JPH03214074A - Investigation of fault point for cable - Google Patents

Investigation of fault point for cable

Info

Publication number
JPH03214074A
JPH03214074A JP713790A JP713790A JPH03214074A JP H03214074 A JPH03214074 A JP H03214074A JP 713790 A JP713790 A JP 713790A JP 713790 A JP713790 A JP 713790A JP H03214074 A JPH03214074 A JP H03214074A
Authority
JP
Japan
Prior art keywords
phase
fault
current
cable
fault point
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP713790A
Other languages
Japanese (ja)
Other versions
JP2567118B2 (en
Inventor
Motoshirou Kaneda
金田 元四郎
Katsuya Nagayama
長山 克也
Tatsuyoshi Matsuura
松浦 達吉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fuji Electric Co Ltd
Tokyo Electric Power Co Holdings Inc
Original Assignee
Tokyo Electric Power Co Inc
Fuji Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokyo Electric Power Co Inc, Fuji Electric Co Ltd filed Critical Tokyo Electric Power Co Inc
Priority to JP2007137A priority Critical patent/JP2567118B2/en
Publication of JPH03214074A publication Critical patent/JPH03214074A/en
Application granted granted Critical
Publication of JP2567118B2 publication Critical patent/JP2567118B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Locating Faults (AREA)

Abstract

PURPOSE:To specify a distance to a fault point without being affected by a resistance value at the fault point by a method wherein a fault phase is connected to a sound phase with a receiving end and a current the same in value as both the phases flows in an opposite direction to determine the ground potential at a transmitting end of the fault phase attributed to a current source. CONSTITUTION:A receiving end A' of a fault phase 10 of a three-phase cable is con nected 16 to a receiving end B' of a first sound phase 12. Transmitting ends A and B of the fault phase 10 and the sound phase 12 are earthed through current sensors 18 and 20 and current sources 22 and 24 (opposite in polarity to each other) respective ly. Moreover, voltage sensors 26 and 28 are connected in parallel to the current sources 22 and 24 respectively. A transmitting end C and a receiving end C' of the sound phase 14 are made open. Current I1 flows to the transmitting end A from the current source 22 and a current as current I2 opposite in direction to the I1 flows to the trans mitting end B. Here, the setting of current of the current sources 22 and 24 is adjusted to meet the current I1=I2. When a distance to a fault point F is represented by L, a proportional constant between a resistance of the cable and the distance, (k) and a measuring voltage value of the sensor 26, V1, the distance L=V1/kI1 is given. That is, the distance L can be specified at a high accuracy irrelevant to a resistance Rg at the fault point.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 この発明は、三相ケーブルにおける一線地絡事故点を、
事故点抵抗値の大きさに影響されずに高精度で特定する
ことができるケーブルの事故点探査方法に関する。
[Detailed Description of the Invention] [Industrial Application Field] This invention solves the problem of single-line ground fault points in three-phase cables.
The present invention relates to a method for detecting a cable fault point that can be identified with high accuracy without being affected by the magnitude of the fault point resistance value.

〔従来の技術〕[Conventional technology]

従来、この種のケーブルの事故点探査方法として、マー
レールーズ法と呼ばれるホイートストンブリッジの原理
を応用した事故点探査方法が知られている。第3図は、
このマーレーループ法による事故点探査方法を示す図で
ある。第3図において、AA’は事故線、BB’は健全
線、Fは事故点、Gは検流計、Rは摺動抵抗器を示す、
マーレーループ法による事故点探査方法は、第3図の受
端A′B′間を互いに接続した後、送端A、B間に接続
された検流計Gが零を示すようにtX動抵抗器Rの位置
を調整し、このときの摺動抵抗器Rの位置によって事故
点を求めるものである。すなわち、ブリッジが平衡した
時の摺動抵抗器Rの位置a(a<1)を求め、次式の関
係により事故点Fまでの距離1を特定することができる
Conventionally, as a fault point detection method for this type of cable, there has been known a fault point detection method that applies the Wheatstone bridge principle, which is called the Murray-Rose method. Figure 3 shows
FIG. 3 is a diagram showing an accident point detection method using the Murray loop method. In Figure 3, AA' is the fault line, BB' is the sound line, F is the fault point, G is the galvanometer, and R is the sliding resistor.
The fault point detection method using the Murray loop method is to connect the receiving ends A'B' in Fig. 3, and then measure the tX dynamic resistance so that the galvanometer G connected between the sending ends A and B shows zero. The position of the sliding resistor R is adjusted, and the fault point is determined based on the position of the sliding resistor R at this time. That is, the position a (a<1) of the sliding resistor R when the bridge is balanced can be determined, and the distance 1 to the accident point F can be determined from the relationship of the following equation.

1−a:a=L+(L−Jl):J  −(1)、“、
  J=2La          ・・・(2)尚、
このマーレーループ法は、ケーブル導体が事故点Fで断
線していない限り適用可能な事故点探査方法である。
1-a:a=L+(L-Jl):J-(1),",
J=2La...(2) Furthermore,
This Murray loop method is a fault point detection method that can be applied as long as the cable conductor is not broken at the fault point F.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

しかしながら、前述したマーレーループ法による事故点
探査方法は、摺動片の摺動抵抗器における機械的な位置
を求めて事故点までの距′Mjを特定する方法であるこ
とから、以下のような要因による精度上の限界があった
However, the fault point detection method using the Murray loop method described above is a method of determining the distance 'Mj to the fault point by determining the mechanical position of the sliding piece in the sliding resistor. There were limits to accuracy due to factors.

■ 摺動抵抗器を操作して検流計のふれを零にするため
の操作上の誤差要因。
■ Error factors in operating the sliding resistor to reduce the galvanometer swing to zero.

■ 摺動抵抗器のピッチの狙密による誤差要因。■ Error factors due to the pitch of the sliding resistor.

■ 摺動抵抗器における摺動片の接触安定性による誤差
要因。
■ Error factors due to contact stability of sliding pieces in sliding resistors.

■ tg動低抵抗器おける摺動片と目盛りとの対応精度
による誤差要因。
■ Error factors due to the accuracy of the correspondence between the sliding piece and the scale in the TG dynamic low resistance resistor.

そこで、本発明の目的は、三相ケーブルの一線地絡事故
点を特定する事故点探査方法において、幅広く分布する
事故点抵抗の大きさに影響されずに高い測距精度を得る
ことができ、測定上の人為的操作や機械的要素等の誤差
要因を低減し、しかも自動化を図ることも容易なケーブ
ルの事故点探査方法を提供するにある。
SUMMARY OF THE INVENTION Therefore, an object of the present invention is to provide a fault point detection method for identifying single-line ground fault fault points in three-phase cables, which can obtain high ranging accuracy without being affected by the magnitude of fault point resistance that is widely distributed. It is an object of the present invention to provide a cable failure point detection method that reduces error factors such as human operations and mechanical elements during measurement and can be easily automated.

〔課題を解決するための手段〕[Means to solve the problem]

本発明に係るケーブルの事故点探査方法は、三相ケーブ
ルの一線地絡事故点を特定する事故点探査方法において
、 ケーブルの事故相と第1の健全相とを受端で接続し、前
記事故相および第1の健全相の各送端と大地間にそれぞ
れ電流源により互いに逆方向に電流を流し、事故相に流
れる電流値と健全相に流れる電流値とを同一になるよう
開塾した後、前記電流源による事故相の送端の大地電位
を求めることによりケーブルの事故点を特定することを
特徴とする。
A fault point detection method for a cable according to the present invention is a fault point detection method for identifying a single line ground fault fault point in a three-phase cable. After the current is passed in opposite directions between each sending end of the phase and the first healthy phase and the ground using a current source, the current value flowing to the faulty phase and the current value flowing to the healthy phase are made to be the same. , the fault point of the cable is identified by determining the ground potential at the sending end of the fault phase caused by the current source.

また、ケーブルの事故相と第1の健全相とを受端で接続
し、前記事故相と大地間に電圧を印加して電流を流し、
この電流値および送端における事故相と第1の健全相と
の間の電位差を求めることによりケーブルの事故点を特
定することができる。
Further, the fault phase and the first healthy phase of the cable are connected at the receiving end, and a voltage is applied between the fault phase and the ground to flow a current,
By determining this current value and the potential difference between the fault phase and the first healthy phase at the sending end, the fault point of the cable can be identified.

〔作 用〕[For production]

本発明に係るケーブルの事故点探査方法によれば、三相
ケーブルの一線地絡事故において、ケーブルの事故相と
健全相の受端を接続した後、この事故相と健全相の送端
から電流源により互いに逆極性で同一値の電流を流すこ
とで事故点抵抗の影響による電圧が打消され、この時測
定される送端側の各電圧は、単に事故点までの距離に比
例した電圧降下として得ることができる。このため、ケ
ーブルの抵抗と距離との比例係数を知ることにより事故
点までの距離を特定することができる。
According to the fault point detection method of a cable according to the present invention, in the case of a one-line ground fault accident in a three-phase cable, after connecting the receiving ends of the faulty phase and healthy phase of the cable, current flows from the sending end of the faulty phase and the healthy phase. By sending currents of the same value with opposite polarities through the sources, the voltage due to the effect of the resistance at the fault point is canceled out, and each voltage on the sending end measured at this time is simply a voltage drop proportional to the distance to the fault point. Obtainable. Therefore, by knowing the proportionality coefficient between cable resistance and distance, the distance to the accident point can be specified.

また、ケーブルの事故相と第1の健全相とを受端で接続
した後、前記事故相と大地間に電圧を印加して電流を流
した時に得られる送端における事故相と第1の健全相と
の間の電位差は、事故点抵抗の影響による電圧を含まず
、事故相の送端から事故点までのケーブルの電位降下だ
けを表している。このため、事故相の送端における電流
と前記電位差およびケーブルの抵抗と距離との比例係数
を知ることにより、事故点までの距離を特定することが
できる。
In addition, after connecting the fault phase and the first healthy phase of the cable at the receiving end, the fault phase and the first healthy phase at the sending end obtained when a voltage is applied between the fault phase and the ground and current flows. The potential difference between the phases does not include the voltage due to the effect of the fault point resistance, and represents only the potential drop in the cable from the sending end of the fault phase to the fault point. Therefore, by knowing the current and the potential difference at the sending end of the fault phase, and the proportionality coefficient between the resistance of the cable and the distance, it is possible to specify the distance to the fault point.

〔実施例〕〔Example〕

次に、本発明に係るケーブルの事故点探査方法の実施例
につき、添付図面を参照しながら以下詳細に説明する。
Next, an embodiment of the cable fault detection method according to the present invention will be described in detail below with reference to the accompanying drawings.

第1図は、本発明の一実施例を示す事故点探査の結線図
である。第1図において、参照符号10は地絡事故が生
じている三相ケーブルの事故相を示し、事故相10の受
端A′は接続!!16により第1の健全相12の受端B
′と接続する。一方、事故相10の送端Aは電流センサ
18および電流源22を介して接地し、第1の健全相1
2の送端Bは電流センサ20および電流源22と逆極性
の電流源24を介して接地する。電流源22と並列に電
圧センサ26を接続し、さらに電流源24と並列に電圧
センサ28を接続する。残りの健全相14の送端Cおよ
び受端C′は、オープン状態とする。
FIG. 1 is a wiring diagram for fault point exploration showing an embodiment of the present invention. In FIG. 1, reference numeral 10 indicates the fault phase of the three-phase cable in which a ground fault has occurred, and the receiving end A' of the fault phase 10 is connected! ! 16 to the receiving end B of the first healthy phase 12
′. On the other hand, the sending end A of the faulty phase 10 is grounded via the current sensor 18 and the current source 22, and the sending end A of the faulty phase 10 is grounded via the current sensor 18 and the current source 22.
The sending end B of No. 2 is grounded via a current source 24 having a polarity opposite to that of the current sensor 20 and current source 22. A voltage sensor 26 is connected in parallel with the current source 22, and a voltage sensor 28 is further connected in parallel with the current source 24. The sending end C and the receiving end C' of the remaining healthy phase 14 are left open.

このように結線することにより、次のようにして事故点
までの距離を特定することができる。第1図において、
電流源22により事故相10の送端AにI、なる電流を
流し、第1の健全相12の送端BにはI2なる11と逆
方向の電流を流す、この時、各電流■1■2の大きさが
等しくなるよう電流源22゜24の電流設定を調整する
。第1図に示すように事故点Fまでの距離を1、事故点
抵抗をR1、送端と受端の両端間の距離をし、ケーブル
の抵抗と距離との比例定数をkとすれば、次式が成立す
る。
By connecting the lines in this way, the distance to the accident point can be determined as follows. In Figure 1,
The current source 22 causes a current I to flow through the sending end A of the faulty phase 10, and a current I2 in the opposite direction to 11 flows through the sending end B of the first healthy phase 12. At this time, each current ■1■ The current settings of the current sources 22 and 24 are adjusted so that the magnitudes of 2 and 2 are equal. As shown in Figure 1, if the distance to the fault point F is 1, the resistance at the fault point is R1, the distance between the sending end and the receiving end is k, and the proportional constant between the cable resistance and distance is k, The following formula holds true.

’V+ =kJ II +R,(II   I2 )・
・・(3)尚、Vlは電圧センサ26の測定電圧値であ
る。ここで、各電流源22.24は、I+=12となる
ように電流設定が調整されるから(3)式は、 j = V + / k I +          
 ・・・(4)となる、従って、 (4)式から明らか
なように、事故点抵抗R,の値に影響されずに、事故点
Fまでの距離オを高精度に特定できることが判る。
'V+ = kJ II +R, (II I2)・
(3) Note that Vl is the voltage value measured by the voltage sensor 26. Here, since the current setting of each current source 22.24 is adjusted so that I+=12, equation (3) is as follows: j = V + / k I +
(4) Therefore, as is clear from equation (4), it is possible to determine the distance O to the accident point F with high accuracy without being influenced by the value of the accident point resistance R.

同様に、電圧センサ28の測定電圧値v2を用いて事故
点Fまでの距AiJを高精度に特定することらできる。
Similarly, the distance AiJ to the accident point F can be specified with high accuracy using the measured voltage value v2 of the voltage sensor 28.

但し、接続線16の抵抗分は無視できる程度であるとす
る。
However, it is assumed that the resistance of the connection line 16 is negligible.

V2  =k  (L+L−1)■2 +R,(r+   I2)     ・・・(5)ここ
で、l1=I2であるから、この場合、J = 2 L
  (V 2/ k I 2 )     ・・・(6
)となる、従って、(6)式でも事故点抵抗R。
V2 = k (L+L-1) ■2 +R, (r+ I2) ... (5) Here, since l1 = I2, in this case, J = 2 L
(V 2 / k I 2 ) ... (6
), therefore, the fault point resistance R in equation (6) as well.

の値に影響されずに、事故点Fまでの距離1を高精度に
特定できる。
The distance 1 to the accident point F can be specified with high accuracy without being influenced by the value of .

第2図は、本発明の別の実施例を示す事故点探査の結線
図であり、第1図と同一構成部分には、同一の参照符号
を付して説明する。
FIG. 2 is a connection diagram for accident point exploration showing another embodiment of the present invention, and the same components as in FIG. 1 are given the same reference numerals and will be described.

第2図において、事故相10と第1の健全相12の受端
A′、B’を接続線16で接続する。一方、事故相10
の送端Aは電流センサ18および電源30を介して接地
すると共に、電圧センサ32を介して第1の健全相12
の送端Bに接続する。残りの健全相14の送端Cおよび
受端C′は、オーブン状態とする。
In FIG. 2, the receiving ends A' and B' of the failed phase 10 and the first healthy phase 12 are connected by a connecting wire 16. On the other hand, accident phase 10
The sending end A of
Connect to sending end B of The sending end C and the receiving end C' of the remaining healthy phase 14 are placed in an oven state.

このように結線することにより、事故点までの距離を以
下のように特定することができる。第2図において、電
源22により事故相10の送端Aに11なる電流を流し
、この時の送端A、B間の電位差V、を測定する。第2
図に示すように事故点FまでのIi’f’ 41を1、
事故点抵抗をR,、送端と受端の両端間の距^1をL、
ケーブルの抵抗と距離との比例定数をkとすれば、次式
が成立する。
By connecting the lines in this way, the distance to the accident point can be specified as follows. In FIG. 2, a current 11 is caused to flow through the sending end A of the failed phase 10 by the power supply 22, and the potential difference V between the sending ends A and B at this time is measured. Second
As shown in the figure, Ii'f' 41 to accident point F is 1,
The fault point resistance is R, the distance between the sending end and the receiving end is L,
If k is a proportionality constant between cable resistance and distance, the following equation holds true.

Vl=1.jk           ・・・(7)従
って、 オ=V+/X+ k         ・・・(8)が
得られる。(8)式から明らかなように、本事故点探査
方法によっても、事故点抵抗R。
Vl=1. jk (7) Therefore, O=V+/X+ k (8) is obtained. As is clear from equation (8), even with this fault point detection method, the fault point resistance R.

とは無関係に事故点Fまでの距Wljを求められること
が判る。
It can be seen that the distance Wlj to the accident point F can be found regardless of the distance Wlj.

〔発明の効果〕〔Effect of the invention〕

前述した実施例から明らかなように、本発明のケーブル
の事故点探査方法によれば、三相ケーブルの一線地絡事
故点を特定する場合に、事故の様相により事故点抵抗が
0Ω〜数十にΩの広い範囲に分布するが、事故相と健全
相を利用した送端での電圧・電流の測定により、事故点
抵抗値に影響されずに事故点までの距離を特定すること
ができる。
As is clear from the above embodiments, according to the cable fault point detection method of the present invention, when identifying a single line ground fault fault point in a three-phase cable, the fault point resistance ranges from 0Ω to several tens of ohms depending on the nature of the fault. However, by measuring the voltage and current at the sending end using the faulted and healthy phases, it is possible to determine the distance to the fault point without being affected by the resistance value at the fault point.

また、電流源、電源、電圧センサおよび電流センサを便
用する事故点探査方法であり、従来例のような人為的操
作の誤差要因が大きい摺動抵抗器を用いない方法である
ため、容易に自動化を図ることもできる。
In addition, it is a fault point detection method that conveniently uses a current source, power supply, voltage sensor, and current sensor, and does not use a sliding resistor that has a large error factor due to human operation as in the conventional method, so it is easy to use. It can also be automated.

以上、本発明の好適な実施例について説明したが、本発
明は前記実施例に限定されることなく、本発明の精神を
逸脱しない範囲内において種々の設計変更をなし得るこ
とは勿論である。
Although the preferred embodiments of the present invention have been described above, the present invention is not limited to the above embodiments, and it goes without saying that various design changes can be made without departing from the spirit of the present invention.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明に係るケーブルの事故点探査方法の一実
施例を示す結線図、第2図は本発明に係るケーブルの事
故点探査方法の別の実施例を示す結線図、第3図は従来
の事故点探査方法を示す結線図である。 10・・・事故相 12、14・・・鍵金相 16・・・接続線 18.20・・・電流センサ 2224・・・電流源 26.28.32・・・電圧センサ 30・・・電源 八、B、C・・・送端 ^’、B’、C”・・・受端 E・・・−線地絡事故点 [・・・送端・受端間の距離 オ・・・事故点までの距離 特 許 出 願 人 富士電機株式会社
FIG. 1 is a wiring diagram showing one embodiment of the cable fault point detection method according to the present invention, FIG. 2 is a connection diagram showing another embodiment of the cable fault point detection method according to the present invention, and FIG. is a wiring diagram showing a conventional fault point detection method. 10...Fault phase 12, 14...Key metal phase 16...Connection line 18.20...Current sensor 2224...Current source 26.28.32...Voltage sensor 30...Power supply 8. B, C... Sending end ^', B', C''... Receiving end E... - line ground fault accident point [... Distance between sending end and receiving end O... Accident Distance to point Patent applicant Fuji Electric Co., Ltd.

Claims (2)

【特許請求の範囲】[Claims] (1)三相ケーブルの一線地絡事故点を特定する事故点
探査方法において、 ケーブルの事故相と第1の健全相とを受端で接続し、前
記事故相および第1の健全相の各送端と大地間にそれぞ
れ電流源により互いに逆方向に電流を流し、事故相に流
れる電流値と健全相に流れる電流値とを同一になるよう
調整した後、前記電流源による事故相の送端の大地電位
を求めることによりケーブルの事故点を特定することを
特徴とするケーブルの事故点探査方法。
(1) In a fault point detection method for identifying single-line ground fault fault points in three-phase cables, the fault phase and the first sound phase of the cable are connected at the receiving end, and each of the fault phase and the first sound phase is Current is passed in opposite directions between the sending end and the ground by current sources, and after adjusting the current value flowing in the faulty phase and the current value flowing in the healthy phase to be the same, the sending end of the faulty phase is set by the current source. A cable failure point detection method characterized by identifying a cable failure point by determining the ground potential of the cable.
(2)三相ケーブルの一線地絡事故点を特定する事故点
探査方法において、 ケーブルの事故相と第1の健全相とを受端で接続し、前
記事故相と大地間に電圧を印加して電流を流し、この電
流値および送端における事故相と第1の健全相との間の
電位差を求めることによりケーブルの事故点を特定する
ことを特徴とするケーブルの事故点探査方法。
(2) In a fault point detection method for identifying single-line ground fault fault points in three-phase cables, the fault phase and the first healthy phase of the cable are connected at the receiving end, and a voltage is applied between the fault phase and the ground. A method for detecting a fault point in a cable, characterized in that the fault point in the cable is specified by passing a current through the cable and determining the current value and the potential difference between the fault phase and the first healthy phase at the sending end.
JP2007137A 1990-01-18 1990-01-18 Cable accident point search method Expired - Lifetime JP2567118B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007137A JP2567118B2 (en) 1990-01-18 1990-01-18 Cable accident point search method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007137A JP2567118B2 (en) 1990-01-18 1990-01-18 Cable accident point search method

Publications (2)

Publication Number Publication Date
JPH03214074A true JPH03214074A (en) 1991-09-19
JP2567118B2 JP2567118B2 (en) 1996-12-25

Family

ID=11657691

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007137A Expired - Lifetime JP2567118B2 (en) 1990-01-18 1990-01-18 Cable accident point search method

Country Status (1)

Country Link
JP (1) JP2567118B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016085157A (en) * 2014-10-28 2016-05-19 住友電気工業株式会社 Deterioration position measurement method of superconductive cable rail track

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63210787A (en) * 1987-02-27 1988-09-01 Showa Electric Wire & Cable Co Ltd Locating method for accident point of cable

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63210787A (en) * 1987-02-27 1988-09-01 Showa Electric Wire & Cable Co Ltd Locating method for accident point of cable

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016085157A (en) * 2014-10-28 2016-05-19 住友電気工業株式会社 Deterioration position measurement method of superconductive cable rail track

Also Published As

Publication number Publication date
JP2567118B2 (en) 1996-12-25

Similar Documents

Publication Publication Date Title
US7518378B2 (en) Cable compensation for pulsed I-V measurements
EP0003433A1 (en) Improvements in or relating to the location of contact faults on electrically conductive cables
US1985095A (en) Differential electrical measuring appliance
JPH03214074A (en) Investigation of fault point for cable
US4378693A (en) Deflection measuring system
JP2006349686A (en) Improved bridge apparatus for correcting electrical signal
JP6767731B2 (en) Overheat detection system Systems and methods for event sites
US2476384A (en) Unbalanced bridge compensation
US6984995B2 (en) Device to audibly express impendance measurement
JP5877262B1 (en) Calibrator for electromagnetic flowmeter
US4790175A (en) Method and apparatus for calibrating a transducer having real and reactive impedance
GB2092754A (en) Sensing tilt
JP2580064Y2 (en) Four-terminal measurement circuit
JPS6241261Y2 (en)
JPH04235359A (en) Method and apparatus for locating point of fault in three-phase cable
JP2544130B2 (en) Temperature measurement circuit
JP2992845B2 (en) Measurement voltage compensator
JPS6262299B2 (en)
JPS5950720A (en) Zero-phase voltage detector
JPH08320346A (en) Coulombmeter
JPH02231581A (en) Method for surveying accident point of three-phase cable
JPH03206904A (en) Bridge measuring apparatus
JPH02231580A (en) Method for surveying accident point of three-phase cable
JPS62212575A (en) System for measuring resistance ratio of variable resistor equipped with cable resistance correcting function
JP2802320B2 (en) Impedance measuring instrument