JPH03213193A - Electrochemical water treatment - Google Patents
Electrochemical water treatmentInfo
- Publication number
- JPH03213193A JPH03213193A JP452690A JP452690A JPH03213193A JP H03213193 A JPH03213193 A JP H03213193A JP 452690 A JP452690 A JP 452690A JP 452690 A JP452690 A JP 452690A JP H03213193 A JPH03213193 A JP H03213193A
- Authority
- JP
- Japan
- Prior art keywords
- water
- treated
- aluminum
- anode
- treatment
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 title claims abstract description 102
- 229910052782 aluminium Inorganic materials 0.000 claims abstract description 39
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 claims abstract description 30
- 238000000034 method Methods 0.000 claims abstract description 30
- 229910052710 silicon Inorganic materials 0.000 claims abstract description 30
- 239000010703 silicon Substances 0.000 claims abstract description 30
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 claims abstract description 29
- 238000001914 filtration Methods 0.000 claims description 41
- 238000004062 sedimentation Methods 0.000 claims description 21
- 239000012528 membrane Substances 0.000 claims description 16
- 239000007787 solid Substances 0.000 claims description 15
- 230000005684 electric field Effects 0.000 claims description 14
- 239000002244 precipitate Substances 0.000 claims description 10
- 239000012535 impurity Substances 0.000 abstract description 27
- XEEYBQQBJWHFJM-UHFFFAOYSA-N iron Substances [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 abstract description 24
- 239000000126 substance Substances 0.000 abstract description 20
- -1 iron ions Chemical class 0.000 abstract description 17
- 229910052742 iron Inorganic materials 0.000 abstract description 14
- 150000002500 ions Chemical class 0.000 abstract description 12
- 229910001437 manganese ion Inorganic materials 0.000 abstract description 5
- 238000006243 chemical reaction Methods 0.000 abstract description 2
- 238000001556 precipitation Methods 0.000 abstract description 2
- 239000000725 suspension Substances 0.000 abstract description 2
- 230000003311 flocculating effect Effects 0.000 abstract 1
- 244000144992 flock Species 0.000 abstract 1
- 230000001590 oxidative effect Effects 0.000 abstract 1
- 239000002245 particle Substances 0.000 description 22
- 239000000306 component Substances 0.000 description 20
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 19
- 239000000377 silicon dioxide Substances 0.000 description 9
- PWHULOQIROXLJO-UHFFFAOYSA-N Manganese Chemical compound [Mn] PWHULOQIROXLJO-UHFFFAOYSA-N 0.000 description 6
- 229910052748 manganese Inorganic materials 0.000 description 6
- 239000011572 manganese Substances 0.000 description 6
- 238000005516 engineering process Methods 0.000 description 5
- 239000007788 liquid Substances 0.000 description 5
- 230000002829 reductive effect Effects 0.000 description 5
- 238000000926 separation method Methods 0.000 description 5
- 239000011345 viscous material Substances 0.000 description 5
- 238000007254 oxidation reaction Methods 0.000 description 4
- 230000015572 biosynthetic process Effects 0.000 description 3
- 230000000052 comparative effect Effects 0.000 description 3
- 230000000694 effects Effects 0.000 description 3
- 230000005611 electricity Effects 0.000 description 3
- 238000005868 electrolysis reaction Methods 0.000 description 3
- WPBNNNQJVZRUHP-UHFFFAOYSA-L manganese(2+);methyl n-[[2-(methoxycarbonylcarbamothioylamino)phenyl]carbamothioyl]carbamate;n-[2-(sulfidocarbothioylamino)ethyl]carbamodithioate Chemical compound [Mn+2].[S-]C(=S)NCCNC([S-])=S.COC(=O)NC(=S)NC1=CC=CC=C1NC(=S)NC(=O)OC WPBNNNQJVZRUHP-UHFFFAOYSA-L 0.000 description 3
- 238000006722 reduction reaction Methods 0.000 description 3
- 239000013049 sediment Substances 0.000 description 3
- PXHVJJICTQNCMI-UHFFFAOYSA-N Nickel Chemical compound [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 description 2
- 239000004743 Polypropylene Substances 0.000 description 2
- 238000004140 cleaning Methods 0.000 description 2
- 239000000498 cooling water Substances 0.000 description 2
- 230000007423 decrease Effects 0.000 description 2
- 230000003247 decreasing effect Effects 0.000 description 2
- 238000011038 discontinuous diafiltration by volume reduction Methods 0.000 description 2
- 239000006185 dispersion Substances 0.000 description 2
- 238000001962 electrophoresis Methods 0.000 description 2
- 238000012388 gravitational sedimentation Methods 0.000 description 2
- 150000004677 hydrates Chemical class 0.000 description 2
- 230000036571 hydration Effects 0.000 description 2
- 238000006703 hydration reaction Methods 0.000 description 2
- 229910021645 metal ion Inorganic materials 0.000 description 2
- 230000003647 oxidation Effects 0.000 description 2
- 229920001155 polypropylene Polymers 0.000 description 2
- 238000003672 processing method Methods 0.000 description 2
- 238000001179 sorption measurement Methods 0.000 description 2
- 229920003002 synthetic resin Polymers 0.000 description 2
- 239000000057 synthetic resin Substances 0.000 description 2
- OYPRJOBELJOOCE-UHFFFAOYSA-N Calcium Chemical compound [Ca] OYPRJOBELJOOCE-UHFFFAOYSA-N 0.000 description 1
- 206010007269 Carcinogenicity Diseases 0.000 description 1
- ZAMOUSCENKQFHK-UHFFFAOYSA-N Chlorine atom Chemical compound [Cl] ZAMOUSCENKQFHK-UHFFFAOYSA-N 0.000 description 1
- FYYHWMGAXLPEAU-UHFFFAOYSA-N Magnesium Chemical compound [Mg] FYYHWMGAXLPEAU-UHFFFAOYSA-N 0.000 description 1
- 238000003723 Smelting Methods 0.000 description 1
- 239000005708 Sodium hypochlorite Substances 0.000 description 1
- RTAQQCXQSZGOHL-UHFFFAOYSA-N Titanium Chemical compound [Ti] RTAQQCXQSZGOHL-UHFFFAOYSA-N 0.000 description 1
- 239000002253 acid Substances 0.000 description 1
- 239000000654 additive Substances 0.000 description 1
- 230000000996 additive effect Effects 0.000 description 1
- 230000002411 adverse Effects 0.000 description 1
- 238000005273 aeration Methods 0.000 description 1
- WNROFYMDJYEPJX-UHFFFAOYSA-K aluminium hydroxide Chemical compound [OH-].[OH-].[OH-].[Al+3] WNROFYMDJYEPJX-UHFFFAOYSA-K 0.000 description 1
- 238000002048 anodisation reaction Methods 0.000 description 1
- 239000011575 calcium Substances 0.000 description 1
- 229910052791 calcium Inorganic materials 0.000 description 1
- 230000007670 carcinogenicity Effects 0.000 description 1
- 231100000260 carcinogenicity Toxicity 0.000 description 1
- 239000004568 cement Substances 0.000 description 1
- 239000003795 chemical substances by application Substances 0.000 description 1
- 239000000460 chlorine Substances 0.000 description 1
- 229910052801 chlorine Inorganic materials 0.000 description 1
- 239000003245 coal Substances 0.000 description 1
- 238000007796 conventional method Methods 0.000 description 1
- 239000002537 cosmetic Substances 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 238000004090 dissolution Methods 0.000 description 1
- 235000020188 drinking water Nutrition 0.000 description 1
- 239000003651 drinking water Substances 0.000 description 1
- 239000003792 electrolyte Substances 0.000 description 1
- 239000000839 emulsion Substances 0.000 description 1
- 239000003344 environmental pollutant Substances 0.000 description 1
- 239000004744 fabric Substances 0.000 description 1
- 239000000706 filtrate Substances 0.000 description 1
- 238000007667 floating Methods 0.000 description 1
- 238000005189 flocculation Methods 0.000 description 1
- 230000016615 flocculation Effects 0.000 description 1
- 235000011389 fruit/vegetable juice Nutrition 0.000 description 1
- 239000008187 granular material Substances 0.000 description 1
- 230000007062 hydrolysis Effects 0.000 description 1
- 238000006460 hydrolysis reaction Methods 0.000 description 1
- XLYOFNOQVPJJNP-UHFFFAOYSA-M hydroxide Chemical compound [OH-] XLYOFNOQVPJJNP-UHFFFAOYSA-M 0.000 description 1
- 229910052500 inorganic mineral Inorganic materials 0.000 description 1
- 239000011777 magnesium Substances 0.000 description 1
- 229910052749 magnesium Inorganic materials 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 239000000155 melt Substances 0.000 description 1
- 239000011707 mineral Substances 0.000 description 1
- 239000000203 mixture Substances 0.000 description 1
- 229910052759 nickel Inorganic materials 0.000 description 1
- 231100000956 nontoxicity Toxicity 0.000 description 1
- 230000003204 osmotic effect Effects 0.000 description 1
- 238000010422 painting Methods 0.000 description 1
- 238000009372 pisciculture Methods 0.000 description 1
- 238000007747 plating Methods 0.000 description 1
- 231100000719 pollutant Toxicity 0.000 description 1
- 239000012286 potassium permanganate Substances 0.000 description 1
- 239000000843 powder Substances 0.000 description 1
- 238000007639 printing Methods 0.000 description 1
- 230000009467 reduction Effects 0.000 description 1
- 230000002441 reversible effect Effects 0.000 description 1
- 150000003839 salts Chemical class 0.000 description 1
- 239000004576 sand Substances 0.000 description 1
- 239000010802 sludge Substances 0.000 description 1
- SUKJFIGYRHOWBL-UHFFFAOYSA-N sodium hypochlorite Chemical compound [Na+].Cl[O-] SUKJFIGYRHOWBL-UHFFFAOYSA-N 0.000 description 1
- 241000894007 species Species 0.000 description 1
- 230000003068 static effect Effects 0.000 description 1
- 230000009182 swimming Effects 0.000 description 1
- 239000002562 thickening agent Substances 0.000 description 1
- 239000010936 titanium Substances 0.000 description 1
- 229910052719 titanium Inorganic materials 0.000 description 1
- 230000001988 toxicity Effects 0.000 description 1
- 231100000419 toxicity Toxicity 0.000 description 1
- 238000004065 wastewater treatment Methods 0.000 description 1
- 235000020681 well water Nutrition 0.000 description 1
- 239000002349 well water Substances 0.000 description 1
Landscapes
- Separation Using Semi-Permeable Membranes (AREA)
- Removal Of Specific Substances (AREA)
- Water Treatment By Electricity Or Magnetism (AREA)
Abstract
Description
【発明の詳細な説明】
(産業上の利用分野)
本発明は、各種不純物を含有する水の電気化学的処理方
法に関し、より詳細には被処理水の濁りを除去しかつ珪
素、マンガン、鉄等の不純物イオンを除去し、更にCO
Dの低減にも寄与できる薬剤添加不要の水の電気化学的
処理方法に関する。Detailed Description of the Invention (Industrial Application Field) The present invention relates to an electrochemical treatment method for water containing various impurities, and more specifically, to a method for electrochemically treating water containing various impurities, and more specifically for removing turbidity from water to be treated and removing silicon, manganese, and iron. It removes impurity ions such as CO
The present invention relates to an electrochemical treatment method for water that does not require the addition of chemicals and can also contribute to the reduction of D.
(従来技術とその問題点)
各種工業における高度な水処理技術は広範な利用と共に
公害に関する問題点を含めて究極の段階にあり、諸条件
下における水処理のために益々その重要性を増して来て
いる。このような水処理の一分野として電気化学的処理
技術が注目され、種々の成果が報告されている。(Prior art and its problems) Advanced water treatment technology in various industries is at its ultimate stage, including widespread use and problems related to pollution, and is becoming increasingly important for water treatment under various conditions. It is coming. Electrochemical treatment technology has attracted attention as a field of water treatment, and various results have been reported.
例えば給湯配管、飲料水配管内やボイラの冷却水の循環
配管の内壁にカルシウム、マグネシウム及びシリカ等の
各種ミネラルから成るスケールが付着することを防止す
るために、従来から薬剤が使用されている。しかし使用
する薬剤は除去すべきイオン種等により異なり、処理条
件も様々であるため、−度に被処理水の処理を行うこと
ができず、非常な手間を掛けて各イオン種等の成分ごと
に処理を施している。例えば被処理水の濁りを除去する
ためには薬剤添加によりこの濁りをフロック化して沈澱
させ濾過により除去し、又被処理水中の鉄イオンは曝気
により酸化して酸化物として沈澱させ、更にマンガンイ
オンはマンガン砂と次亜塩素酸ナトリウムや塩素と反応
させて第2酸化物として沈澱させて除去し、かつCOD
は周知の活性汚泥法や過マンガン酸カリウムによる酸化
法により低減するようにしている。For example, chemicals have been conventionally used to prevent scales made of various minerals such as calcium, magnesium, and silica from adhering to the inner walls of hot water supply piping, drinking water piping, and boiler cooling water circulation piping. However, the chemicals used vary depending on the ion species to be removed, and the treatment conditions also vary. are being processed. For example, in order to remove the turbidity of water to be treated, the turbidity is floc-formed and precipitated by adding chemicals and removed by filtration, and iron ions in the water to be treated are oxidized by aeration and precipitated as oxides, and further manganese ions are formed. COD is removed by reacting manganese sand with sodium hypochlorite and chlorine to precipitate it as a secondary oxide.
is being reduced by the well-known activated sludge method and oxidation method using potassium permanganate.
しかしこの薬剤を主とする処理技術は、該薬剤自体の毒
性や塩分濃度の上昇による悪影響や該薬剤のコストによ
る処理コストの増大等のため限界近くに達している。更
に処理すべき水に含まれる不純物の性状が変化しつつあ
り最近の被処理水中にはシリカの含有量が多くなり、か
つ近年のバイオテクノロジーの発展に伴って該技術で使
用される水の組成も変化して来ていると報告されている
。However, treatment techniques based on this chemical have almost reached their limits due to the toxicity of the chemical itself, adverse effects due to increased salt concentration, and increased processing costs due to the cost of the chemical. Furthermore, the nature of impurities contained in the water to be treated is changing, and recently the content of silica in the water to be treated has increased, and with the recent development of biotechnology, the composition of the water used in this technology has changed. It is reported that the situation is also changing.
従って従来から使用されている処理方法や処理装置が1
00%稼動せず、効果的な除鉄、除マンガンあるいは除
珪が行われず、効果的な代替技術が要請されている。Therefore, the processing methods and processing equipment that have been used in the past are
00% operation, and effective iron, manganese, or silica removal cannot be performed, and an effective alternative technology is required.
本発明者らは、被処理水中に生ずる沈澱を効果的に濾過
する方法及び装置を提案したが(特願平1−21683
3号)、この発明は既に沈澱した不純物を効果的に濾過
する技術であり満足出来る濾過効率を達成できるが、被
処理水中に溶解している不純物イオンを沈澱させること
が出来なければ被処理水からの不純物除去を行うことは
出来ない。The present inventors have proposed a method and apparatus for effectively filtering the precipitate generated in the water to be treated (Japanese Patent Application No. 1-21683).
No. 3), this invention is a technology that effectively filters impurities that have already precipitated, and can achieve satisfactory filtration efficiency, but if the impurity ions dissolved in the water to be treated cannot be precipitated, the water to be treated will It is not possible to remove impurities from
(発明の目的)
本発明は、少なくとも珪素を含有する被処理水を電気化
学的に処理することにより前記被処理水から前記珪素を
薬剤添加を行うことなく沈澱させて除去する方法を提供
することを目的とする。(Objective of the Invention) The present invention provides a method for electrochemically treating water containing at least silicon to precipitate and remove silicon from the water to be treated without adding chemicals. With the goal.
(問題点を解決するための手段)
本発明は、第1に少なくとも珪素成分を含有する被処理
水を陽極及び陰極の少なくとも一方の電極としてアルミ
ニウム製電極を設置した処理槽に供給し、前記被処理水
の処理を行う被処理水の電気化学的処理方法であり、第
2に少なくとも珪素成分を含有する被処理水を陽極及び
陰極の少なくとも一方の電極としてアルミニウム製電極
を設置した処理槽に供給して前記被処理水の処理を行い
、かつ該被処理水に分散された沈澱物を複数の電極を間
隔をおいてほぼ平行に設置した固形物沈降促進装置を通
した後、該被処理水を濾過膜が装着されかつ少なくとも
その一部に電場が掛けられた濾過槽に供給して前記沈澱
した珪素成分を前記濾過膜により濾過して除去すること
を含んで成る被処理水の電気化学的処理方法である。(Means for Solving the Problems) The present invention firstly supplies water to be treated containing at least a silicon component to a treatment tank in which an aluminum electrode is installed as at least one of an anode and a cathode. This is an electrochemical treatment method for treated water, in which the second step is to supply treated water containing at least a silicon component to a treatment tank equipped with an aluminum electrode as at least one of an anode and a cathode. After treating the water to be treated, and passing the precipitate dispersed in the water through a solid matter sedimentation accelerator in which a plurality of electrodes are installed approximately parallel to each other at intervals, the water to be treated is is supplied to a filtration tank equipped with a filtration membrane and an electric field is applied to at least a part of the filtration tank, and the precipitated silicon component is filtered and removed by the filtration membrane. This is a processing method.
以下本発明の詳細な説明する。The present invention will be explained in detail below.
本発明は、少なくともシリカ等の珪素成分、通゛常はこ
の他にマンガンイオン、鉄イオン等を含有し更に濁りが
生じ又フミン酸類似物質が存在することのある被処理水
を少なくとも一方の電極がアルミニウム製である電極を
使用して処理する電気化学的処理方法である。又本発明
では電場を掛けながら沈澱を行ったり、あるいは複数の
電極を間隔をおいてほぼ平行に設置した固形物沈降促進
装置〔例えばアメリカ合衆国テキサス用のハイドロドリ
ート・インコーポレーテットのハイドロトリーター(商
品名)〕を併用して、処理効率を更に向上させることが
出来る。In the present invention, water to be treated which contains at least a silicon component such as silica, and which usually contains manganese ions, iron ions, etc., and which may further become cloudy and may contain humic acid-like substances, is applied to at least one electrode. This is an electrochemical treatment method that uses electrodes made of aluminum. In addition, in the present invention, precipitation is performed while applying an electric field, or a solid matter sedimentation accelerating device in which a plurality of electrodes are installed approximately parallel to each other at intervals [for example, Hydrotreater (trade name: Hydrotreater (trade name) manufactured by Hydrodorito Inc. for Texas, USA) )] can be used in combination to further improve processing efficiency.
本発明方法により被処理水の処理を行うと、電気化学的
処理の条件にもよるが、薬剤を添加して処理を行う方法
よりもフロック化速度の大きい処理が可能になり薬剤添
加法により高い効率で前記珪素成分等を沈澱させること
が出来、この理由は次のように推測することが出来る。When the water to be treated is treated by the method of the present invention, it is possible to perform treatment with a higher flocculation rate than the method of adding chemicals, although it depends on the conditions of the electrochemical treatment. The silicon component etc. can be precipitated with high efficiency, and the reason for this can be inferred as follows.
アルミニウム製電極を陽極として通電すると、イオン化
傾向の高いアルミニウムは次式に従って酸化されアルミ
ニウムイオンとして電解液中に溶解する。When electricity is applied using an aluminum electrode as an anode, aluminum, which has a high ionization tendency, is oxidized according to the following formula and is dissolved in the electrolyte as aluminum ions.
Aj! −+ An” + 3eこの
ように生ずるアルミニウムイオンはフロック状となって
処理槽中の被処理水中に浮遊し、該被処理水中に含有さ
れる珪素及び存在する場合には他のマンガンイオン及び
鉄イオン等が前記フロック状のアルミニウムイオンに強
力に吸着して単独で沈澱しあるいは共沈する。この場合
に各不純物イオン種は、その種類や被処理水の液性等に
基本的には依存せずにフロック化したアルミニウムイオ
ンに吸着され、各不純物金属イオンは最終的には電解に
より生ずる水酸イオンと反応して水酸化物として沈澱し
除去されるため、従来の処理方法のように除去すべきイ
オンの種類に応じて添加薬剤の種類を変えたり複数回の
処理を行ったりする必要がなく、その処理操作が大幅に
簡略化される。前記電解により生じたアルミニウムイオ
ンは最終的には水酸イオンと反応して水酸化アルミニウ
ムに変換され、結局アルミニウムの加水分解が生じるこ
とになる。Aj! -+ An" + 3eThe aluminum ions thus generated become flocs and float in the water to be treated in the treatment tank, and the silicon contained in the water to be treated and, if present, other manganese ions and iron. Ions, etc. are strongly adsorbed to the floc-like aluminum ions and precipitate alone or co-precipitate.In this case, the type of impurity ions basically does not depend on the type of impurity ions or the liquid properties of the water to be treated. Each impurity metal ion is adsorbed by flocculated aluminum ions without being removed, and each impurity metal ion ultimately reacts with hydroxide ions generated by electrolysis, precipitates as hydroxide, and is removed. There is no need to change the type of additive agent depending on the type of ion to be treated or to perform the treatment multiple times, which greatly simplifies the treatment operation.The aluminum ions generated by the electrolysis are ultimately converted into water. It reacts with acid ions and is converted to aluminum hydroxide, resulting in the hydrolysis of aluminum.
この電気化学的処理の際に使用する電極は両極ともアル
ミニウム製とすることが好ましい。アルミニウム製陽極
は処理の進行に従って被処理水中に溶解して体積が減少
するため、両極をアルミニウム製とし処理操作の間に陽
極及び陰極を反転させながら通電すると両極の体積減少
をほぼ一定とすることができる。この反転時間は特に限
定されないが1〜5分間隔とすることが望ましく、必要
ならば交流電流を流して1秒間に数千回反転させるよう
にしてもよい。更にアルミニウム製陽極に通電すると該
陽極表面に酸化反応による酸化皮膜が形成され、より以
上の溶解反応が進行し難くなるため、一定時間ごとに両
極を反転すると陰極として機能する電極上の酸化皮膜が
陰極の還元反応により溶解して除去されるため、実質的
に酸化皮膜を形成することなく処理操作を高活性で11
1!続することが出来る。Both electrodes used in this electrochemical treatment are preferably made of aluminum. As the aluminum anode dissolves in the water to be treated and its volume decreases as the treatment progresses, if both electrodes are made of aluminum and the anode and cathode are reversed during the treatment operation while energized, the volume reduction of both electrodes will be kept almost constant. I can do it. The reversal time is not particularly limited, but is preferably set at intervals of 1 to 5 minutes, and if necessary, an alternating current may be applied to reverse the reversal several thousand times per second. Furthermore, when electricity is applied to an aluminum anode, an oxide film is formed on the surface of the anode due to an oxidation reaction, making it difficult for further dissolution reactions to proceed. Therefore, if the electrodes are reversed at regular intervals, the oxide film on the electrode that functions as a cathode will be removed. Because it is dissolved and removed by the reduction reaction at the cathode, the treatment operation can be performed with high activity without substantially forming an oxide film.
1! You can continue.
使用するアルミニウム電極の形状は特に限定されず、例
えば板状、棒状、あるいは多孔質板状とすることができ
、処理に従って溶解するため比較的体積を大きくして長
時間使用できるようにすることが望ましい。又使用する
処理槽も特に限定されず、箱状あるいは円筒状等の従来
の電気化学的処理槽を使用することができる。The shape of the aluminum electrode used is not particularly limited, and can be, for example, plate-shaped, rod-shaped, or porous plate-shaped, and because it melts according to the treatment, it can be made relatively large in volume and used for a long time. desirable. Furthermore, the treatment tank used is not particularly limited, and conventional electrochemical treatment tanks such as box-shaped or cylindrical-shaped can be used.
他の処理条件例えば電圧値や電流値も特に限定されず従
来と同様に設定すればよい。Other processing conditions, such as voltage values and current values, are not particularly limited and may be set in the same manner as in the prior art.
このような電気化学的処理により珪素成分等は沈澱又は
懸濁状態に維持され、又前述の懸濁固形物沈降促進装置
を使用すると沈降速度が速く密な沈澱物が得られ、次い
で濾過等の分離操作により前記被処理水から分離され、
被処理水中から不純物イオンを除去することが出来る。By such electrochemical treatment, silicon components etc. are maintained in a precipitated or suspended state, and when the above-mentioned suspended solid sedimentation accelerator is used, the sedimentation rate is high and a dense precipitate is obtained, which is then processed by filtration etc. separated from the water to be treated by a separation operation,
Impurity ions can be removed from the water to be treated.
しかし前記操作により懸濁又は沈澱している珪素成分等
は水和水や粘性物質を包含しているため通常の濾過方法
では濾過し難く濾布の目を閉塞して目詰まりを生じさせ
て濾過効率が非常に悪くなることが多い。従って本発明
では前記通電処理により生じた珪素成分等を更に処理し
て容易に濾過出来るようにすることが可能である。However, since the silicon components suspended or precipitated by the above operation contain hydration water and viscous substances, they are difficult to filter using normal filtration methods, and the filter cloth is clogged and clogged. Efficiency is often very poor. Therefore, in the present invention, it is possible to further process the silicon components etc. generated by the energization treatment so that they can be easily filtered.
つまりアルミニウム製電極を使用して珪素成分等を沈澱
させあるいは懸濁させた被処理水を、必要に応じて静置
して前記珪素成分を更に十分に沈澱させた後、前記被処
理水を、濾過膜が装着されかつ少なくともその一部に電
場が掛けられた濾過槽に供給して前記沈澱した珪素成分
を除去するようにすることが出来る。In other words, the water to be treated in which silicon components and the like have been precipitated or suspended using an aluminum electrode is allowed to stand as necessary to further sufficiently precipitate the silicon components, and then the water to be treated is The precipitated silicon component can be removed by supplying the solution to a filtration tank equipped with a filtration membrane and having an electric field applied to at least a portion of the filtration tank.
前記珪素成分等かの懸濁粒子が懸濁している固液分散系
あるいはエマルジョンのような液液分散系に電場を加え
ると、前記懸濁粒子が有する荷電に応じて陰極あるいは
陽極に向かって移動し各粒子間に電位差が生じて平衡が
崩れる。これにより各粒子は水和水や粘性物質を放ち、
沈降分離の促進や電気泳動による分離速度が上昇して粒
子が分離され易い状態に導かれる。つまり懸濁粒子の粒
径が小さいと、電気泳動速度が重力沈降速度より大きく
なって他の粒子から分離され、又粒径が大きいと重力沈
降速度の方が大きくなって沈澱が生成し易くなる。When an electric field is applied to a solid-liquid dispersion system or a liquid-liquid dispersion system such as an emulsion in which suspended particles such as the silicon component are suspended, the suspended particles move toward the cathode or anode depending on the charge they have. However, a potential difference occurs between each particle, disrupting the equilibrium. This causes each particle to release hydration water and viscous substances,
This promotes sedimentation separation and increases the separation speed by electrophoresis, leading to a state in which particles are easily separated. In other words, if the particle size of the suspended particles is small, the electrophoretic velocity will be greater than the gravitational sedimentation rate, and they will be separated from other particles, and if the particle size is large, the gravitational sedimentation rate will be greater, making it easier to form a precipitate. .
従って前記アルミニウム電極で処理した懸濁物を含む被
処理水に電場を掛けなから該被処理水を濾過膜を通して
濾過すると、前記被処理水中の懸濁物が前記電場により
その有する正負の荷電に応じて陰極又は陽極方向に移動
しながら包含する水和物や粘性物質を放って粘度を低下
させ懸濁状態から浮遊状態に変化し、その粒径に応じて
沈澱しあるいは電気泳動により電極方向へ移動する。前
記懸濁粒子はこのように粘性物質が除去されてさらさら
とした粉状あるいは粒状になり濾過膜を通すことにより
該濾過膜上に容易に固体として単離し回収することが出
来る。特に電気浸透による濾過では浸透圧が機械的加圧
の役割を果たすため、圧損を更に小さくすることが出来
る。Therefore, when the treated water containing suspended matter treated with the aluminum electrode is filtered through a filtration membrane without applying an electric field, the suspended matter in the treated water becomes positively and negatively charged due to the electric field. Depending on the particle size, the particles move toward the cathode or anode, releasing the contained hydrates and viscous substances, lowering the viscosity, changing from a suspended state to a floating state, and depending on the particle size, they precipitate or move toward the electrodes by electrophoresis. Moving. The suspended particles have their viscous substances removed in this way and become a smooth powder or granule, which can be easily isolated and recovered as a solid on the filtration membrane by passing it through the filtration membrane. In particular, in electroosmotic filtration, osmotic pressure plays the role of mechanical pressurization, so pressure loss can be further reduced.
更に本発明の被処理水はスケールを発生し易い無機物を
含有することが多く、その場合には前記アルミニウム製
電極を有する処理槽の前あるいは後に、複数の電極を間
隔をおいてほぼ平行に設置した固形物沈降促進装置を設
け、該装置に前記被処理水を供給して処理を行いスケー
ルの発生を抑制するようにしてもよい(特公昭57−3
2640号参照)。Furthermore, the water to be treated of the present invention often contains inorganic substances that easily generate scale, and in that case, a plurality of electrodes are installed approximately parallel to each other at intervals before or after the treatment tank having the aluminum electrodes. A solid matter sedimentation accelerating device may be provided, and the water to be treated may be supplied to the device to perform treatment and suppress the formation of scale (Japanese Patent Publication No. 57-3).
(See No. 2640).
この操作により配管中等のスケールを発生させ易い前記
無機物が沈澱して濾過され配管中でのスケール発生が抑
制される。なおこの固形物沈降促進装置は本発明の前記
アルミニウム電極電解槽の前後のいずれに設置してもよ
い。By this operation, the inorganic substances that tend to generate scale in the pipes and the like are precipitated and filtered, thereby suppressing the generation of scale in the pipes. Note that this solid matter sedimentation accelerator may be installed either before or after the aluminum electrode electrolytic cell of the present invention.
本発明方法は、写真工業、鍍金工業、セメント工業、製
鉄精練工業等の無機質を扱う工業用プロセス水の濾過、
食品工業、食品加工業、薬品工業、化粧品工業、クリー
ニング工業、塗装工業及び印刷工業等の主として有機質
を取り扱う工業における各種液体の濾過、電子工業、精
密機械工業における洗浄、冷却水中の固形物除去、養魚
関連工業における工程水、循環水中の固形物の濾過、ス
イミングプール、旅館、浴場、温泉等の濾過、ビル、マ
ンションにおける各種用水中の汚染原因物質の除去、排
水処理工程における固形物の分離除去等の非常に広汎な
分野に適用することが出来る。The method of the present invention includes filtration of industrial process water that handles inorganic substances such as the photographic industry, plating industry, cement industry, and iron smelting industry.
Filtration of various liquids in industries that mainly handle organic substances such as food industry, food processing industry, pharmaceutical industry, cosmetics industry, cleaning industry, painting industry, printing industry, etc., cleaning in electronic industry, precision machinery industry, solid matter removal in cooling water, Filtration of solids in process water and circulating water in fish farming-related industries, filtration of swimming pools, inns, bathhouses, hot springs, etc., removal of pollutants in various types of water in buildings and condominiums, separation and removal of solids in wastewater treatment processes. It can be applied to a very wide range of fields such as
次に本発明方法の一例を添付図面に基づいて説明するが
、本発明はこれに限定されるものではない。Next, an example of the method of the present invention will be explained based on the accompanying drawings, but the present invention is not limited thereto.
図面は、本発明の一態様を示すフローシートである。The drawing is a flow sheet illustrating one embodiment of the invention.
箱型の電気化学的処理槽1には、板状のアルミニウム製
陽極2とアルミニウム製陰極3が設置され、該処理槽1
には矢印で示すように珪素成分、マンガンイオン、鉄イ
オン等の不純物が溶解している被処理水が供給され前記
処理槽1内に満たされる。前記両極2.3間に通電する
と前記陽極2表面で酸化反応が生じ該陽極2を構成する
アルミニウムがアルミニウムイオンとして前記被処理水
4中に溶解する。該アルミニウムイオンはフロック状と
なって被処理水4中を浮遊し該被処理水4中に溶解して
いる珪素成分、マンガン及び鉄等の不純物イオン、その
酸化物又はそのイオンを吸着し緻密化して沈澱しあるい
は懸濁状態に維持される。A box-shaped electrochemical treatment tank 1 is equipped with a plate-shaped aluminum anode 2 and an aluminum cathode 3.
As shown by the arrows, water to be treated in which impurities such as silicon components, manganese ions, and iron ions are dissolved is supplied to fill the treatment tank 1 . When electricity is applied between the two electrodes 2.3, an oxidation reaction occurs on the surface of the anode 2, and the aluminum constituting the anode 2 is dissolved in the water to be treated 4 as aluminum ions. The aluminum ions float in the water to be treated 4 in the form of flocs, adsorb impurity ions such as silicon components, manganese and iron, oxides thereof, or ions dissolved in the water 4 to be treated, and become densified. The substance may be precipitated or maintained in suspension.
通電の継続につれて陽極2の溶解量が増加してその体積
が減少するが、あるインターバル例えば5分ごとに通電
の方向を逆にすると陰極として機能していたアルミニウ
ム電極が陽極として機能し同様に溶解するため、前記被
処理水中の不純物除去に影響を与えることなく陽陰両極
の体積減少をほぼ等しくして電流密度の変化等の条件変
動を最小限に抑えることができる。又陽極酸化により陽
極2表面に酸化物が形成し不動態化するが、通電方向を
反転することにより前記酸化物を還元して溶解させ引き
続き被処理水の活性処理を継続することが出来る。As energization continues, the amount of anode 2 dissolved increases and its volume decreases, but if the direction of energization is reversed at certain intervals, for example every 5 minutes, the aluminum electrode that was functioning as a cathode will function as an anode and will similarly dissolve. Therefore, without affecting the removal of impurities from the water to be treated, the volume reductions of the anode and cathode electrodes can be made almost equal, and fluctuations in conditions such as changes in current density can be minimized. Further, an oxide is formed on the surface of the anode 2 due to anodic oxidation and becomes passivated, but by reversing the current direction, the oxide can be reduced and dissolved, and the active treatment of the water to be treated can be continued.
前記処理槽1で処理され懸濁又は沈澱している不純物粒
子を含む被処理水は、処理槽lから取り出されて隣接す
る複数対の図中では2対の沈降用陽極5及び陰極6がほ
ぼ平行に相互に設置された固形物沈降促進装置7に供給
され、該装置を通すことにより懸濁固形物を沈降させた
後、更に隣接する下端が円錐状に下方向に突出する円筒
形の傾斜板付き静置沈降槽8 (あるいはシックナー)
に導入される。該沈降槽8は被処理水4゛を静置させて
該被処理水4“中の懸濁粒子をより以上に沈降させるた
めのものである。The water to be treated containing suspended or precipitated impurity particles that has been treated in the treatment tank 1 is taken out from the treatment tank 1, and in the diagram of the plurality of adjacent pairs, the two pairs of sedimentation anodes 5 and cathodes 6 are approximately A cylindrical slope whose adjacent lower end protrudes downward in a conical manner is supplied to a solid matter settling accelerator device 7 installed in parallel with each other, and after settling the suspended solid matter by passing through the device. Static sedimentation tank with plate 8 (or thickener)
will be introduced in The sedimentation tank 8 is for allowing the water to be treated 4'' to stand still so that suspended particles in the water to be treated 4'' can further settle.
該沈降槽8で沈降した不純物粒子を含む被処理水は矢印
で示すように次いで隣接する濾過槽9に導入される。該
濾過槽9は下端が円錐状に下方向に突出する円筒形の本
体10と、該本体10の内壁に沿って配置された該本体
10とほぼ同形状のポリプロピレン等の合成樹脂から成
る袋状の濾過膜11とを含み、前記本体10の両側面に
は電場形成用の陽極12及び陰極13が配設されている
。該両極12.13に通電して電場を形成しながら前記
被処理水を該濾過槽9に供給すると、前述した通り被処
理水中の懸濁粒子間の平衡が崩れ、各粒子が粘度の低下
した粒子に変化する。この状態で濾過圧を掛けると、例
えば濾過槽9下部から吸引すると前記粒子も吸引される
が、前記濾過膜11のメソシュを通ることが出来ず又粘
度が低いため該メソシュを閉塞することもなく前記濾過
膜11内に蓄積される。従って濾過操作終了後には、濾
別された不純物粒子が前記濾過膜ll内に補集されると
ともに、清澄化された濾過液を得ることが出来る。The water to be treated containing impurity particles that has settled in the sedimentation tank 8 is then introduced into the adjacent filtration tank 9 as shown by the arrow. The filter tank 9 has a cylindrical main body 10 whose lower end protrudes downward in a conical shape, and a bag-shaped bag made of a synthetic resin such as polypropylene, which is arranged along the inner wall of the main body 10 and has almost the same shape as the main body 10. An anode 12 and a cathode 13 for forming an electric field are disposed on both sides of the main body 10. When the to-be-treated water was supplied to the filtration tank 9 while energizing the two poles 12 and 13 to form an electric field, the equilibrium between suspended particles in the to-be-treated water was disrupted as described above, and the viscosity of each particle decreased. Change into particles. When filtration pressure is applied in this state, for example, if the particles are sucked from the lower part of the filtration tank 9, the particles will be sucked in, but they will not be able to pass through the mesh of the filtration membrane 11, and will not block the mesh because of their low viscosity. It is accumulated in the filter membrane 11. Therefore, after the filtration operation is completed, the filtered impurity particles are collected in the filtration membrane 11, and a clarified filtrate can be obtained.
(実施例)
以下本発明による被処理水の電気化学的処理の実施例を
記載するが、該実施例は本発明を限定するものではない
。(Example) Examples of electrochemical treatment of water to be treated according to the present invention will be described below, but the examples are not intended to limit the present invention.
ス妻U汁上
図示のフローシートに示した処理槽、沈降槽及び濾過槽
を使用して被処理水の処理を行った。処理槽は合成樹脂
製で縦60cm、横30cm、深さ50cmの箱型とし
、該処理槽内に陽極及び陰極としてそれぞれ縦22cm
、横50cm、厚さ0.5 cmの平板状アルミニウム
製電極を設置した槽を11槽構成した。Suzuma U Juice Water to be treated was treated using the treatment tank, sedimentation tank, and filtration tank shown in the flow sheet shown above. The processing tank is made of synthetic resin and has a box shape with a length of 60 cm, a width of 30 cm, and a depth of 50 cm. Inside the processing tank, an anode and a cathode each having a length of 22 cm are placed.
, 11 tanks were constructed in which flat aluminum electrodes each having a width of 50 cm and a thickness of 0.5 cm were installed.
この処理槽に、シリカ100mg/ 12 、鉄100
mg/ j!及びマンガン0.8mg/j!を含有し、
CODが3 、5mg/I!である井戸水を被処理水と
して801/分の速度で供給し、両極間に65Vの電圧
を掛けながら前記被処理水の処理を行った。In this treatment tank, 100mg/12 of silica and 100mg/12 of iron were added.
mg/j! and manganese 0.8mg/j! Contains
COD is 3,5mg/I! Well water having the following properties was supplied as water to be treated at a rate of 801/min, and the water to be treated was treated while applying a voltage of 65 V between the two electrodes.
次いで処理の終わった被処理水を内径100cmで深さ
200cmで下端が中央に向かって傾斜している沈降槽
に被処理水を80β/分で導入し約20分静置させた。Next, the treated water was introduced into a sedimentation tank having an inner diameter of 100 cm, a depth of 200 cm, and a lower end inclined toward the center at a rate of 80 β/min, and left to stand for about 20 minutes.
次いで該被処理水を内径22cmで深さ100cmで下
端が中央に向かって傾斜し更にその内壁に沿って本体と
ほぼ同形状のポリプロピレン製の袋状濾過膜が装着され
た濾過槽に導入した。該濾過槽の両側面には、チタン製
の板状陽極と、ニッケル製陰極を設置して両極間に50
V/Cmの電場を掛けながら、前記被処理水を前記濾過
膜を通過させて濾過し、濾過された後の被処理水中の不
純物濃度を測定したところ、シリカ12a+g/ff、
鉄0.05mg/l及びマンガン0.01mg/ 12
であり、CODは5mg/lに減少していた。Next, the water to be treated was introduced into a filtration tank having an inner diameter of 22 cm and a depth of 100 cm, the lower end of which was inclined toward the center, and a bag-shaped filtration membrane made of polypropylene having approximately the same shape as the main body was attached along the inner wall of the tank. A plate-shaped anode made of titanium and a cathode made of nickel are installed on both sides of the filter tank.
The treated water was filtered through the filtration membrane while applying an electric field of V/Cm, and the impurity concentration in the filtered water was measured. Silica 12a + g/ff,
Iron 0.05mg/l and manganese 0.01mg/12
The COD was reduced to 5 mg/l.
止較糎よ
処理槽を設置しなかったこと以外は実施例と同様にして
被処理水の濾過を行った。The water to be treated was filtered in the same manner as in the example except that no treatment tank was installed.
処理後の被処理水中の不純物含有量は、それぞれシリカ
95mg/l、鉄1 、 Qmg / 1及びマンガン
0.81T1g/Ilであり、CODは27鍋g/lに
減少していた。The impurity contents in the water to be treated after treatment were 95 mg/l of silica, 1 kg/l of iron, and 0.81 g/l of manganese, and the COD was reduced to 27 g/l.
北較炭叢
実施例の被処理水に、シリカ除去及び沈降用、鉄及びマ
ンガン除去用としてPACを250 mg/ lの割合
で添加して従来法に従って処理した後、被処理水中の不
純物成分濃度を測定したところ、それぞれシリカ98m
g/ 11 、鉄0.75mg/ l及びマンガン0.
8 mg/ Itであり、CODは30mg/fに減少
していた。After adding PAC at a rate of 250 mg/l for silica removal and sedimentation, iron and manganese removal to the treated water of the Beibai Coal Plant Example and treating it according to the conventional method, the concentration of impurity components in the treated water was When measured, each contained 98 m of silica.
g/11, iron 0.75 mg/l and manganese 0.
8 mg/It, and the COD had decreased to 30 mg/f.
比較例1及び比較例2と実施例を比較すると、実施例の
方法では処理後の被処理水中に存在する不純物量が小さ
く、かつ比較例2のように薬剤を使用する必要がないた
め、毒性に対する配慮が不要でしかもコスト的に有利で
あることが判る。Comparing Comparative Example 1 and Comparative Example 2 with Examples, it is found that in the method of Example, the amount of impurities present in the water to be treated after treatment is small, and there is no need to use chemicals as in Comparative Example 2, so there is no toxicity. It can be seen that there is no need to consider this method, and it is advantageous in terms of cost.
(発明の効果)
本発明は、少な(とも珪素成分を含有する被処理水を陽
極及び陰極の少なくとも一方の電極としてアルミニウム
製電極を設置した処理槽に供給し、溶解するアルミニウ
ムイオンの吸着力を利用して前記被処理水の処理を行う
被処理水の電気化学的処理方法である(請求項1)。(Effects of the Invention) The present invention supplies water to be treated containing a small amount of silicon components to a treatment tank equipped with an aluminum electrode as at least one of an anode and a cathode, thereby increasing the adsorption power of dissolved aluminum ions. This is a method for electrochemically treating water to be treated using the method of treating the water to be treated (claim 1).
本発明方法により珪素成分等を含有する被処理水を処理
すると、電極であるアルミニウムがアルミニウムイオン
として電解時に被処理水中に溶解する。該アルミニウム
はフロックとして被処理水中に浮遊しあるいは懸濁して
該被処理水中の不純物である珪素成分等を強力に吸着し
てフロックの径が大きくなって沈降し易くなる。従って
引き続く濾過操作等を容易に行うことができる。しかも
薬剤を使用しないため、公害や発ガン性に対する考慮が
全く不要であり、又低コストで被処理水の処理を行うこ
とが出来る。更に吸着による分離であるため珪素成分以
外の不純物もその種類によらず被処理水から除去出来る
ため、非常に有効な被処理水の処理方法である。When water to be treated containing silicon components etc. is treated by the method of the present invention, aluminum serving as an electrode is dissolved in the water to be treated as aluminum ions during electrolysis. The aluminum floats or suspends in the water to be treated as flocs and strongly adsorbs impurities such as silicon components in the water to be treated, resulting in an increase in the diameter of the flocs and the tendency to settle. Therefore, subsequent filtration operations etc. can be easily performed. Furthermore, since no chemicals are used, there is no need to consider pollution or carcinogenicity, and the water to be treated can be treated at low cost. Furthermore, since the separation is by adsorption, impurities other than silicon components can be removed from the water to be treated regardless of their type, so it is a very effective method for treating water to be treated.
更に前記陽極及び陰極の両極をアルミニウム製とし、極
性を反転させながら被処理水の処理を行うとく請求項2
)、両極がほぼ等量ずつ被処理水中に溶解していくため
両極間で電流密度が大きく異なることがなく、更に陽極
酸化により陽極表面に形成される酸化皮膜を陰極還元反
応で除去することが出来るため、アルミニウム電極を使
用することに起因する不都合を全て回避することが可能
になり、活性化された電極表面を持続して接液させるこ
とが出来る。Further, both the anode and the cathode are made of aluminum, and the water to be treated is treated while reversing the polarity.
), since almost equal amounts of both electrodes are dissolved in the water to be treated, there is no large difference in current density between the two electrodes, and furthermore, the oxide film formed on the anode surface by anodization can be removed by cathodic reduction reaction. Therefore, it is possible to avoid all the inconveniences caused by using an aluminum electrode, and the activated electrode surface can be continuously brought into contact with the liquid.
又請求項1に記載の処理とその前又は後に固形物沈降促
進装置による処理を行った後、被処理水を濾過膜が装着
されかつ少なくともその一部に電場が掛けられた濾過槽
に供給して前記沈澱した珪素成分を前記濾過膜により濾
過して除去することも可能である(請求項3)。Further, after the treatment according to claim 1 and the treatment using a solid matter sedimentation accelerator before or after the treatment, the water to be treated is supplied to a filtration tank equipped with a filtration membrane and at least a part of which is applied with an electric field. It is also possible to filter and remove the precipitated silicon component using the filter membrane (Claim 3).
前記処理槽の前後に、複数の電極を間隔をおいてほぼ平
行に設置した固形物沈降促進装置を設置すると、スケー
ルを発生させ易い無機物を沈降させて密な沈降物を得る
ことが出来、更にこのように生成した沈降物に電場処理
を行うことによりフロックが水和物や粘性物質を放って
粘度を低下させ、被処理水の濾過効率を一層向上させて
本発明による処理方法の処理能力を大きく向上させるこ
とが出来る。By installing a solid matter sedimentation accelerator in which a plurality of electrodes are installed approximately parallel to each other at intervals before and after the treatment tank, it is possible to sediment inorganic substances that tend to generate scale and obtain a dense sediment. By applying electric field treatment to the sediment generated in this way, the flocs release hydrates and viscous substances to lower the viscosity, further improving the filtration efficiency of the water to be treated and increasing the treatment capacity of the treatment method of the present invention. It can be greatly improved.
図面は、本発明による不純物を含む被処理水の処理の一
態様を示すフローシートである。
電気化学的処理槽
陰極 4.4゛・・
沈降用陽極 6・・
固形物沈降促進装置
濾過槽 10・・・本体
濾過膜 12 ・・・電場形成用陽極電場形成用陰極
2・・・陽極
・被処理水
・沈降用陰極
8・・・沈降槽The drawing is a flow sheet showing one aspect of treatment of water containing impurities according to the present invention. Electrochemical treatment tank cathode 4.4゛... Anode for sedimentation 6... Solid matter sedimentation promotion device filtration tank 10... Main body filtration membrane 12... Anode for electric field formation Cathode for electric field formation 2... Anode Treated water/sedimentation cathode 8...sedimentation tank
Claims (3)
び陰極の少なくとも一方の電極としてアルミニウム製電
極を設置した処理槽に供給し、前記被処理水の処理を行
う被処理水の電気化学的処理方法。(1) Electrochemical treatment of water to be treated, in which water to be treated containing at least a silicon component is supplied to a treatment tank equipped with an aluminum electrode as at least one of an anode and a cathode, and the water to be treated is treated. Method.
両極の極性を反転させながら処理を行う請求項1に記載
の電気化学的処理方法。(2) Both the anode and cathode are aluminum electrodes,
2. The electrochemical treatment method according to claim 1, wherein the treatment is carried out while reversing the polarities of both poles.
び陰極の少なくとも一方の電極としてアルミニウム製電
極を設置した処理槽に供給して前記被処理水の処理を行
い、かつ該被処理水に分散された沈澱物を複数の電極を
間隔をおいてほぼ平行に設置した懸濁固形物沈降促進装
置を通した後、該被処理水を濾過膜が装着されかつ少な
くともその一部に電場が掛けられた濾過槽に供給して前
記沈澱した珪素成分を前記濾過膜により濾過して除去す
ることを含んで成る被処理水の電気化学的処理方法。(3) Treating the water to be treated by supplying the water to be treated containing at least a silicon component to a treatment tank equipped with an aluminum electrode as at least one of an anode and a cathode, and dispersing it in the water to be treated. After the precipitate is passed through a suspended solids sedimentation accelerator in which a plurality of electrodes are installed approximately parallel to each other at intervals, the water to be treated is fitted with a filtration membrane and an electric field is applied to at least a portion of the water. A method for electrochemically treating water to be treated, the method comprising: supplying the water to a filtration tank, and filtering and removing the precipitated silicon component through the filtration membrane.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP452690A JPH03213193A (en) | 1990-01-16 | 1990-01-16 | Electrochemical water treatment |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP452690A JPH03213193A (en) | 1990-01-16 | 1990-01-16 | Electrochemical water treatment |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH03213193A true JPH03213193A (en) | 1991-09-18 |
Family
ID=11586493
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP452690A Pending JPH03213193A (en) | 1990-01-16 | 1990-01-16 | Electrochemical water treatment |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH03213193A (en) |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2001137891A (en) * | 1999-11-11 | 2001-05-22 | Kurita Water Ind Ltd | Scale prevention method |
KR20020031970A (en) * | 2000-10-25 | 2002-05-03 | (주) 이오피테크 | Development of high efficient system for removing pollutant using alkali metal and electric polarization. |
JP2003033768A (en) * | 2001-07-24 | 2003-02-04 | Ichida Kagaku Kk | Water quality adjustment device |
CN111825265A (en) * | 2019-04-23 | 2020-10-27 | 中国石油化工股份有限公司 | Oilfield produced water treatment method |
-
1990
- 1990-01-16 JP JP452690A patent/JPH03213193A/en active Pending
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2001137891A (en) * | 1999-11-11 | 2001-05-22 | Kurita Water Ind Ltd | Scale prevention method |
KR20020031970A (en) * | 2000-10-25 | 2002-05-03 | (주) 이오피테크 | Development of high efficient system for removing pollutant using alkali metal and electric polarization. |
JP2003033768A (en) * | 2001-07-24 | 2003-02-04 | Ichida Kagaku Kk | Water quality adjustment device |
CN111825265A (en) * | 2019-04-23 | 2020-10-27 | 中国石油化工股份有限公司 | Oilfield produced water treatment method |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5193057B2 (en) | Method and system for treating radioactive wastewater | |
US4623436A (en) | Method and apparatus for removing impurities from liquids | |
US8551305B2 (en) | Apparatus for treating water or wastewater | |
US3846300A (en) | Water purification | |
KR101030075B1 (en) | Effluent flotation treatment device and treatment method | |
US3756933A (en) | Method of purifying sewage efluent and apparatus therefor | |
US4149953A (en) | Apparatus for removing impurities from waste water | |
JP6153542B2 (en) | Electrodes for electrochemically reducing the chemical oxygen demand of industrial waste | |
WO2006084110A2 (en) | Ballasted flocculation process and system incorporating an electro-coagulation reactor for treating water or wastewater | |
GB2500663A (en) | Method and apparatus for treatment of fluids by media assisted electro-based treatment | |
EP0668244A1 (en) | Effluent treatment involving electroflotation | |
RU2687416C1 (en) | Method for electrochemical cleaning of domestic, drinking and industrial water | |
JPH03213193A (en) | Electrochemical water treatment | |
US6254783B1 (en) | Treatment of contaminated waste water | |
JP2024046632A (en) | Phosphorus recovery device and phosphorus recovery method | |
Il'in et al. | Purification of highly concentrated industrial sewage from the porcelain and faience industry by the electric flotation method | |
US4111768A (en) | Method of separating solids from a fluid system | |
JP2546952B2 (en) | Electrode structure in wastewater treatment equipment | |
WO2005082788A1 (en) | Fluoride species removal process | |
JP4099369B2 (en) | Wastewater treatment equipment | |
CN113443758A (en) | Full-quantitative pretreatment device, treatment system and treatment method for landfill leachate | |
JPH06142407A (en) | Emulsion waste liquid treatment method | |
RU2122525C1 (en) | Method of removing nonferrous and heavy metals from waste waters | |
KR100466280B1 (en) | Suspended solid removing method of wastewater by electrofloatation and sedimentation | |
WO1994011308A1 (en) | Method and device for purification of aqueous solutions by electroflotation |