシミング領域5から13X24−312の点を
得て測定点6として、各測定点6において測定する。
Next, the non-uniformity of the magnetic field is determined in order to determine the installation position of the iron piece 3, the thickness of the iron piece 3 to be attached, etc. The measurement method is usually to use an NMR probe to measure the desired shimming area (for example, a diameter of 40 buttons). , a sphere with a diameter of 35(1), etc.).Measure the magnetic field at each point. An example of this measurement point is shown in FIG. In the figure, (a) is a diagram showing the shimming area 5 in which the magnetic field is made uniform by shimming in the static magnetic field coil 1, and (b) is a diagram showing the shimming area 5 divided into 13 planes. , (c) Figure is (mouth) Figure 1
FIG. 3 is a diagram of one plane divided into three planes; The shimming area 5 has a diameter of 35 cm, for example, as shown in FIG.
ball (35 cm d.s.v.) or 40(1)
d. s. set by the sphere of v. This shimming area 5 is cut and divided into 13 planes perpendicular to the cylindrical axis of the static magnetic field coil 1 as shown in the figure (c), and one plane is divided into each plane as shown in the figure (c). Divide into 24 points at 15° intervals, obtain 13×24-312 points from the spherical shimming area 5 as measurement points 6, and measure at each measurement point 6.

次に本実施例において用いる線形計画法のアルゴリズム
を説明する。第5図は或る時点において静磁場コイルの
磁場を前記の312点において測定した磁場の不均一度
b,の分布を示すグラフである。図において、横軸には
測定点の位置、縦軸には磁場の不均一度を取ってある。
Next, the linear programming algorithm used in this embodiment will be explained. FIG. 5 is a graph showing the distribution of the non-uniformity b of the magnetic field obtained by measuring the magnetic field of the static magnetic field coil at the 312 points mentioned above at a certain point in time. In the figure, the horizontal axis represents the position of the measurement point, and the vertical axis represents the non-uniformity of the magnetic field.

ETOLは不均一度の設定目標値で、例えば10ppm
に設定された値である。この図が示すのは各測定点jに
おける磁場不均一の値をb,′に移して、ETOLの幅
の中に納めようとするものである。
ETOL is a set target value of non-uniformity, for example 10 ppm
This is the value set to . This figure shows an attempt to transfer the value of the magnetic field inhomogeneity at each measurement point j to b,' to fit it within the width of the ETOL.

従って各点jで測定した磁場の値(磁場不均一度)b,
′は次の範囲にあればよい。
Therefore, the value of the magnetic field measured at each point j (magnetic field inhomogeneity) b,
′ should be in the following range.

2 2 ここで、b,′はΣA1,,・X1 で表わされる例えばiの位置にあるL龍厚の鉄片によっ
て生ずるjの位置で測定した磁場の値である。この線形
計画法では、次式の制約条件においてシムの使用個数を
最小限にしようとするものである。
2 2 Here, b,' is the value of the magnetic field, expressed as ΣA1, .X1, measured at position j, generated by an iron piece of L length at position i, for example. This linear programming method attempts to minimize the number of shims used under the following constraint.

2 次に、第2図に示すフローチャートを説明する。2 Next, the flowchart shown in FIG. 2 will be explained.

第2図のフローチャートは、前記球関数展開法で得られ
る各関数φkを実現する各位置の鉄片厚の最適解を線形
計画法により予め求めておき、各関数φkに対応したシ
ムグループを設定する手順を示したものである。各関数
において各シムの位置における測定値は重ね合わせの原
理により加算して全シムの磁場の分布としても差し支え
ないものである。この場合、276の各位置における1
e+厚の鉄片の312の各測点における磁場の分布A,
.1は予め測定してデータファイルとして持つておくも
のとする。
The flowchart in Figure 2 shows that the optimum solution for the thickness of the iron piece at each position to realize each function φk obtained by the spherical function expansion method is determined in advance by linear programming, and a shim group corresponding to each function φk is set. This shows the steps. In each function, the measured values at the positions of each shim can be added together according to the principle of superposition to obtain the distribution of the magnetic field of all shims. In this case, 1 at each of 276 positions
Distribution A of the magnetic field at each of the 312 measurement points of the iron piece of e + thickness,
.. 1 shall be measured in advance and kept as a data file.

ステップ1 φ=  (rI)の関数系φkのkを1にして、関数φ
1について計算する。
Step 1 Set k of the function system φk of φ= (rI) to 1, and function φ
Calculate for 1.

ステップ2 データファイルから関数系φkにおける測定点j−1〜
312の312点における磁場の値を計算式上の磁場の
値としてb(r+)に代入する。
Step 2 Measurement points j-1~ in the function system φk from the data file
The value of the magnetic field at the 312 points of 312 is substituted into b(r+) as the value of the magnetic field in the calculation formula.

この一例を説明すると、φ1をZ一次関数として、b 
(Z j) −CZ j       ・・・(2)こ
こで、 j・・・測定点1〜312 Zj・・・測定点jてのZ座標の値 C・・・定数 である。
To explain this example, if φ1 is a Z linear function, b
(Z j) -CZ j (2) where, j...Measurement points 1 to 312 Zj...Value of Z coordinate at measurement point j C...A constant.

ステップ3 既述の線形アルゴリズムを用いて、各関数系φkを実現
するための各位置での鉄片厚X1を計算し、シムグル゛
−プSkを設定する。
Step 3 Using the previously described linear algorithm, calculate the iron piece thickness X1 at each position to realize each function system φk, and set the shim group Sk.

ステップ4 kが最大値即ち16に等しいかどうか調べる。Step 4 Check whether k is equal to the maximum value, ie 16.

等しければ終了し、等しくなければステップ5に進む。If they are equal, the process ends; if they are not equal, proceed to step 5.

ステップ5 kに1を加えてk−k+1とし、ステップ2に戻る。φ
kをφ2とした場合2軸の2次関数系(第6図の22)
について同様の計算を行い、シムグループS,を求める
。以上の手順は工場で行われるもので、276個の鉄片
の各測定点312個について測定するため時間が掛かる
が、工場段階の測定なので差し支えはない。
Step 5 Add 1 to k to obtain k-k+1 and return to step 2. φ
When k is φ2, two-axis quadratic function system (22 in Figure 6)
A similar calculation is performed for shim group S, to obtain the shim group S. The above procedure is performed in a factory, and it takes time to measure each of 312 measurement points on 276 pieces of iron, but this is not a problem since it is a factory-level measurement.

次に設置現場において第2図のフロー2て求めたシムグ
ループSkの各項の大きさを求める手順を第1図のフロ
ーチャートにより説明する。
Next, the procedure for determining the size of each term of the shim group Sk determined in flow 2 of FIG. 2 at the installation site will be explained with reference to the flowchart of FIG.

ステップ1 静磁場コイルを設置場所に設置した後、その磁場の不均
一度の分布b,をj−1〜312の測定点において測定
する。
Step 1 After installing the static magnetic field coil at the installation location, the distribution b of the non-uniformity of the magnetic field is measured at measurement points j-1 to 312.

ステップ2 測定値により磁場の均一度を調べる。均一に分布してい
ればこの測定手順は終了する。均一でなければステップ
3に進む。
Step 2 Check the uniformity of the magnetic field using the measured values. If the distribution is uniform, this measurement procedure ends. If it is not uniform, proceed to step 3.

ステップ3 線形計画法アルゴリズムを用いて、測定磁場b,をφk
で近似した場合のφ1に対応した係数C,を求める。
Step 3 Using the linear programming algorithm, set the measured magnetic field b, to φk
Find the coefficient C corresponding to φ1 when approximated by .

ステップ4 ステップ3てCkが求められたならば各C,に対応した
厚みを持つ関数系φkのシムグループを配置する。
Step 4 Once Ck has been determined in step 3, a shim group of the function system φk having a thickness corresponding to each C is placed.

ステップ5 ステップ4て得られたシムグループを配置して磁場の不
均一度を312の測定点において測定する。
Step 5 The shim group obtained in Step 4 is placed and the non-uniformity of the magnetic field is measured at 312 measurement points.

ステップ6 測定値により磁場の均一度を調べる。均一に分布してい
ればこの測定手順は終了する。均一てなければステップ
3に戻る。
Step 6 Check the uniformity of the magnetic field using the measured values. If the distribution is uniform, this measurement procedure ends. If it is not uniform, return to step 3.

以上説明したように本実施例によれば、設置現場におけ
る測定は不均一磁場b(r+)を高々16項程度で表現
された関数系で行うため、シミング処理時間が極めて短
くてすむようになる。
As described above, according to this embodiment, the measurement at the installation site is performed using a function system expressing the nonuniform magnetic field b(r+) with about 16 terms at most, so that the shimming processing time can be extremely short.

尚、本発明は上記の実施例に限定されるものではない。Note that the present invention is not limited to the above embodiments.

実施例ではシムの位置を276個として説明したが、精
度を上げるためにこの数を更に多くしてもよく、又、精
度を落としても良い場合はこの数を少なくしても差し支
えない。又、関数系φkは16個でなく、更に多くして
もよい。
In the embodiment, the number of shim positions has been described as 276, but this number may be further increased to improve accuracy, or this number may be decreased if lower accuracy is acceptable. Further, the number of function systems φk is not limited to 16, but may be increased.

更に、測定点を312に限定せず、更に増やしてもよい
。測定点数を増やせば磁場の均一度が一層改善される。
Furthermore, the number of measurement points is not limited to 312, and may be further increased. Increasing the number of measurement points will further improve the uniformity of the magnetic field.

(発明の効果) 以上詳細に説明したように本発明によれば、静磁場コイ
ル設置現場において行う鉄シムのシミングにおいて、測
定回数が少なく、従って計算量も少なく、処理速度を上
げることができるようになり、実用上の効果は大きい。
(Effects of the Invention) As described above in detail, according to the present invention, in shimming iron shims performed at the site where static magnetic field coils are installed, the number of measurements is small, the amount of calculation is also small, and the processing speed can be increased. The practical effect is great.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の設置現場における鉄シム設定手順のフ
ローチャート、 第2図は工場段階における鉄シム取り付け位置決定手順
のフローチャート、 第3図は鉄シム取り付け位置の説明図、第4図は磁場測
定の測定点の説明図、 第5図は各測定点における磁場の不均一度の分布の説明
図、 第6図は磁場不均一補正の関数系の説明図である。
Figure 1 is a flowchart of the iron shim setting procedure at the installation site of the present invention, Figure 2 is a flowchart of the iron shim installation position determination procedure at the factory stage, Figure 3 is an explanatory diagram of the iron shim installation position, and Figure 4 is the magnetic field. FIG. 5 is an explanatory diagram of the distribution of magnetic field non-uniformity at each measurement point; FIG. 6 is an explanatory diagram of the function system for magnetic field non-uniformity correction.

Claims (1)

【特許請求の範囲】  予め得られた各鉄片が磁場測定領域内で発生する磁場
分布データファイルを用いて磁場を球関数展開法で近似
した各関数φ_kに対応するシムグループを線形計画法
アルゴリズムにより求める工場出荷前に行う段階と、 磁場を測定しその均一度を調べる段階と、 前記磁場測定段階で得られたデータから線形計画アルゴ
リズムを用いて磁場関数φ_kの各項の係数を求める段
階と、 前記各項の係数に対応した厚みを持つ各関数系のシムグ
ループを配置する段階とから成る設置現場において行う
段階とから成ることを特徴とする鉄シムによるシミング
方法。
[Claims] Using a magnetic field distribution data file generated in the magnetic field measurement region of each iron piece obtained in advance, a shim group corresponding to each function φ_k is created by approximating the magnetic field by the spherical function expansion method using a linear programming algorithm. a step of measuring the magnetic field and examining its uniformity; a step of calculating the coefficient of each term of the magnetic field function φ_k from the data obtained in the magnetic field measurement step using a linear programming algorithm; A shimming method using iron shims, comprising the steps of arranging shim groups of each function system having thicknesses corresponding to the coefficients of each term, and performing the shims at an installation site.
JP2009875A 1990-01-19 1990-01-19 Shimming method by iron shim Pending JPH03215246A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009875A JPH03215246A (en) 1990-01-19 1990-01-19 Shimming method by iron shim

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009875A JPH03215246A (en) 1990-01-19 1990-01-19 Shimming method by iron shim

Publications (1)

Publication Number Publication Date
JPH03215246A true JPH03215246A (en) 1991-09-20

Family

ID=11732327

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009875A Pending JPH03215246A (en) 1990-01-19 1990-01-19 Shimming method by iron shim

Country Status (1)

Country Link
JP (1) JPH03215246A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007500050A (en) * 2003-05-30 2007-01-11 コーニンクレッカ フィリップス エレクトロニクス エヌ ヴィ Magnetic resonance imaging scanner with molded fixed shims
CN106556813A (en) * 2016-11-25 2017-04-05 上海辰光医疗科技股份有限公司 The linear hybrid optimization method of active shimming coils in a kind of magnetic resonance system

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007500050A (en) * 2003-05-30 2007-01-11 コーニンクレッカ フィリップス エレクトロニクス エヌ ヴィ Magnetic resonance imaging scanner with molded fixed shims
CN106556813A (en) * 2016-11-25 2017-04-05 上海辰光医疗科技股份有限公司 The linear hybrid optimization method of active shimming coils in a kind of magnetic resonance system
CN106556813B (en) * 2016-11-25 2021-09-24 上海辰光医疗科技股份有限公司 Linear mixed optimization method of active shimming coil in magnetic resonance system

Similar Documents

Publication Publication Date Title
JP3431203B2 (en) Method of shimming magnetic field in examination space
JP4902787B2 (en) Magnetic field adjustment for MRI equipment
US9588200B2 (en) Method for adjusting static magnetic field homogeneity, static magnetic field generation device for magnetic resonance imaging, magnetic field adjustment system, and program
JP6001784B2 (en) Magnetic field adjustment support apparatus, magnetic field adjustment support method, MRI apparatus, and magnet apparatus
EP1845387B1 (en) Magnetic resonance imaging apparatus and static magnetic field correction method
EP0179370B1 (en) Optimal field inhomogeneity correction coil operation for nmr magnets
US6819108B2 (en) Method of magnetic field controlled shimming
WO2011065357A1 (en) Magnetic field adjustment method for mri device
US6181137B1 (en) Unified shimming for magnetic resonance superconducting magnets
JPH0317367B2 (en)
JP6639596B2 (en) Magnetic field adjustment method
CN106249184A (en) A kind of dynamic auto method for shimming for nuclear magnetic resonance
JP3677064B2 (en) Method for shimming magnetic field in test space of nuclear spin resonance apparatus
US10156619B2 (en) Magnetic resonance imaging system, static magnetic field homogeneity adjusting system, magnetic field homogeneity adjusting method, and magnetic field homogeneity adjusting program
US7202662B2 (en) Correction of the effect of gradient field non-linearities in phase contrast MRI
US10379183B2 (en) Magnetic moment arrangement calculation method for magnetic field adjustment, magnetic field adjustment device and program
JPH03215246A (en) Shimming method by iron shim
CN108802644B (en) Shimming method and device for gradient coil
US11815575B2 (en) Magnetic resonance imaging device, computer-implemented method for operating a magnetic resonance imaging device, computer program and electronically readable storage medium
JPH0418856B2 (en)
JP6392141B2 (en) Magnetic field uniformity adjustment method, magnetic field uniformity adjustment program, and magnetic field uniformity adjustment apparatus
Frollo et al. A least square method for measurement and optimisation in selected physical experiments
CN114764129A (en) Method for calculating central position of magnetic field in magnet
JPH0532882B2 (en)
JPH04200442A (en) Magnetic resonance apparatus