JPH03215010A - Vulcanizing method of elastomer article - Google Patents

Vulcanizing method of elastomer article

Info

Publication number
JPH03215010A
JPH03215010A JP2262164A JP26216490A JPH03215010A JP H03215010 A JPH03215010 A JP H03215010A JP 2262164 A JP2262164 A JP 2262164A JP 26216490 A JP26216490 A JP 26216490A JP H03215010 A JPH03215010 A JP H03215010A
Authority
JP
Japan
Prior art keywords
tire
gas
temperature
vulcanization
vulcanizing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2262164A
Other languages
Japanese (ja)
Inventor
Michihito Kobayashi
小林 通人
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Rubber Industries Ltd
Original Assignee
Sumitomo Rubber Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Rubber Industries Ltd filed Critical Sumitomo Rubber Industries Ltd
Publication of JPH03215010A publication Critical patent/JPH03215010A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To attain a uniform vulcanizing degree, and further prevent positively under cure troubles or vulcanizing delays by discharging the heating medium filled in the inner space of an elastomer article within a mold, and alternatively replacing with a low temperature heating medium for cooling the temperature of the elastomer article. CONSTITUTION:The piping 115 at an outlet side having an orifice 119 is released for a predetermined time, and a heated mixture fluid of the steam and gas filled in the inner space 120 of a tire 104 within a mold 102 is discharged. And accompanying the discharge, from the piping 106 of an inlet side at the outside of the inner space 120 of the tire 104, a pressurized fluid not being heated flows alternatively into the inner space 120 of the tire and fills up the space 120. Namely, the high temperature mixture fluid in the inner space 120 of the tire is replaced with the low temperature pressurized fluid. Whereby, without producing any temperature differences at each phase of an elastomer article within the mold, the cooling is carried out effectively, and a uniformly vulcanizing degree can be obtained, thereby positively preventing troubles such as vulcanizing delays and the like.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明はエラストマー物品、特に車両用ゴムタイヤのい
わゆる、ガス加硫方法に関する.(従来の技術) 本出願人は、特開昭57−74142号公報において車
両用ゴムタイヤなどのエラストマー物品をガス加硫する
方法を大要次の通り開示した.即ち第6図(A)(B)
に示すように金型l内にタイヤ(但し、第6図のタイヤ
は加硫中又は加硫完了のタイヤを示す)2を装着すると
ともに、その内面にプラグ−3を沿わせ又はブラダー3
を使用せずにその内部空間6中に所定の温度と圧力のス
チーム、加熱ガスなどの加熱媒体を供給(この時「出」
側配管は閉状態にあり、従ってスチームは循環せず、い
わゆるデッドエンドにある)し、タイヤ2が加硫に必要
な基準温度に達したとき、または基準時間を経過したと
き、前記加熱媒体の供給を中止し、ついで前記加熱媒体
と同じかそれよりも高圧の加圧媒体(燃焼ガスあるいは
窒素ガスなど)を加硫機の中心機構4に設けられた吹出
し口5からタイヤの内部へ供給(このときも「出」側配
管は閉状態にあり、従ってガスは循環しない)し、この
高圧ガスによりタイヤ2の内部の圧力を同圧に維持又は
昇圧させ、加熱工程の残り時間終了まで保持させるよう
にして、加硫を行った後、タイヤカーカスプライとして
6−ナイロンを用いた場合又は6−ナイロン以外の材料
を用いたタイヤでも加硫度の調節が必要である場合には
、加熱工程後に冷却水をタイヤの内部空間6内に循環さ
せて、タイヤ2を所定の温度まで冷却し、この後、加熱
媒体と加圧媒体の混合流体又は加熱媒体と冷却水の混合
流体を排出ラインから排出(大気解放)し、次いで、バ
キュームによりブラダーを収縮させタイヤ2内から取外
すとともに金型1を解放し、加硫済タイヤ2を取出して
加硫工程を終了する。
DETAILED DESCRIPTION OF THE INVENTION (Industrial Field of Application) The present invention relates to a so-called gas vulcanization process for elastomeric articles, particularly rubber tires for vehicles. (Prior Art) The present applicant disclosed a method for gas vulcanization of elastomer articles such as rubber tires for vehicles in Japanese Patent Laid-Open No. 57-74142 as summarized below. That is, Fig. 6 (A) (B)
As shown in FIG. 6, a tire 2 (however, the tire in FIG. 6 shows a tire that is under vulcanization or a completed vulcanization tire) is installed in the mold 1, and a plug 3 is placed along the inner surface of the tire 2 or a bladder 3 is placed along the inner surface of the tire 2.
A heating medium such as steam or heating gas at a predetermined temperature and pressure is supplied into the internal space 6 without using a
(The side piping is in a closed state, so the steam does not circulate and is at a so-called dead end), and when the tire 2 reaches the reference temperature required for vulcanization or the reference time has elapsed, the heating medium is The supply is stopped, and then a pressurized medium (such as combustion gas or nitrogen gas) with a pressure equal to or higher than that of the heating medium is supplied into the tire from the outlet 5 provided in the central mechanism 4 of the vulcanizer ( At this time as well, the "output" side piping is closed, so the gas does not circulate), and the pressure inside the tire 2 is maintained at the same pressure or increased by this high-pressure gas until the end of the remaining time of the heating process. After vulcanization in this manner, if 6-nylon is used as the tire carcass ply, or if the degree of vulcanization needs to be adjusted even in tires made of materials other than 6-nylon, after the heating step. Cooling water is circulated in the inner space 6 of the tire to cool the tire 2 to a predetermined temperature, and then the mixed fluid of the heating medium and the pressurized medium or the mixed fluid of the heating medium and the cooling water is discharged from the discharge line. Then, the bladder is deflated by vacuum and removed from the inside of the tire 2, the mold 1 is released, and the vulcanized tire 2 is taken out to complete the vulcanization process.

(発明が解決しようとする課題) 上記ガス加硫の冷却工程において問題となる点は、冷却
水をタイヤ内部空間内に循環させたときに、混合流体(
ガス体)がタイヤ内部空間6の上部X部分に残留し、タ
イヤ2の上側サイドウォール部7の冷却を阻害し、その
結果、第4図に示すように上側サイドウォール部■と他
の部位、特に下側サイドウォール部■との間に大きな温
度差(例えば約50゜C)を生じ、この温度差は全加硫
工程が終了するまでに完全に解消されないため、タイヤ
の上下側部は互いに加硫度が異なることとなり、品質を
低下させるという問題がある。また、6−ナイロンのコ
ード強力低下防止の為の冷却時間が大幅に長くなり生産
性が著しく悪くなる。
(Problems to be Solved by the Invention) A problem in the cooling process of gas vulcanization is that when the cooling water is circulated within the tire internal space, the mixed fluid (
The gas (gas) remains in the upper part In particular, a large temperature difference (for example, about 50°C) occurs between the lower sidewall part and the lower sidewall part. This results in different degrees of vulcanization, leading to a problem of deterioration of quality. Furthermore, the cooling time required to prevent the strength of the 6-nylon cord from decreasing becomes significantly longer, resulting in significantly lower productivity.

更に、ガス加硫において冷却水を使用すると冷却水用パ
ルブからの洩れがタイヤ内部空間内に侵入しアンダーキ
ュアトラブル(加硫不足)が発生すること、又、冷却水
により配管やブラダーが冷やされるため後続の加硫工程
においてタイヤ内部空間内の加熱媒体(スチーム)のド
レン化を促進して加硫を遅らせてしまうという問題もあ
る。
Furthermore, if cooling water is used in gas vulcanization, leakage from the cooling water valve will enter the tire's internal space, causing undercure problems (insufficient vulcanization), and the cooling water will cool the piping and bladder. Therefore, there is a problem in that in the subsequent vulcanization step, the heating medium (steam) within the tire interior space is accelerated to drain, thereby delaying vulcanization.

又、上記ガス加硫方式の加熱工程において、問題となる
点は、スチームのドレイン化により発生したドレンが、
下型側サイドウオール部に溜まること、又は加圧媒体供
給後、スチームとガスの撹拌不足によりガスが下型側ビ
ード部から上型側ショルダ一部にわたる区域に溜まるこ
とで、加硫中のタイヤの上型側ビード部から上型側ショ
ルダ一部にわたる区域と下型側ビード部から下型側ショ
ルダ一部にわたる区域との間に、温度差が生ずることで
ある。従って、タイヤの加硫時間は、加硫の遅れる下型
対応部(例えば下型側のビード部やショルダ一部)に合
わせて決める必要がある。しかし、このやり方では、上
型対応部(例えば上型側のビード部やショルダ一部)は
、下型対応部にくらべて過加硫となるという問題がある
In addition, in the heating process of the gas vulcanization method mentioned above, the problem is that the drain generated by the steam drain is
Tires during vulcanization may accumulate in the sidewall of the lower mold side, or gas may accumulate in the area extending from the bead of the lower mold to part of the shoulder of the upper mold due to insufficient stirring of steam and gas after pressurized medium is supplied. A temperature difference occurs between a region extending from the upper mold side bead portion to a portion of the upper mold side shoulder and a region extending from the lower mold side bead portion to a portion of the lower mold side shoulder. Therefore, the vulcanization time of the tire needs to be determined in accordance with the portion corresponding to the lower mold where vulcanization is delayed (for example, a bead portion or a shoulder portion on the lower mold side). However, with this method, there is a problem that the upper mold corresponding portion (for example, a bead portion or a shoulder portion on the upper mold side) becomes over-vulcanized compared to the lower mold corresponding portion.

一方、加熱(スチーム)工程の時間を長くすればする程
、温度差は有るものの上下型対応部共に、温度は上昇す
る。しかしながらスチーム工程の時間を長くしすぎると
、上型対応部の温度が過上昇となり、上型側のカーカス
部のゴム及びコードの物性低下が生じる。
On the other hand, the longer the heating (steam) process is, the higher the temperature will be in both the upper and lower mold corresponding parts, although there is a temperature difference. However, if the time of the steam process is too long, the temperature of the upper mold corresponding portion will rise excessively, and the physical properties of the rubber and cord of the carcass portion on the upper mold side will deteriorate.

下型対応部について考えれば、スチーム工程の時間を長
くし、温度を一層上昇させることが、加硫時間短縮(生
産性向上)につながる。
Considering the lower mold corresponding part, lengthening the steam process time and raising the temperature further leads to shortening the vulcanization time (improving productivity).

しかしながら、上型対応部の温度過上昇を避ける為に、
つまり、上型対応部の温度をコントロールする為に、ス
チーム工程の時間を決定しているのが一般的である。
However, in order to avoid excessive temperature rise in the upper mold corresponding part,
In other words, the time of the steam process is generally determined in order to control the temperature of the upper mold corresponding part.

前記に示した様に、タイヤ製造工程の中の加硫工程の生
産性を向上させる(加硫時間短縮)為には、加硫の遅れ
る下型対応部(例えば、下型側ビード部・下型側ショル
ダ一部)の温度をいかに速く上昇させるか、更には、上
型対応部温度の過上昇をおさえて、構成材料の物性低下
を生じさせない温度まで、下型対応部を昇渇させるかと
いうことが、必要となる。
As mentioned above, in order to improve the productivity of the vulcanization process in the tire manufacturing process (shorten the vulcanization time), it is necessary to How quickly can we raise the temperature of the mold-side shoulder part), and furthermore, how can we raise and cool the lower mold-corresponding part to a temperature that prevents excessive rise in the temperature of the upper mold-corresponding part and prevents deterioration of the physical properties of the constituent materials? That is necessary.

本発明は上記の問題を解消して、タイヤ等のエラストマ
ー物品の各部位で温度差を生じることなく冷却して、均
一な加硫度を得ることができ、更に、アンダーキュアー
トラブルや加硫遅れを確実に防止できるエラストマー物
品の加硫方法を提供することを目的とする。
The present invention solves the above-mentioned problems and can cool elastomer articles such as tires without causing temperature differences in various parts to obtain a uniform degree of vulcanization. It is an object of the present invention to provide a method for vulcanizing elastomer articles that can reliably prevent the above.

(課題を解決するための手段) 上記目的を達成する為、本発明は、加熱媒体供給工程と
この工程に続く加圧媒体供給工程とを含むエラストマー
物品の特に車両用ゴムタイヤの加硫方法であって、少な
くとも1回、所定時間、金型内のエラストマー物品の内
部空間に充満している加熱媒体、又は加熱された混合流
体の一部又は全量を排出し、代わりに低温の加圧媒体で
置き換えてエラストマー物品の温度を所望レベルに冷却
するようにしてあり、第1実施例においては、前記加熱
された混合流体は前記加圧媒体供給工程の途中又は/及
びこの工程後において、低温の加圧媒体で置き換えられ
る構成であり、又第2実施例においては、前記加熱媒体
は前記加熱媒体供給工程終了直後で加熱媒体供給工程に
切り替える前に低温の加圧媒体で置き換え、置き換えた
後「出」側配管を閉じる構成である。又、前記加硫機の
「出」側配管にオリフィスを設けて流量をしぼるように
してある。
(Means for Solving the Problems) In order to achieve the above object, the present invention provides a method for vulcanizing elastomer articles, particularly rubber tires for vehicles, including a heating medium supply step and a pressurized medium supply step following this step. at least once for a predetermined period of time, part or all of the heating medium or heated mixed fluid filling the interior space of the elastomeric article in the mold is evacuated and replaced by a cold pressurized medium. In the first embodiment, the heated mixed fluid is subjected to low-temperature pressurization during and/or after the pressurizing medium supply step. In the second embodiment, the heating medium is replaced with a low-temperature pressurized medium immediately after the heating medium supplying step and before switching to the heating medium supplying step, and after the replacement, the "output" The configuration is such that the side piping is closed. Further, an orifice is provided in the "output" side piping of the vulcanizer to reduce the flow rate.

(作 用) 本発明は、上記の第1実施例において、加圧媒体供給工
程の途中又はこの工程後において金型内のエラストマー
物品の内部空間に充満している加熱された混合流体の一
部又は全量を所定時間イわゆるガスパージすることによ
り、加熱されていない低温の加圧流体で置き換えるので
所望温度にエラストマー物品が冷却され、又、ガスパー
ジの際に、排出流量をしぼるのでエラストマー物品の内
部空間の圧力ダウンが許容範囲内に制限され、このさい
金型内のエラストマー物品の各部位で大きな温度差を生
じることなく、又、不都合な温度の圧力低下をきたすこ
となく効果的に冷却して、均一な加硫度を得ることがで
きるのみならず、加硫遅れ等のトラブルを確実に防止す
ることができる。
(Function) In the first embodiment described above, the present invention provides a method for controlling a part of the heated mixed fluid that fills the internal space of the elastomer article in the mold during or after the pressurized medium supply step. Alternatively, by performing a so-called gas purge on the entire volume for a predetermined period of time, the elastomer article is cooled to a desired temperature because the pressurized fluid is replaced with an unheated, low-temperature fluid.Also, during the gas purge, the discharge flow rate is reduced, so that the inside of the elastomer article is The pressure drop in the space is limited to within an acceptable range and the elastomeric article within the mold is effectively cooled without significant temperature differences or undesirable temperature pressure drops. Not only can a uniform degree of vulcanization be obtained, but also troubles such as delayed vulcanization can be reliably prevented.

又、本発明は、上記の第2実施例において、加熱工程終
了直後、加圧工程開始前に、金型内のエラストマー物品
の内部空間に充満している加熱媒体の一部又は全量を所
定時間いわゆるガスパージすることにより、加熱されて
いない低温の加圧媒体で置き換え、置き換えた後「出」
側配管を閉じることにより、エラストラマー物品の加硫
において、加硫の進みすぎる上型対応部の温度過上昇を
おさえながら加硫の遅れる下型対応部の温度上昇を速め
、結果として上下の均一加硫化及び、加硫時間が短縮さ
れる。
Further, in the second embodiment of the present invention, immediately after the heating process ends and before the pressurizing process starts, part or all of the heating medium filling the internal space of the elastomer article in the mold is heated for a predetermined period of time. By so-called gas purge, it is replaced with an unheated, low-temperature pressurized medium, and after being replaced, the "output"
By closing the side piping, during the vulcanization of elastomer articles, the temperature rise in the upper mold corresponding part where vulcanization progresses too much is suppressed, while the temperature rise in the lower mold corresponding part where vulcanization is delayed is accelerated, resulting in uniform upper and lower parts. Vulcanization and vulcanization time are shortened.

(実施例) 本発明の実施例を車両用ゴムタイヤにより図面を参照し
つつ以下に詳細に説明する。
(Example) An example of the present invention will be described in detail below using a rubber tire for a vehicle with reference to the drawings.

本発明のガス加硫方法は冷却工程を除いては、上記従来
方法と基本的に同じであるので同一部分の説明は省略す
る。
The gas vulcanization method of the present invention is basically the same as the conventional method described above except for the cooling step, so a description of the same parts will be omitted.

第1図は、本発明の方法の実施に使用する加硫機を示し
、この加硫機100は、零体101 aと機内配管系統
10l bとからなる。加硫機本体101aは上型10
2a,下型102bからなる金型102とゴム製袋状の
プラダ103をそなえ、上記金型102とブラダ103
の間に未加硫の生タイヤ104 (但し、第1図のタイ
ヤは加硫中又は完了した状態を示す)が保持されて加熱
加圧されるようになっている。尚、別の実施例ではブラ
ダーを使用しない。
FIG. 1 shows a vulcanizer used to carry out the method of the present invention, and this vulcanizer 100 consists of a null body 101a and an internal piping system 10lb. The vulcanizer main body 101a is an upper mold 10
2a and a lower mold 102b, and a rubber bag-like plastica 103, the mold 102 and the bladder 103 are
During this time, an unvulcanized green tire 104 (however, the tire shown in FIG. 1 shows a state in which vulcanization is in progress or has been completed) is held and heated and pressurized. Note that in other embodiments, no bladder is used.

加硫機本体101 aの吹出口106と排出口105は
、機内配管系統10lbを通じて加硫媒体の図示しない
供給源と接続されている。機内配管系統10l bは、
加硫機本体101 aに加硫媒体を供給する[入J側と
、零体101 aから排出される加硫媒体を取り出す「
出」側とに大別される。
The outlet 106 and the outlet 105 of the vulcanizer main body 101a are connected to a supply source (not shown) of a vulcanizing medium through an in-machine piping system 10lb. The in-flight piping system 10l b is
Supply the vulcanizing medium to the vulcanizer main body 101a [take out the vulcanizing medium discharged from the inlet J side and the zero body 101a]
It is broadly divided into the "exit" side.

図中、107は「出」側のフレキシブル配管であり、1
0Bはr入」側のフレキシブル配管である二の加硫機l
OOの機内配管系統10lbには、本出願人の先の出願
(特開昭62−33611 )で開示したように上記「
入」側と「出J側との間に加硫媒体の強制循環用経路を
なす循環用配管109を設けてもよい。この配管は「入
」側に調節弁VAと「出」側に調整弁VBとをそなえ、
強制循環装置110としてのポンブPと逆止弁111,
 111とが介装され、タイヤの内部空間を充満する加
硫媒体を加硫中、適時に強制的に循環させ金型内の強制
攪拌と同様の効果を得て渇度ムラをなくすることができ
る。
In the figure, 107 is the flexible piping on the "output" side, and 1
0B is the second vulcanizer l with flexible piping on the r input side.
The 10lb in-flight piping system of the OO is equipped with the above-mentioned "
A circulation piping 109 forming a path for forced circulation of the vulcanizing medium may be provided between the inlet side and the outlet J side.This piping has a regulating valve VA on the inlet side and an adjustment valve VA on the outlet side. Equipped with valve VB,
Pump P as forced circulation device 110 and check valve 111,
111 is interposed, and the vulcanizing medium filling the inner space of the tire is forcibly circulated at a timely time during vulcanization to obtain the same effect as forced stirring in the mold and eliminate uneven dryness. can.

図中、112は加熱工程に先立つブリシェーピング工程
流体(ガス、スチーム等の)供給管、113は加圧媒体
(窒素ガス等の低温ガス)の供給管、114は加熱媒体
(スチーム、加熱ガス)の供給管で前記フレキシブル配
管108とともに「入」側配管系統を構成し、115は
混合流体のガス排出管、116はバキューム管、117
はドレン排出管で前記フレキシブル配管107とともに
「出」側配管系統を構成している。尚、ガス排出管11
5を第1図(B)に示すように回収主管に連結して排出
ガスを回収してプリシェービング用として再利用するこ
ともできる。
In the figure, 112 is a supply pipe for pre-shaping process fluid (gas, steam, etc.) prior to the heating process, 113 is a supply pipe for pressurized medium (low-temperature gas such as nitrogen gas), and 114 is a heating medium (steam, heating gas). The supply pipe constitutes an "in" side piping system together with the flexible piping 108, 115 is a mixed fluid gas discharge pipe, 116 is a vacuum pipe, 117
is a drain discharge pipe, which together with the flexible piping 107 constitutes an "outlet" side piping system. In addition, the gas exhaust pipe 11
5 can be connected to a main recovery pipe as shown in FIG. 1(B) to recover the exhaust gas and reuse it for pre-shaving.

上記「出」側配管系統のうち、ガス排出管(又はガス回
収管) 115の自動調節弁■4の手前の位置Wに又は
自動調節弁v4を過ぎた位置X(破線マル印)に配管流
量をしぼるため公知構造のオリフィス119を配設する
。オリフィス119の直径は20mm未満で、特に好ま
しくは3.0 m〜10閤未満である.オリフィス径は
大き過ぎればガスパージしたときタイヤ内部空間120
の圧力ダウンが大きく、ベアネス等のタイヤ外観不良や
タイヤ表面のボロシティの発生又はタイヤ側壁部のレタ
リングのダブルモールデイングの1・ラブルの原因とな
り、又、小さすぎるオリフィス径は圧力ダウンは避けら
れるが、ガスパージによるタイヤの所望レベルの冷却効
果を得るには余りにも長時間がかかることになり、又配
管づまりを起こす危険がある。
Of the above "output" side piping system, the gas discharge pipe (or gas recovery pipe) 115 is located at position W in front of automatic control valve ■4 or at position X (dotted line circle) past automatic control valve v4. An orifice 119 of known construction is provided to throttle the. The diameter of the orifice 119 is less than 20 mm, particularly preferably from 3.0 m to less than 10 mm. If the orifice diameter is too large, the inner space of the tire will be 120 mm when gas is purged.
The pressure drop is large, causing poor tire appearance such as bareness, volocity on the tire surface, or double molding trouble in the lettering on the tire sidewall.Also, if the orifice diameter is too small, the pressure drop can be avoided, but the pressure drop may be avoided. However, it takes too long to achieve the desired level of tire cooling effect through gas purging, and there is a risk of pipe clogging.

上記の通り、「出」側配管系統に所定径のオリフィス1
19を配設した加硫機100を用いて、第1実施例は次
の通り実施される。
As mentioned above, an orifice 1 of a specified diameter is installed in the "output" side piping system.
The first embodiment is carried out as follows using the vulcanizer 100 equipped with the vulcanizer 19.

即ち、加熱媒体供給工程と同様に「出」側配管を閉状態
(デッドエンド)にしてガスを供給し続ける加圧媒体供
給工程において又はこの工程後に、前記オリフィス11
9付「出」側配管115を所定時間解放して、金型10
2内のタイヤl04の内部空間120に充満している加
熱されたスチームとガスの混合流体の一部又は全四を排
出し、その排出に伴ってタイヤ104の内部空間120
外の「人」側配管106から加熱されていない加圧流体
(ガスタンクから出て未だ一度もタイヤ内部空間120
内に入ったことのない新ガス、又は、強制循環配管10
9を有する加硫機の場合この配管109を経由するユー
スドガス)が代わってタイヤ内部空間120に流入して
、該空間120を充満する、つまり、タイヤ内部空間1
20の高温の混合流体の一部又は全量を低温の加圧流体
で置き換え又は入れ換える、即ち、ガスパージ冷却をす
るのである。
That is, in the pressurized medium supply process in which the "output" side piping is closed (dead end) and gas is continued to be supplied, similarly to the heating medium supply process, or after this process, the orifice 11
The "output" side piping 115 with 9 is released for a predetermined period of time, and the mold 10
A part or all of the heated steam and gas mixed fluid filling the internal space 120 of the tire 104 in the tire 104 is discharged, and along with the discharge, the internal space 120 of the tire 104 is discharged.
Pressurized fluid that has not been heated from the outside "person" side piping 106 (has never been released from the gas tank and has never entered the tire internal space 120)
New gas that has never entered the interior or forced circulation piping 10
In the case of a vulcanizer having a vulcanizer 9, the used gas (used gas passing through the pipe 109) instead flows into the tire internal space 120 and fills the tire internal space 120. In other words, the tire internal space 1
Part or all of the high temperature mixed fluid of 20 is replaced or replaced with a low temperature pressurized fluid, that is, gas purge cooling is performed.

ガスバージ冷却を行うタイミング(時期)は、冷却の目
的によって異なる。即ち、6−ナイロンコードカーカス
を備えたタイヤ(6−ナイロンコードは一般的に160
゜C以上で加硫時にコードにテンションをかけた状態か
ら加硫完了時圧力をゼロにしてテンションを除去したと
き、引張強度の低下を起こすことが知られている)であ
ってそのナイロンコードの強力低下を防止する目的のた
めだけに冷却する場合は、加硫完了時タイヤ内部空間の
圧力をゼロにする時点でタイヤ温度を160゜C以下に
すればよいので、ガスパージ冷却は第2図(A)に示す
ように加圧媒体(ガス)供給工程内で行ってもよ《、或
いは、第2図(B)に示すように加圧媒体(ガス)供給
工程後でガス排気工程前に(即ち加硫末期)に行うこと
もできる。加圧媒体供給工程内でガスバージ冷却した場
合は加圧媒体供給工程後にガスパージ冷却した場合に比
してタイミングが早い分だけより低温となるから全体の
加硫時間は長くなる。
The timing of gas barge cooling varies depending on the purpose of cooling. i.e. tires with a 6-nylon cord carcass (6-nylon cord is typically 160
It is known that the tensile strength of the nylon cord decreases when the tension is applied to the cord during vulcanization at temperatures above °C and the tension is removed by reducing the pressure to zero upon completion of vulcanization. If cooling is performed solely for the purpose of preventing a decrease in strength, the tire temperature should be kept below 160°C when the pressure inside the tire is reduced to zero upon completion of vulcanization. It may be carried out during the pressurized medium (gas) supply process as shown in A), or it may be carried out after the pressurized medium (gas) supply process and before the gas exhaust process as shown in Figure 2 (B). In other words, it can also be carried out at the final stage of vulcanization. When gas barge cooling is performed during the pressurized medium supply process, the temperature is lower because the timing is earlier than when gas purge cooling is performed after the pressurized medium supply process, so the overall vulcanization time becomes longer.

次に、従来の通常のガス加硫方式において問題となる金
型内のタイヤの上側の一方サイドウォールと下側の他方
サイドウォールの温度差(スチームドレンが下側の他方
のサイドウォール部に残留することによる)を解消して
加硫度均一性を向上したい場合は、又、高温でも強力低
下を起こさないポリエステル、ナイロン66等のカー力
スコードを備えたタイヤであって、加硫初期に早く温度
を上昇させ、加硫途中で温度を下げてインナーライナー
やカーカスが過加硫とならないよう加硫度をコントロー
ルしたい場合、即ち、タイヤ内部空間の温度を低温にし
てかつ上下側サイドウォールの温度差なく長《加硫した
い場合は、第2図(A)に示すように加圧媒体(ガス)
供給工程内でガスパージ冷却を行えばよい。
Next, there is a temperature difference between the upper sidewall and the lower sidewall of the tire in the mold, which is a problem in the conventional gas vulcanization method (steam drain remains on the lower sidewall). If you want to improve the uniformity of the degree of vulcanization by eliminating the problems caused by If you want to control the degree of vulcanization by increasing the temperature and lowering the temperature during vulcanization to prevent the inner liner or carcass from becoming over-vulcanized, you can lower the temperature of the inner space of the tire and lower the temperature of the upper and lower sidewalls. If you want to vulcanize, use a pressurized medium (gas) as shown in Figure 2 (A).
Gas purge cooling may be performed during the supply process.

尚、ガスバージ冷却の回数は通常は1回でよいが、勿論
これに限定されず、例えば、6−ナイロンカーカス・タ
イヤの場合、第1回目(ガス供給工程内)のガスパージ
冷却でタイヤの両サイドウォールのドレン溜まりによる
温度差を解消し、次いで第2回目(ガス供給工程終了後
)のガスパージ冷却でタイヤの温度を限界レヘルの16
0゜C以下に低下させることができる。
Note that the number of gas purge coolings is usually one, but is of course not limited to this. For example, in the case of a 6-nylon carcass tire, the first gas purge cooling (within the gas supply process) will cool both sides of the tire. After eliminating the temperature difference caused by the drainage pool on the wall, the second gas purge cooling (after the end of the gas supply process) lowers the tire temperature to the limit level of 16
The temperature can be lowered to below 0°C.

金型内タイヤの冷却効果は、「出」側配管に設けるオリ
フィスの直径とガスパージ冷却時間によって決まるが、
冷却効果の決定に諒してはタイヤ内部空間内の圧力をど
の程度まで下げることができるかが、第1のポイントに
なる。この圧力低下許容レベル(例えば約7kg/cd
)を割るとベアネスやボロシティが発生したり、或いは
サイドウォールレタリングのダブルモールディングのト
ラブルが発生する。次に、パージするガスの元圧力(例
えば21kg/cd)とオリフィス径(例えば5uun
)とガスのr人」側配管径(例えば16mm)により、
所望のガスパージ冷却時のタイヤ内部空間の圧力(例え
ば19kg/csi)を設定することができる。
The cooling effect of the tire inside the mold is determined by the diameter of the orifice installed in the "output" side piping and the gas purge cooling time.
The first point in determining the cooling effect is to what extent the pressure inside the tire can be lowered. This pressure drop tolerance level (e.g. approximately 7 kg/cd
) will cause bareness or volocity, or problems with double molding of sidewall lettering. Next, determine the original pressure of the gas to be purged (e.g. 21 kg/cd) and the orifice diameter (e.g. 5 uun).
) and the gas pipe diameter (for example, 16 mm),
A desired pressure in the tire internal space during gas purge cooling (for example, 19 kg/csi) can be set.

ガスパージする時間は、先ずタイヤ内部空間の圧力低下
を許容範囲内に設定できるオリフィス径を決め、このオ
リフィスを「出」側配管に取りつけて、タイヤを実除に
ガス加硫し、ガスパージ冷却を行って、タイヤの温度測
定データをとる実験を繰り返して、目的とする冷却効果
を得るためには何鵬のオリフィスで何分間ガスパージす
ればよいかを実験的に求めることができる. 尚、ガスパージにより金型のタイヤ内部空間の高温混合
流体が低温流体で確実に置き換わったかどうかは圧力グ
ラフで容易に確認できる.次に本発明方法により、第3
図に示すように、6−ナイロンカーカスブライを備えた
タイヤサイスl65SRl3の乗用車タイヤをBOMモ
ールド(温度160’C)でガス加硫した場合を説明す
るガス排出管115の位置Wに直径5IIII1のオリ
フィスを取りつけた後、「出」側配管のバルブ■,〜■
,を閉じて、「入」側配管のバルブVzを開いて圧力1
4kg/cd、温度180゜Cのスチームを供給して基
準時間4分経過後、バルプ■2を閉じてスチームの供給
を停止するとともに、バルブv1を開t,Nテ圧力21
 kg / ci、温度40゜C(7)ガスを供給して
2分経過後、第1図のガスパージ冷却を行う.即ちガス
排出管115のバルブ■4のみを開いて、タイヤ内部空
間120内の加熱された混合流体(圧力21kg/cj
、温度180℃)の一部又は全量を排出(大気開放)す
るとともに、入れ代わって圧力21 kg / cd、
温度40℃のガスがタイヤ内部空間120に流入充満す
る。1分経過後(このときタイヤ内部空間120の圧力
は約19kg / cdまで低下するが、タイヤのイン
ナーライナーの温度は例えば上側サイドウォール■で約
168゜Cまで低下し、上下サイドゥオール■■の温度
差は約3゜Cに縮まり、以後の均一加硫度が向上する。
To determine the gas purge time, first decide on the diameter of the orifice that will keep the pressure drop in the tire's internal space within the allowable range, then attach this orifice to the "output" side piping, fully gas vulcanize the tire, and perform gas purge cooling. By repeating experiments to collect tire temperature measurement data, it is possible to experimentally determine how many orifices and how many minutes gas purge should be performed to obtain the desired cooling effect. In addition, it can be easily confirmed from the pressure graph whether the high temperature mixed fluid in the tire interior space of the mold has been reliably replaced with low temperature fluid by gas purge. Next, by the method of the present invention, a third
As shown in the figure, an orifice with a diameter of 5III1 is placed at position W of the gas discharge pipe 115 to explain the case where a passenger car tire of tire size 165SR13 equipped with a 6-nylon carcass bly is gas-cured in a BOM mold (temperature 160'C). After installing the “out” side piping valve ■, ~■
, and open the valve Vz of the "in" side piping to increase the pressure to 1.
After supplying steam at 4 kg/cd and a temperature of 180 °C for a reference time of 4 minutes, close valve 2 to stop the steam supply, and open valve v1 to increase the pressure to t, N and pressure 21.
kg/ci, temperature 40°C (7) After 2 minutes of supplying gas, perform gas purge cooling as shown in Figure 1. That is, by opening only the valve 4 of the gas exhaust pipe 115, the heated mixed fluid (pressure 21 kg/cj
, temperature 180℃) is discharged (opened to atmosphere), and the pressure is 21 kg/cd,
Gas at a temperature of 40° C. flows into the tire internal space 120 and fills it. After one minute has passed (at this time, the pressure in the tire internal space 120 drops to about 19 kg/cd, but the temperature of the inner liner of the tire drops to about 168°C at the upper sidewall ■■, and the temperature of the upper and lower sidewalls ■■ decreases. The temperature difference is reduced to about 3°C, improving the degree of uniform vulcanization thereafter.

)ガス排出管115のバルブv4を閉し、ガスは引き続
き供給され、3.5分経過後(このとき、タイヤ内部空
間!20の圧力は21 kg /ciに復帰し、タイヤ
インナライナの温度は例えば上側サイドウォール■で約
165゜Cのレヘルまで低下している)、第2回目のガ
スパージ冷却を行う。即ち、再びガス排出管115のハ
ルブV,のみを開いて、タイヤ内部空間のガスを排出す
るとともに入れ代わって圧力21kg/cJ,温度約4
0゜Cのガスがタイヤ内部空間120に流入充満する。
) Valve v4 of the gas exhaust pipe 115 is closed, gas continues to be supplied, and after 3.5 minutes (at this time, the pressure in the tire internal space !20 has returned to 21 kg/ci, and the temperature of the tire inner liner has For example, the temperature has dropped to about 165° C. on the upper sidewall (2), then a second gas purge cooling is performed. That is, only the hub V of the gas exhaust pipe 115 is opened again to exhaust the gas in the tire internal space, and the pressure is 21 kg/cJ and the temperature is approximately 4.
Gas at 0° C. flows into the tire internal space 120 and fills it.

3.5分経過後(このとき、タイヤ内部空間120の圧
力は約19kg/c+fiまで低下するが、タイヤイン
ナーライナーの温度は上側サイドゥオール■で約148
゜C、即ち、タイヤ内部空間l20の圧力がゼロになる
時点で強力低下を起こさない温度レヘル、約160゜C
以下になり、上下側の両サイドウォール■■の温度差は
約2゜Cに縮まり、均一加硫度は一層向上している。)
、ガス排出管115のパルブ■4を閉じ、ガスは引き続
き供給され、3分経過後にガス供給管113のバルプv
1を閉じてガス供給を停止するとともにガス排出管11
5のバルブ■4を開放してタイヤ内部空間120のガス
を排出して圧力をゼロとし、次いでバキュームしてプラ
ダー103を収縮してタイヤ内から取り外し、続いて金
型102 aを解放して加硫済みタイヤ2を取出して全
加硫工程を終了する。
After 3.5 minutes have passed (at this time, the pressure in the tire internal space 120 has decreased to approximately 19 kg/c+fi, but the temperature of the tire inner liner has decreased to approximately 148 kg/c+fi at the upper sidewall).
°C, that is, the temperature level at which no strong drop occurs when the pressure in the tire internal space l20 becomes zero, approximately 160 °C.
The temperature difference between the upper and lower sidewalls was reduced to about 2°C, and the degree of uniform vulcanization was further improved. )
, the valve V of the gas exhaust pipe 115 is closed, gas continues to be supplied, and after 3 minutes, the valve V of the gas supply pipe 113 is closed.
1 to stop the gas supply and close the gas exhaust pipe 11.
Open the valve 4 of No. 5 to exhaust the gas in the tire internal space 120 to make the pressure zero, then vacuum to deflate the Pradder 103 and remove it from the tire. Then, the mold 102a is released and heated. The vulcanized tire 2 is taken out and the entire vulcanization process is completed.

尚、上記発明において、混合流体とは上述の説明から明
らかなように、加硫媒体(スチーム、加熱ガス等)と加
圧媒体(窒素ガス、空気等)が混合したガス体を指す。
In the above invention, the mixed fluid refers to a gas body in which a vulcanizing medium (steam, heating gas, etc.) and a pressurizing medium (nitrogen gas, air, etc.) are mixed, as is clear from the above description.

本第1実施例は上記の通り、エラストマー物品の加硫の
加圧媒体供給工程において、又はこの工程後において、
所定時間、加硫機の「出」側配管をその流量をオリフィ
スによってしぼって解放し、いわゆるガスパージ冷却を
行う構成であるので、金型内のエラストマー物品の各部
位で大きな温度差を生じることな《、又不都合な温度の
圧力低下をきたすことなく効果的に冷却して、均一な加
硫度を得ることができるのみならず、加硫遅れ等のトラ
ブルを確実に防止することができる。
As described above, in the first embodiment, in the pressure medium supply step of vulcanizing the elastomer article or after this step,
The configuration is such that the flow rate of the ``out'' side piping of the vulcanizer is squeezed and released by an orifice for a predetermined period of time to perform so-called gas purge cooling, so that large temperature differences do not occur in various parts of the elastomer article in the mold. In addition, not only can a uniform degree of vulcanization be obtained by effectively cooling without causing an undesirable temperature or pressure drop, but also troubles such as vulcanization delays can be reliably prevented.

次に、第2実施例は、下記の通りに実施される。Next, the second embodiment is implemented as follows.

即ち、加熱媒体供給工程終了後直ちに、前記オリフィス
119付「出」側配管115を所定時間開放して、金型
102内のタイヤ104の内部空間120に充満してい
る加熱媒体即ちスチームの一部又は全量を排出し、その
排出に伴ってタイヤ104の内部空間120外のE入」
側配管106から加熱されていない加圧流体(ガスタン
クから出て未だ一度もタイヤ内部空間120内に入った
ことのない新ガス、又は、強制循環配管109を有する
加硫機の場合この配管109を経由するユースドガス)
が代わってタイヤ内部空間120に流入して、該空間1
20を充満する、つまりタイヤ内部空間120の高温の
加熱媒体を低温の加圧媒体で置き換え又は入れ換えた後
、「出」側配管を閉じることにより、いわゆるガスパー
ジ冷却をするのである。
That is, immediately after the heating medium supply process is completed, the "output" side pipe 115 with the orifice 119 is opened for a predetermined period of time, and a part of the heating medium, that is, steam filling the internal space 120 of the tire 104 in the mold 102 is removed. Or, the entire amount is discharged, and along with the discharge, E enters the outside of the inner space 120 of the tire 104.
Pressurized fluid that has not been heated from the side pipe 106 (new gas that has come out of the gas tank and has never entered the tire internal space 120), or in the case of a vulcanizer that has a forced circulation pipe 109, use this pipe 109. used gas)
instead flows into the tire internal space 120 and the space 1
20, that is, after replacing or replacing the high temperature heating medium in the tire internal space 120 with a low temperature pressurized medium, the "output" side piping is closed to perform so-called gas purge cooling.

金型内タイヤの冷却効果は、「出」側配管に設けるオリ
フィスの直径とガスパージ冷却時間によって決まるが、
冷却効果の決定に際してはタイヤ内部空間の圧力をどの
程度まで下げることができるかが、第1のポイントにな
る。この圧力低下許容レベル(例えば約7kg/cIl
l)を割るとベアネスやポロシティが発生したり、或い
はサイドウォールレタリングのダブルモールディングの
トラブルが発生する。次に、パージするガスの元圧力(
例えば21kg/cd)とオリフィス径(例えば5mm
)とガスのr入」側配管径(例えば16ma+)りより
、所望のガスパージ冷却時のタイヤ内部空間の圧力(例
えば19kg/cIll)を設定することができる。
The cooling effect of the tire inside the mold is determined by the diameter of the orifice installed in the "output" side piping and the gas purge cooling time.
When determining the cooling effect, the first point is to what extent the pressure in the tire internal space can be lowered. This pressure drop tolerance level (e.g. approximately 7 kg/cIl)
If l) is broken, bareness or porosity will occur, or problems with double molding of sidewall lettering will occur. Next, the original pressure of the gas to be purged (
For example, 21 kg/cd) and orifice diameter (for example, 5 mm)
) and the diameter of the gas inlet side pipe (for example, 16 ma+), the desired pressure in the tire internal space during gas purge cooling (for example, 19 kg/cIll) can be set.

ガスパージする時間は、先ずタイヤ内部空間の圧力低下
を許容範囲内に設定できるオリフィス径を決め、このオ
リフィスを「出」側配管に取りつけて、タイヤを実際に
ガス加硫し、ガスパージ冷却を行って、タイヤの温度測
定データをとる実験を繰り返して、目的とする冷却効果
ヲ得るためには何薗のオリフイスで何分間ガユパージす
ればよいかを実験的に求めることができる。
To determine the gas purge time, first decide on the diameter of the orifice that will keep the pressure drop in the tire's internal space within the allowable range, then attach this orifice to the "output" side piping, actually gas vulcanize the tire, and perform gas purge cooling. By repeating experiments to collect tire temperature data, it is possible to experimentally determine how many orifices and how many minutes gayu purge should be performed in order to obtain the desired cooling effect.

尚、ガスパージにより金型のタイヤ内部空間の高温流体
が低温流体で確実に置き換わったかどうかは圧力グラフ
で容易に確認できる。
It should be noted that it can be easily confirmed from the pressure graph whether the high temperature fluid in the inner space of the tire in the mold has been reliably replaced with low temperature fluid by the gas purge.

次に第1図及び第5図(A)に示す様にポリエステルカ
ーカスプライを備えたタイヤサイズ205Rl6のライ
トトラックタイヤをBOM加硫機(温度160゜C)で
ガス加硫した場合を説明する。ガス排出管115の位置
Wに直径5mmのオリフィスを取りつけた後、「出」側
配管のバルブ■,〜V,を閉じて、「入」側配管のバル
ブ■2を開いて圧力14kg/cmzのスチームを供給
して基準時間5分経過後、バルブv2を閉じてスチーム
の供給を停止するとともに、バルプ■,及び■4を開い
て圧力19kg/c艷、温度40゜Cのガスを30秒間
供給して、第5図(A)ガスパージ冷却を行う。即ちガ
ス排出管115のバルブ■4のみを開いて、タイヤ内部
空間120内の加熱媒体(圧力14kg/cd)の一部
又は全量を排出(大気解放)するとともに、入れ代わっ
て圧力19kg / cd、温度40゜Cのガスがタイ
ヤ内部空間120に流入充満する。30秒経過後(第5
図(A)に示す様に、このときタイヤ内部空間120の
圧力は約19kg/cffl迄上昇するが、カーカス部
材の物性面から加硫中のMAX,温度を180゜Cに規
定した場合、タイヤのインナーライナーの温度は例えば
上型側サイドウォールAで178゜C以下とすることが
でき、しかも加硫の遅れる例えば下型側ビード部Bの温
度を上昇させることがきできる(第5図(A)と(B)
比較)。ガス排出管115のバルブ■4を閉じ、次いで
ガスは引き続き供給され通常の加圧媒体供給工程に入る
Next, as shown in FIGS. 1 and 5(A), a case will be described in which a light truck tire having a tire size of 205R16 and equipped with a polyester carcass ply is gas-cured using a BOM vulcanizer (temperature: 160° C.). After installing an orifice with a diameter of 5 mm at position W of the gas exhaust pipe 115, close the valves ■, ~V, on the "output" side piping, and open the valve ■2 on the "in" side piping to increase the pressure to 14 kg/cmz. After supplying steam for a reference time of 5 minutes, close valve V2 to stop supplying steam, and open valves ■ and ■4 to supply gas at a pressure of 19 kg/c and a temperature of 40°C for 30 seconds. Then, perform gas purge cooling as shown in FIG. 5(A). That is, only valve 4 of the gas exhaust pipe 115 is opened to exhaust (release to the atmosphere) a part or all of the heating medium (pressure 14 kg/cd) in the tire internal space 120, and the pressure is 19 kg/cd. Gas at a temperature of 40° C. flows into the tire internal space 120 and fills it. After 30 seconds (5th
As shown in FIG. The temperature of the inner liner can be, for example, 178°C or less at the sidewall A on the upper mold side, and it is also possible to raise the temperature at the bead part B on the lower mold side, for example, where vulcanization is delayed (see Fig. 5 (A). ) and (B)
comparison). Valve (4) of the gas discharge pipe 115 is closed, and then gas is continued to be supplied and a normal pressurized medium supply process begins.

このとき、タイヤ内部空間120の圧力は21kg/C
+aに上昇し、タイヤインナライナーの温度は例えば上
側サイドウォールAで約170゜Cのレベルまで低下し
ている。一方、下型側ビード部Bは一般的なガス加硫方
式の実施例第5図(C)に比べ大幅に温度上昇が速くな
っている。11.5分経過後にガス供給管113のバル
ブVlを閉じてガス供給を停止するとともにガス排出管
l15のバルブV4を解放してタイヤ内部空間120の
ガスを排出して圧力をゼロとし、次いでバキュームして
プラグ−103を収縮してタイヤ内から取り外し、続い
て金型102aを解放して加硫済みタイヤ2を取り出し
て全加硫工程を終了する。
At this time, the pressure in the tire internal space 120 is 21 kg/C
+a, and the temperature of the tire inner liner has decreased to a level of approximately 170°C at the upper sidewall A, for example. On the other hand, the temperature of the bead portion B on the lower mold side increases significantly faster than in the example shown in FIG. 5(C) using the general gas vulcanization method. After 11.5 minutes, the valve Vl of the gas supply pipe 113 is closed to stop the gas supply, and the valve V4 of the gas discharge pipe 115 is released to exhaust the gas from the tire internal space 120 to make the pressure zero, and then vacuum Then, the plug 103 is deflated and removed from the tire, and then the mold 102a is released and the vulcanized tire 2 is taken out to complete the entire vulcanization process.

第2実施例は上記の通り、エラストマー物品のガス加硫
の加熱媒体供給工程直後において、加圧媒体供給工程に
切り換える前に、所定時間加硫機の「出」側配管をその
流量をオリフィスによってしぼって加熱媒体の一部又は
全量を解放し、いわゆるガスパージ冷却を行う構成であ
るので、金型内のエラストマー物品の各部位で大きな温
度差を生じることなく、又不都合な圧力低下をきたすこ
とな《効果的に上型対応部の温度の過上昇をおさえると
ともに下型対応部の温度上昇を促進することにより、加
硫の遅れる下型対応部の加硫を速め、加硫時間短縮及び
均一加硫を図ることができる。
As described above, in the second embodiment, immediately after the heating medium supply process for gas vulcanization of an elastomer article, and before switching to the pressurized medium supply process, the "output" side piping of the vulcanizer is connected for a predetermined period of time to control the flow rate by using an orifice. Since the structure is configured to perform so-called gas purge cooling by squeezing and releasing part or all of the heating medium, there is no large temperature difference in each part of the elastomer article in the mold, and there is no undesirable pressure drop. 《By effectively suppressing the excessive rise in temperature of the upper mold corresponding part and promoting the temperature rise of the lower mold corresponding part, vulcanization of the lower mold corresponding part, where vulcanization is delayed, is accelerated, vulcanization time is shortened, and vulcanization is uniform. You can measure sulfur.

尚、下記の第1表は、実施例第5図(A)と比較例(1
)(2)、第5図(B)(C)の実際に決定された加硫
時間とカーカス部コンバウンドとプライの接着性能等を
比較的に示す。この表から実施例は、通常の加硫方式例
(比較例(2))に対し加硫時間が2分短縮出来、且つ
、ガスパージ方式を使用せずに、当実施例と同加熱工程
(スチーム工程)時間とした比較例(1)より、タイヤ
性能を向上させることが出来る。
In addition, Table 1 below shows the results of Example 5 (A) and Comparative Example (1).
)(2) and FIGS. 5(B) and 5(C) comparatively show the actually determined vulcanization time and the adhesion performance between the carcass part compound and the ply. From this table, the example shows that the vulcanization time can be shortened by 2 minutes compared to the normal vulcanization method example (comparative example (2)), and the same heating process (steam Compared to Comparative Example (1) in which the process) time was set, the tire performance can be improved.

更に、加硫中の上下温度差を小さく出来均一加硫が図れ
ることが判る。
Furthermore, it can be seen that the difference between the upper and lower temperatures during vulcanization can be reduced and uniform vulcanization can be achieved.

第−  1  −.一一表 (効 果) 本発明は、加熱媒体供給工程とこの工程に続く加圧媒体
供給工程とを含むエラストマー物品の加硫方法であって
、少なくとも1回、所定時間の間、金型内のエラストマ
ー物品の内部空間に充満している加熱媒体又は、加熱さ
れた混合流体の一部又は全量を排出し、代わりに低温の
加圧媒体で置き換えてエラストマー物品の温度を所望レ
ベルに冷却する構成であり、第1実施例においては加熱
された混合流体は加圧媒体供給工程の途中又は/及びこ
の工程後において、低温の加圧媒体で置き換える構成で
あるから、金型内のエラストマー物品の各部位で大きな
温度差を生じることなく、又不都合な圧力低下をきたす
ことなく効果的に冷却して、均一な加硫度を得ることが
できるのみならず、加硫遅れ等のトラブルを確実に防止
することができる。
Part-1-. Table 11 (Effects) The present invention provides a method for vulcanizing an elastomer article, which includes a heating medium supply step and a pressurized medium supply step following this step, in which the elastomer article is vulcanized at least once in a mold for a predetermined period of time. A configuration in which a part or all of the heating medium or heated mixed fluid filling the internal space of the elastomeric article is discharged and replaced with a cold pressurized medium to cool the temperature of the elastomeric article to a desired level. In the first embodiment, the heated mixed fluid is replaced with a low-temperature pressurized medium during and/or after the pressurized medium supply process, so that each of the elastomer articles in the mold is Not only can you achieve a uniform degree of vulcanization by effectively cooling without creating large temperature differences or undesirable pressure drops in different parts, but you can also reliably prevent problems such as vulcanization delays. can do.

又、第2実施例においては、加熱媒体は加熱媒体供給工
程終了直後で加圧媒体供給工程に切り換える前に、低温
の加圧媒体で置き換える構成であるから金型内のエラス
トマー物品の各部位で大きな温度差を生じることなく、
又不都合な圧力低下をきたすことなく効果的に上型対応
部の温度の過上昇をおさえるとともに下型対応部の温度
上昇を促進することにより、加硫の遅れる下型対応部の
加硫を速め、加硫時間短縮及び均一加硫を図ることがで
きる。
In addition, in the second embodiment, the heating medium is replaced with a low-temperature pressurizing medium immediately after the heating medium supplying process ends and before switching to the pressurizing medium supplying process, so that the heating medium is replaced with a low-temperature pressurizing medium at each location of the elastomer article in the mold. without creating large temperature differences,
In addition, by effectively suppressing the excessive rise in temperature of the upper mold corresponding part without causing an inconvenient pressure drop, and promoting the temperature rise of the lower mold corresponding part, vulcanization of the lower mold corresponding part, where vulcanization is delayed, is accelerated. , shortening of vulcanization time and uniform vulcanization can be achieved.

【図面の簡単な説明】[Brief explanation of drawings]

第1図(A)は本発明方法の実施に使用するタイヤ加硫
機の一部右半分断面図とその機内配管系統の「出」側配
管にオリフィスを設けた状態を示す説明図、第1図(B
)は第1図(A)の加硫機においてガス回収する場合の
「出」側配管にオリフィスを設けた状態を示す説明図、
第2図(A)はガスパージ冷却をガス供給工程において
実施したときの温度と時間の関係を示すグラフ、第2図
(B)はガスパージ冷却をガス供給工程後に実施したと
きの温度と時間の関係を示すグラフ、第3図はガスバー
ジ冷却をガス供給工程内で2回にわたって実施したとき
の金型内タイヤの上側の一方サイドウォールと下側の他
方サイドウォールの温度差を示すグラフ、第4図は従来
の冷却方法を用いたガス加硫による金型内タイヤの上側
の一方サイドウォールと下側の他方のサイドウォールの
温度差を示すグラフ、第5図(A)は第2発明のガスバ
ージ冷却を加熱媒体供給工程終了直後に実施した場合の
温度と時間の関係を示すグラフ、第5図(B)はガスパ
ージ冷却を実施せずに加熱工程の時間を長くした場合の
温度と時間の関係を示すグラフ、第5図(C)は、ガス
パージ冷却を実施せずに、加熱工程の時間を,通常(上
型の温度過上昇を防止)時間とした場合の温度と時間の
グラフ、第6図(A)は従来の冷却方法を用いてガス加
硫を実施するための加硫機の一部断面図とその機内配管
系統を示す説明図、第6図(B)は従来の冷却方法を用
いたガス加硫の工程を示す説明図である。 102・・・金型、103・・・ブラダー、104・・
・生タイヤ、107・・・ 「出」側配管、10B・・
・「入」側配管、109・・・強制循環用配管、113
・・・ガス(加圧媒体)供給管、 114・・・スチーム供給管、115・・・ガス(混合
流体)排出(回収)管、119・・.オリフィス、12
0・・・タイヤ内部空間。
FIG. 1(A) is a partial right half cross-sectional view of a tire vulcanizer used to carry out the method of the present invention, and an explanatory diagram showing a state in which an orifice is provided in the "output" side piping of the piping system in the machine; Figure (B
) is an explanatory diagram showing a state in which an orifice is provided in the "output" side piping when recovering gas in the vulcanizer of FIG. 1(A),
Figure 2 (A) is a graph showing the relationship between temperature and time when gas purge cooling is performed in the gas supply process, and Figure 2 (B) is a graph showing the relationship between temperature and time when gas purge cooling is performed after the gas supply process. Figure 3 is a graph showing the temperature difference between the upper sidewall and the lower sidewall of the tire in the mold when gas barge cooling is performed twice in the gas supply process, Figure 4 5(A) is a graph showing the temperature difference between the upper sidewall and the lower sidewall of the tire in the mold after gas vulcanization using the conventional cooling method. Figure 5 (B) shows the relationship between temperature and time when the heating process is carried out immediately after the completion of the heating medium supply process. The graph shown in Figure 5 (C) is a graph of temperature and time when gas purge cooling is not performed and the heating process time is set to the normal (preventing excessive rise in temperature of the upper mold) time, Figure 6. (A) is a partial cross-sectional view of a vulcanizer for performing gas vulcanization using a conventional cooling method and an explanatory diagram showing the piping system inside the machine. FIG. 102... Mold, 103... Bladder, 104...
・Raw tire, 107... "Out" side piping, 10B...
・"Inlet" side piping, 109... Forced circulation piping, 113
...Gas (pressurized medium) supply pipe, 114...Steam supply pipe, 115...Gas (mixed fluid) discharge (recovery) pipe, 119... orifice, 12
0...Tire internal space.

Claims (5)

【特許請求の範囲】[Claims] (1)加熱媒体供給工程とこの工程に続く加圧媒体供給
工程とを含むエラストマー物品の加硫方法であって、少
なくとも1回、所定時間の間、金型内のエラストマー物
品の内部空間に充満している加熱媒体又は加熱された混
合流体の一部又は全量を排出し、代わりに低温の加圧媒
体で置き換えてエラストマー物品の温度を所望レベルに
冷却することを特徴とするエラストマー物品の加硫方法
(1) A method for vulcanizing an elastomer article, comprising a heating medium supply step and a pressurized medium supply step following this step, the method comprising filling the internal space of the elastomer article in a mold at least once for a predetermined period of time. vulcanization of an elastomeric article, characterized in that part or all of the heated heating medium or heated mixed fluid is discharged and replaced by a cold pressurized medium to cool the temperature of the elastomeric article to a desired level; Method.
(2)前記混合流体を加圧媒体供給工程の途中又は及び
この工程後において、低温の加圧媒体で置き換えること
を特徴とする特許請求の範囲第1項記載のエラストマー
物品の加硫方法。
(2) The method for vulcanizing an elastomer article according to claim 1, characterized in that the mixed fluid is replaced with a low-temperature pressurizing medium during or after the pressurizing medium supply step.
(3)前記加熱媒体を加熱媒体供給工程直後で加圧媒体
供給工程に切り換える前に、低温の加圧媒体で置き換え
、置き換えた後加硫機の出側配管を閉じることを特徴と
する特許請求の範囲第1項記載のエラストマー物品の加
硫方法。
(3) Immediately after the heating medium supply step and before switching to the pressurized medium supply step, the heating medium is replaced with a low-temperature pressurized medium, and after the replacement, the outlet piping of the vulcanizer is closed. A method for vulcanizing an elastomer article according to item 1.
(4)前記加熱媒体又は混合流体の排出を、加硫機の「
出」側配管の流量をしぼって開放するようにした特許請
求の範囲第1項、2項又は3項に記載のエラストマー物
品の加硫方法。
(4) Discharge the heating medium or mixed fluid from the vulcanizer.
A method of vulcanizing an elastomer article according to claim 1, 2 or 3, wherein the flow rate of the outlet side piping is reduced and opened.
(5)加硫機の「出」側配管の流量を該配管に直径20
mm未満のオリフィスを設けてしぼるようにした特許請
求の範囲第4項記載のエラストマー物品の加硫方法。
(5) Set the flow rate of the ``out'' side piping of the vulcanizer to the piping with a diameter of 20 mm.
5. The method of vulcanizing an elastomer article according to claim 4, wherein an orifice of less than mm is provided for squeezing.
JP2262164A 1989-09-30 1990-09-28 Vulcanizing method of elastomer article Pending JPH03215010A (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP1-256829 1989-09-30
JP25682989 1989-09-30
JP1-303922 1989-11-22

Publications (1)

Publication Number Publication Date
JPH03215010A true JPH03215010A (en) 1991-09-20

Family

ID=17298008

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2262164A Pending JPH03215010A (en) 1989-09-30 1990-09-28 Vulcanizing method of elastomer article

Country Status (1)

Country Link
JP (1) JPH03215010A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002028987A (en) * 2000-07-18 2002-01-29 Yokohama Rubber Co Ltd:The Inflation molding method by hot air or hot gas
JP2005246710A (en) * 2004-03-03 2005-09-15 Bridgestone Corp Tire vulcanizing method and tire vulcanizing process setting method
US7156629B2 (en) 2002-07-09 2007-01-02 Ichimaru Giken Co., Ltd. Piping structure in tire vulcanizing machine
CN102658617A (en) * 2012-05-02 2012-09-12 三角轮胎股份有限公司 Method for vulcanizing giant engineering radial tire
JP5837725B1 (en) * 2015-01-14 2015-12-24 株式会社市丸技研 Piping structure of tire vulcanizer, circulation device, and tire vulcanizing method using tire vulcanizer
JP2018030274A (en) * 2016-08-23 2018-03-01 横浜ゴム株式会社 Method of manufacturing pneumatic tire
JP2020152031A (en) * 2019-03-22 2020-09-24 住友ゴム工業株式会社 Method for manufacturing pneumatic tire

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6233611A (en) * 1985-08-08 1987-02-13 Sumitomo Rubber Ind Ltd Method and device for vulcanizing tire

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6233611A (en) * 1985-08-08 1987-02-13 Sumitomo Rubber Ind Ltd Method and device for vulcanizing tire

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002028987A (en) * 2000-07-18 2002-01-29 Yokohama Rubber Co Ltd:The Inflation molding method by hot air or hot gas
JP4496614B2 (en) * 2000-07-18 2010-07-07 横浜ゴム株式会社 Inflation molding method for tires using hot air or hot gas
US7156629B2 (en) 2002-07-09 2007-01-02 Ichimaru Giken Co., Ltd. Piping structure in tire vulcanizing machine
JP2005246710A (en) * 2004-03-03 2005-09-15 Bridgestone Corp Tire vulcanizing method and tire vulcanizing process setting method
CN102658617A (en) * 2012-05-02 2012-09-12 三角轮胎股份有限公司 Method for vulcanizing giant engineering radial tire
CN102658617B (en) * 2012-05-02 2014-09-17 三角轮胎股份有限公司 Method for vulcanizing giant engineering radial tire
JP5837725B1 (en) * 2015-01-14 2015-12-24 株式会社市丸技研 Piping structure of tire vulcanizer, circulation device, and tire vulcanizing method using tire vulcanizer
WO2016113853A1 (en) * 2015-01-14 2016-07-21 株式会社市丸技研 Piping structure of tire vulcanizer, circulator, and method for vulcanizing tire with tire vulcanizer
US10836079B2 (en) 2015-01-14 2020-11-17 Rocky-Ichimaru Co., Ltd. Piping structure of tire vulcanizer, circulator, and method for vulcanizing tire with tire vulcanizer
JP2018030274A (en) * 2016-08-23 2018-03-01 横浜ゴム株式会社 Method of manufacturing pneumatic tire
JP2020152031A (en) * 2019-03-22 2020-09-24 住友ゴム工業株式会社 Method for manufacturing pneumatic tire

Similar Documents

Publication Publication Date Title
US5240669A (en) Method for vulcanizing an elastomeric product including alternate heating and pressurizing steps
WO2005090042A1 (en) Method of vulcanization molding of rubber material
JP3602808B2 (en) Gas vulcanization of elastomer articles
JPH03215010A (en) Vulcanizing method of elastomer article
JP6191340B2 (en) Run-flat tire vulcanization method and vulcanization system
JPH1177704A (en) Method for vulcanizing elastomer article and vulcanization apparatus
US5238643A (en) Vulcanization method for elastomer product
US3002228A (en) Method of vulcanizing nylon tires
KR940006639B1 (en) Vulcanization method for an elastomer product
US6802998B2 (en) Method of molding elastomeric article
US4861253A (en) Apparatus for curing thick-walled articles
EP3711936B1 (en) Method for producing pneumatic tire
KR101860222B1 (en) Method for Curing Ultra Light Down Tire
US3819791A (en) Method for single stage curing of integrated dual chambered safety tires
JP7110791B2 (en) Vulcanization method for pneumatic tires
KR100241629B1 (en) A gas vulcanization system of a tyre
KR102533945B1 (en) Tire vulcanization bladder
KR200365711Y1 (en) Piping Structure of Tire Garbage Machine
JPH01174417A (en) Method and apparatus for vulcanizing elastomeric article
JP2846587B2 (en) Elastomer article vulcanizing method and vulcanizing apparatus therefor
JPS6054843B2 (en) Gas exhaust method during vulcanization of elastomer articles
CA1231811A (en) Tyre manufacturing process
KR100597903B1 (en) Pre-forming apparatus of tire bladder
JPS602317A (en) Method of vulcanizing tire
JP2021030469A (en) Method of vulcanizing tire and tire vulcanizing apparatus