JPH03212593A - Recovering method for oil using cationic and anionic polymer - Google Patents

Recovering method for oil using cationic and anionic polymer

Info

Publication number
JPH03212593A
JPH03212593A JP574290A JP574290A JPH03212593A JP H03212593 A JPH03212593 A JP H03212593A JP 574290 A JP574290 A JP 574290A JP 574290 A JP574290 A JP 574290A JP H03212593 A JPH03212593 A JP H03212593A
Authority
JP
Japan
Prior art keywords
permeability
water
polymer
oil
injected
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP574290A
Other languages
Japanese (ja)
Other versions
JP2796867B2 (en
Inventor
Toru Fukushima
透 福島
Nobuyuki Hashimoto
信幸 橋本
Shigemitsu Nagao
長尾 繁光
Atsushi Ezaki
江崎 厚
Hikotada Tsuboi
坪井 彦忠
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsui Cyanamid Ltd
Original Assignee
Mitsui Cyanamid Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsui Cyanamid Ltd filed Critical Mitsui Cyanamid Ltd
Priority to JP574290A priority Critical patent/JP2796867B2/en
Publication of JPH03212593A publication Critical patent/JPH03212593A/en
Application granted granted Critical
Publication of JP2796867B2 publication Critical patent/JP2796867B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Abstract

PURPOSE:To efficiently generate a water insoluble gel and reduce the permeability of a stratum of high permeability by bringing a water soluble anionic polymer into contact with the stratum to which a water soluble cationic polymer is adsorbed in advance, so as to adjust the permeability of an oil stratum. CONSTITUTION:A water soluble cationic polymer is injected into and adsorbed to a stratum in advance and then a water soluble anionic polymer is brought into contact with the stratum. The amount of water soluble gels generated at the reaction of both polymers with each other is increased and stabilized so that the permeability of an oil stratum is adjusted in such a manner that the effect of lowering the permeability of a stratum of high permeability is increased. Also the water soluble cationic polymer is injected into the stratum from a production well and then the water soluble anionic polymer is injected therein from an injection well. Gelation reaction is caused only in a portion of high permeability distant from near the production well by avoiding the use of the same well, so as to enhance the efficiency, the injection property and the productivity of adjustment of the oil stratum.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は、地層より石油を有効に回収する方法に関する
ものであり、更に詳しく言えば水溶性カチオン性および
水溶性アニオン性重合体を用いて油層の浸透率を調整し
石油回収する方法に関する。
[Detailed Description of the Invention] [Industrial Application Field] The present invention relates to a method for effectively recovering petroleum from a geological formation, and more specifically, it relates to a method for effectively recovering petroleum from a geological formation. This article relates to a method for adjusting the permeability of an oil layer and recovering oil.

[従来の技術] 原油を地下油層より生産するに際して、生産井より原油
とともに多量の水分が随伴される。産出された原油は随
伴する水を分離しなければならず、この分離にかかる経
済的費用が問題となる。更に重要なことは、井戸の全生
産量は装置により制限されているため、随伴する水によ
り原油生産量が低く抑えられることである。随伴する水
の量を減少させれば原油生産速度が上がり、なおかつ分
離にかかる費用も抑えられ、原油生産上極めて有効とな
る。
[Prior Art] When crude oil is produced from an underground oil reservoir, a large amount of water is entrained along with the crude oil from the production well. The produced crude oil must be separated from its accompanying water, and the economic cost of this separation is an issue. More importantly, since the total production of the well is limited by the equipment, the associated water keeps crude oil production low. Reducing the amount of water involved increases the rate of crude oil production and also reduces the cost of separation, making it extremely effective for crude oil production.

生産井からの水の随伴は主に油層の外側の地層からの地
下水の流出(ウォーターコーニング)と、水攻法あるい
は他の水溶液を注入する三次攻法によって注入された水
あるいは水溶液が油層中の高浸透率層(水の通り易い層
)、あるいは油層中に存在するフラクチャー(地層中の
割れ目)を通って流出されるものである。すなわち、油
層の多くは水の通り易さ(浸透率)の異なった層より成
っており、水攻法あるいは他の水溶液を用いた三次攻法
は、これらの層に水あるいは水溶液を圧入して各層内に
存在する原油を押し出そうとするものであるが、高浸透
率部分でのみ原油が押し出され、この部分の圧入水が生
産井から早く流出されること(ブレークスルーと呼ぶ)
により原油の産出の際に多量の水が随伴されることにな
る。さらに圧入水によって原油が押し出された部分はさ
らに水が通り易くなり、まだ多量に原油の残っている低
浸透率部分からの原油の生産速度を低下させることにな
る。従って、地層の浸透率の高い部分だけに選択的に何
らかの栓をし、水が流れないようにすることが出来れば
さらにこの油井から油を回収することが出来ることにな
る。
The entrainment of water from production wells is mainly due to groundwater outflow from the strata outside the oil reservoir (water coning), and water or aqueous solutions injected by water flooding or tertiary flooding methods that inject other aqueous solutions into the oil reservoir. Oil flows out through a high permeability layer (a layer through which water can easily pass) or through fractures (cracks in the stratum) that exist in an oil layer. In other words, most oil layers consist of layers with different permeability (permeability), and water flooding or tertiary flooding using other aqueous solutions involves injecting water or an aqueous solution into these layers. This method attempts to push out the crude oil present in each layer, but the crude oil is pushed out only in the high permeability area, and the injected water in this area is quickly discharged from the production well (called breakthrough).
Therefore, a large amount of water is involved when producing crude oil. Furthermore, it becomes easier for water to pass through the areas where the crude oil has been pushed out by the injection water, reducing the production rate of crude oil from the low permeability areas where a large amount of crude oil still remains. Therefore, if it is possible to selectively plug some kind of plug only in areas with high permeability of the formation to prevent water from flowing, it will be possible to recover even more oil from this oil well.

そこで、水の生産を減少させるための種々の技術(油層
調整法)が提案されている。
Therefore, various techniques (oil reservoir adjustment methods) have been proposed to reduce water production.

このような油層調整法は浸透率の高い部分にポリマー等
を詰め油層全体の浸透率の分布状態を改善するものであ
り、公知の技術としてクエン酸アルミ法、アニオン−カ
チオン性重合体法、そしてクロムジェル法が知られてい
る。これらの方法は、クロムシェル法が主に地層中にフ
ラクチュアー(油層の大きな割れ目等)のある油層やウ
ォーターコーニングのあるところの処理に向けられるの
に対し、クエン酸アルミ法およびアニオン−カチオン性
重合体法が高浸透率と低浸透率の分布のある油層を対象
とするところが異なっている。
This oil layer adjustment method improves the distribution of permeability throughout the oil layer by filling areas with high permeability with polymers, etc. Known techniques include the aluminum citrate method, anionic-cationic polymer method, and The chrome gel method is known. These methods are mainly used for the treatment of oil layers with fractures (large cracks in the oil layer, etc.) and water cones, whereas the chrome shell method is mainly used for treating oil layers with fractures (large cracks in the oil layer, etc.) and water cones, whereas the aluminum citrate method and anionic-cationic heavy The difference is that the coalescence method targets oil reservoirs with a distribution of high and low permeability.

クエン酸アルミ法はアニオンおよびノニオン性重合体と
架橋剤としてのクエン酸を架橋させることによるもので
あり、その手順とは、■油層内に、保持されやすいアニ
オン性あるいはノニオン性の重合体を注入し下地調製し
、■架橋剤としてのクエン酸アルミ水溶液を注入し重合
体の表面に吸着させ、さらに、■架橋しやすい重合体の
水溶液を注入し、先に注入した架橋剤とを反応させるも
のであり、その結果、重合体は高浸透率層の浸透率を改
善する。
The aluminum citrate method is based on crosslinking anionic and nonionic polymers with citric acid as a crosslinking agent. After preparing the base, ■ injecting an aqueous solution of aluminum citrate as a crosslinking agent and adsorbing it to the surface of the polymer, and then injecting an aqueous solution of a polymer that is easy to crosslink and reacting with the previously injected crosslinking agent. and, as a result, the polymer improves the permeability of the high permeability layer.

アニオン−カチオン性重合体法はアニオンおよびカチオ
ン性重合体を油層中で反応させ水不溶性ゲルを生成させ
ることによって油層の浸透率を調整するものである。
The anionic-cationic polymer method adjusts the permeability of the oil layer by reacting anionic and cationic polymers in the oil layer to form a water-insoluble gel.

この方法には2種類あって代表的な方法とじて米国特許
第3779316号(分散液法)および米国特許第46
17132号(逐次注入法)がある。前者は■アニオン
性重合体のW10エマルションのカチオン溶液中分散液
を油層に注入し、■高浸透率層へ注入された分散液は、
その後で界面活性剤によってエマルションを壊されその
結果カチオンおよびアニオン性重合体が反応し水不溶性
のゲルを生成させるものである。
There are two types of this method, and the representative methods are U.S. Pat. No. 3,779,316 (dispersion method) and U.S. Pat.
No. 17132 (sequential injection method). In the former case, ■ a dispersion of anionic polymer W10 emulsion in a cationic solution is injected into the oil layer, and ■ the dispersion injected into the high permeability layer is
The emulsion is then broken by a surfactant, causing the cationic and anionic polymers to react and form a water-insoluble gel.

後者は重合体逐次注入法であり、アニオン性重合体を油
層に注入し吸着させた後、続いてカチオン性重合体を注
入し水不溶性ゲルを生成させ油層を調整するものである
The latter is a sequential polymer injection method in which an anionic polymer is injected into an oil layer and adsorbed, and then a cationic polymer is injected to form a water-insoluble gel to adjust the oil layer.

[発明が解決しようとする課題] フラクチュアーのない油層に対するこれら油層調整法の
問題点として以下の点があげられる。
[Problems to be Solved by the Invention] Problems with these oil layer adjustment methods for oil layers without fractures include the following.

クエン酸アルミ法では重合体の架橋すなわちアルミニウ
ムと重合体との配位がpHにより大きく影響され、通常
約pH7以上では架橋が進まない。
In the aluminum citrate method, the crosslinking of the polymer, that is, the coordination between aluminum and the polymer, is greatly affected by pH, and usually crosslinking does not proceed at a pH of about 7 or higher.

一方、地層水のpHが7以上の油層は非常に一般的であ
り、広範囲に分布しているが、このような油層に適用で
きない事が、このクエン酸アルミ法の大きな欠点である
On the other hand, oil layers where the pH of the formation water is 7 or more are very common and distributed over a wide range, but a major drawback of this aluminum citrate method is that it cannot be applied to such oil layers.

アニオン−カチオン性重合体法の1つである分散液法は
、第一に分散液の安定性が問題である。
The first problem with the dispersion method, which is one of the anionic-cationic polymer methods, is the stability of the dispersion.

つまり、アニオン性重合体の分散液はエマルション状態
でカチオンおよびアニオンが混在しているので、相互に
反応して不溶物を形成しやすく、特に注入時の機械的シ
ェアーによって、不溶性ゲルの生成が進行し易い。反面
、更に注入したエマルション混合物に後から界面活性剤
を注入、反転させてゲル化反応を進め油層を調整する際
に、地層中で反転を有効に進めることが非常に難しく、
これが不法の大きな問題点になっている。
In other words, since the anionic polymer dispersion contains cations and anions in an emulsion state, they tend to react with each other to form insoluble substances, and the formation of an insoluble gel progresses, especially due to mechanical shear during injection. Easy to do. On the other hand, when injecting a surfactant into the injected emulsion mixture later and inverting it to advance the gelation reaction and adjust the oil layer, it is very difficult to effectively advance the inversion in the stratum.
This is a major problem with illegality.

一方、アニオン−カチオン性重合体法のもう一つの方法
である逐次注入法では、水溶性アニオン性重合体を最初
に注入するが、このアニオン性重合体が着層表面に充分
吸着保持されないため、後でカチオン性重合体を注入し
ても生成する不溶性ゲルの量が少なく充分な効果が得ら
れないことが欠点である。
On the other hand, in the sequential injection method, which is another method of the anionic-cationic polymer method, a water-soluble anionic polymer is first injected, but this anionic polymer is not sufficiently adsorbed and retained on the surface of the deposited layer. The disadvantage is that even if the cationic polymer is injected later, the amount of insoluble gel produced is small and sufficient effects cannot be obtained.

従来の技術は上に述べたような問題点を有し、実際に実
施してもそれほど効果は得られず、本質的な改良方法が
特に要望されていたところである。
The conventional techniques have the above-mentioned problems, and even if they are actually implemented, they are not very effective, and there is a particular need for a method for essential improvement.

[課題を解決するための手段] 本発明者らは、上記の欠点のない油層の改良方法につき
種々検討を続けた結果、あらかじめ水溶性カチオン性重
合体を吸着させた地層に、水溶性アニオン性重合体を接
触させ油層の浸透率を調整することにより従来の方法で
は得られなかったような大きな効果が得られることを見
いだし、本発明を完成するに至った。
[Means for Solving the Problems] The present inventors continued to study various methods for improving oil layers that do not have the above-mentioned drawbacks, and as a result, the present inventors added a water-soluble anionic polymer to a geological layer that had previously adsorbed a water-soluble cationic polymer. It was discovered that by bringing the polymer into contact and adjusting the permeability of the oil layer, a great effect that could not be obtained with conventional methods could be obtained, and the present invention was completed.

すなわち、カチオン性重合体を最初に注入すると、アニ
オン性重合体を先に注入するよりも地層に対する吸着量
が多くかつ洗い流されにくくなる。
That is, if the cationic polymer is injected first, the amount of adsorption to the formation will be larger and it will be less likely to be washed away than if the anionic polymer is injected first.

なぜならは地層の岩石の組成は大部分が砂岩がらなって
おりその表面は負に帯電しているためカチオン性重合体
のイオン結合による吸着はアニオンのそれよりもはるか
に多いことによる。
This is because the composition of the rock in the formation is mostly sandstone, and its surface is negatively charged, so adsorption by ionic bonds of cationic polymers is much greater than that of anions.

その結果、後から注入する水溶性アニオン性重合体と反
応した時の水不溶性ゲルの生成量が多く、また安定して
いるため、高浸透率層の浸透率低下効果が非常に大きい
As a result, the amount of water-insoluble gel produced when it reacts with the water-soluble anionic polymer to be injected later is large and stable, so the permeability reduction effect of the high permeability layer is very large.

またこの方法は水溶性カチオン性重合体と水溶性アニオ
ン性重合体を逐次的に油層に注入し、イオン結合反応に
より水不溶性ゲルを作ることにより調整するため、従来
技術に見られたpHによる影響や、ゲル化反応のコント
ロールの困難さ等の欠点がない。
In addition, this method involves sequentially injecting a water-soluble cationic polymer and a water-soluble anionic polymer into the oil layer and creating a water-insoluble gel through an ionic bonding reaction. There are no drawbacks such as difficulty in controlling the gelation reaction.

更に本発明者等は上記水溶性カチオン性重合体と水溶性
アニオン性重合体を同一の井戸からではなく、先ず水溶
性カチオン性重合体を生産井から注入し、油層の高浸透
率層に吸着させた後、水溶性アニオン性重合体を注入井
から注入して水不溶性ゲルを生成させることにより更に
著しい効果が得られることを見いだした。
Furthermore, the present inventors did not inject the above-mentioned water-soluble cationic polymer and water-soluble anionic polymer from the same well, but first injected the water-soluble cationic polymer from a production well and adsorbed it to the high permeability layer of the oil layer. It has been found that even more remarkable effects can be obtained by injecting a water-soluble anionic polymer through an injection well to form a water-insoluble gel.

従来の方法では注入井であれ、生産井であれ同じ井戸か
ら薬剤を注入するため、井戸の近傍で水不溶性ゲルを作
る事になり、望まない低浸透率層でも水不溶性ゲルを作
り、注入薬剤の注入性を悪くしたり、生産井の近傍を詰
めてしまう欠点があった。
In the conventional method, since chemicals are injected from the same well, whether it is an injection well or a production well, a water-insoluble gel is created near the well. This has the disadvantage of impairing injection properties and clogging the vicinity of production wells.

それに対し本方法では生産井より注入した水溶性カチオ
ン性重合体は高浸透率部分に選択的に注入され吸着され
る。その後注入井より注入された水溶性アニオン性重合
体も高浸透率層部分でブレークスルーを起こし低浸透率
部分より先に浸透されるため、水不溶性ゲル化反応は生
産井の近傍から離れた高浸透率部分で進むことになる。
In contrast, in this method, the water-soluble cationic polymer injected from the production well is selectively injected into the high permeability area and adsorbed. Thereafter, the water-soluble anionic polymer injected from the injection well also breaks through in the high permeability layer and is infiltrated earlier than the low permeability layer, so the water-insoluble gelation reaction occurs in the high permeability layer far from the vicinity of the production well. We will proceed with the penetration rate part.

そのため、注入井や生産井の近傍でゲル化を起こすこと
なく、選択的に高浸透率層部分でのみゲル化反応を起こ
し、浸透率を下げることにより効率よく油層を調整でき
、従来法の欠点であった井戸の近傍での注入性、生産性
を損なうという欠点を解決できる。
Therefore, without causing gelation near injection wells or production wells, the gelation reaction occurs selectively only in the high permeability layer, and by lowering the permeability, the oil layer can be efficiently adjusted. It is possible to solve the problem of impairing injection efficiency and productivity near the well.

以下、本発明の詳細な説明する。The present invention will be explained in detail below.

本発明において使用されるカチオン性水溶性重合体の具
体例としては、エチレンイミン重合体、エピクロルヒド
リンとジメチルアミンの縮重合体(この中にはジアミン
類、トリアミン類、ポリエポキシ類を含有するものも含
まれる)、ジメチルジアリルアンモニウムクロライド重
合体、ジメチルアミノエチルメタクリレートメチルクロ
ライド重合体、ジメチルアミノエチルアクリレートメチ
ルクロライド重合体、ジメチルアミノプロピルアクリル
アミド重合体、およびそれら一種または二種以上とアク
リルアミドとの共重合体である。これらは単独または併
用して用いてもよい。
Specific examples of cationic water-soluble polymers used in the present invention include ethyleneimine polymers, condensation polymers of epichlorohydrin and dimethylamine (some of which also contain diamines, triamines, and polyepoxies). ), dimethyldiallylammonium chloride polymer, dimethylaminoethyl methacrylate methyl chloride polymer, dimethylaminoethyl acrylate methyl chloride polymer, dimethylaminopropylacrylamide polymer, and copolymers of one or more of these with acrylamide It is. These may be used alone or in combination.

油層に注入するカチオン性重合体の分子量および濃度は
用いる重合体の性質および処理する地層に大きく左右さ
れるが、分子量は一般的には1.000以上好ましくは
5.000以上である。濃度は10ppm 〜10%、
好ましくは10ppm −0,1%である。
The molecular weight and concentration of the cationic polymer injected into the oil layer largely depend on the properties of the polymer used and the geological formation to be treated, but the molecular weight is generally 1.000 or more, preferably 5.000 or more. Concentration is 10ppm ~ 10%,
Preferably it is 10 ppm -0.1%.

本発明において使用されるアニオン性水溶性重合体は分
子量106以上の水溶性重合体であり、具体例としてザ
ンタンガム等の天然重合物、加水分解ポリアクリルアミ
ド、およびアクリルアミドとアクリル酸、メタクリル酸
、ビニルベンゼンスルフォン酸、および無水マレイン酸
等との重合物または二種以上の共重合物であり、分子量
は好ましくは5X10”以上である。水溶液を調整する
時のアニオンポリマーの濃度は、重合体、処理する地層
の浸透率に大きく依存するがその範囲は10ppm〜1
%である。
The anionic water-soluble polymer used in the present invention is a water-soluble polymer with a molecular weight of 106 or more, and specific examples include natural polymers such as xanthan gum, hydrolyzed polyacrylamide, and acrylamide and acrylic acid, methacrylic acid, and vinylbenzene. It is a polymer or a copolymer of two or more of sulfonic acid, maleic anhydride, etc., and the molecular weight is preferably 5 x 10" or more. The concentration of the anionic polymer when preparing the aqueous solution is determined by It depends largely on the permeability of the stratum, but the range is 10 ppm to 1
%.

これらに使用されるポリマーの形態はパウダーエマルシ
ョン、水溶液等があり、どの形態のものもよい。また溶
解装置もポリマーの形態に見合った通常の溶解装置で充
分である。
The forms of the polymers used for these include powder emulsions, aqueous solutions, etc., and any form may be used. Furthermore, a conventional dissolving device suitable for the form of the polymer is sufficient.

更にその他の薬剤としてバイオサイド、pHm整剤、安
定剤、界面活性剤等も必要に応じて使用される。
Furthermore, other chemicals such as biocide, pH adjuster, stabilizer, surfactant, etc. may be used as necessary.

石油回収方法としては、最初に注入井または生産井より
カチオン性重合体水溶液を注入する。
As an oil recovery method, first, an aqueous cationic polymer solution is injected from an injection well or a production well.

処理すべきカチオン性重合体の量は地層により、適宜か
わるが、目的とする高浸透率層の空隙容積の10%以上
、好ましくは30%以上注入することが望ましい。最適
量は実際の油層コアでテストすることにより決定される
。カチオン性重合体の溶液は注入時の抵抗が小さく、従
って高浸透率に効率よく注入されていく。水溶性カチオ
ン性重合体を注入した後、油層の性質に応じてブライン
等でフラッシングするかどうか決められる。
The amount of cationic polymer to be treated varies depending on the stratum, but it is desirable to inject 10% or more, preferably 30% or more of the pore volume of the targeted high permeability layer. The optimum amount is determined by testing on actual reservoir cores. The cationic polymer solution has low resistance during injection, and is therefore efficiently injected with high permeability. After injecting the water-soluble cationic polymer, it is decided whether to flush with brine or the like depending on the nature of the oil layer.

既にポリマーフラッディング等でアニオンポリマーが施
されている井戸に対しては油層の目詰まりを防ぐため生
産井よりブライン等でフラッシングし前処理する。
Wells that have already been treated with anionic polymers by polymer flooding etc. are pretreated by flushing with brine etc. from the production well to prevent clogging of the oil layer.

次にアニオン性重合体の水溶液を注入井より注入する。Next, an aqueous solution of anionic polymer is injected from the injection well.

水溶性アニオン性重合体水溶液は最初に注入したカチオ
ン性重合体のカチオン量以上のアニオン量となるように
注入することが望ましい。また通常では引き続いてポリ
マーフラッディングを行うが、その場合はポリマーフラ
ッディング用の水溶性アニオン性重合体を注入し連続し
てポリマーフラッディングに移ることが望ましい。
It is desirable to inject the water-soluble anionic polymer aqueous solution so that the amount of anions is greater than the amount of cations in the cationic polymer initially injected. Further, polymer flooding is normally performed subsequently, but in that case, it is desirable to inject a water-soluble anionic polymer for polymer flooding and then proceed to polymer flooding continuously.

アニオン性重合体の溶液は優先的に高浸透率層へ侵入し
、先に処理したカチオン性重合体(これも同様に高浸透
率層に注入されている)と接触する。カチオン性重合体
は、アニオン性重合体が吸着性が弱くウオツシュオフさ
れやすいのに対して、岩屑に対する吸着性が大きいため
充分に保持されているので、接触したアニオンは反応し
水不溶性ゲルを効率よく生成し高浸透率層の浸透率を低
減させる。以上のことが地層内で連続的に起こり油層の
浸透率を改善していきながら石油を回収する。
The solution of anionic polymer preferentially enters the high permeability layer and comes into contact with the previously treated cationic polymer (which has also been injected into the high permeability layer). Whereas anionic polymers have weak adsorption properties and are easily washed off, cationic polymers have a high adsorption property for rock debris and are retained well, so anions that come into contact with them react and form a water-insoluble gel efficiently. It often generates and reduces the permeability of high permeability layers. The above steps occur continuously within the stratum, improving the permeability of the oil layer and recovering oil.

[実施例] 以下に実施例を挙げて本発明をさらに説明するが、本発
明は下記の実施例の記載によって何ら限定されるもので
はない。
[Examples] The present invention will be further explained with reference to Examples below, but the present invention is not limited in any way by the description of the Examples below.

実施例 1〜3、比較例1 直径2.5cm、長さ3cmのBerea 5and 
5tone (浸透率約500md)のコアに以下の手
順で下記の表1に示す各溶液を流速2m/dayで流し
浸透率の変化を調べた。
Examples 1 to 3, Comparative Example 1 Berea 5and with a diameter of 2.5 cm and a length of 3 cm
Each solution shown in Table 1 below was flowed through a core of 5tone (permeability: about 500 md) according to the following procedure at a flow rate of 2 m/day to examine changes in permeability.

(1)ブライン(0,1wt%NaCI水溶液)を注入
し、浸透率(K w )を測定する。
(1) Inject brine (0.1 wt% NaCI aqueous solution) and measure permeability (K w ).

(2)カチオン性重合体溶液(100ppm)を10空
隙容積量注入する。
(2) Inject 10 void volumes of cationic polymer solution (100 ppm).

(3)ブラインを6空隙容積量注入する。(3) Inject 6 void volumes of brine.

(4)アニオン性重合体(加水分解ポリアクリルアミド
)溶液(100ppm)を逆方向より10空隙容積量注
入する。
(4) Anionic polymer (hydrolyzed polyacrylamide) solution (100 ppm) is injected in an amount of 10 pore volumes from the opposite direction.

(5)ブラインを注入し、浸透率(Kw)を測定する。(5) Inject brine and measure permeability (Kw).

得られた浸透率低下係数(処理前Kwを処理後Kwで除
した値)を表1に示す。
The obtained permeability reduction coefficient (value obtained by dividing Kw before treatment by Kw after treatment) is shown in Table 1.

なお、比較例1は実施例1と同じ重合体について、手順
2でアニオン性重合体を注入し、手順4でカチオン性重
合体溶液を注入したものである。
In Comparative Example 1, the anionic polymer was injected in Step 2 and the cationic polymer solution was injected in Step 4 using the same polymer as in Example 1.

実施例4〜5、比較例2 直径2.5cm、長さ15cmのBerea 5and
 5tone(浸透率的500md)のコアに以下の手
順で下記の表2に示す各溶液を流速2m/dayで流し
浸透率の変化を調べた。
Examples 4 to 5, Comparative Example 2 Berea 5and with a diameter of 2.5 cm and a length of 15 cm
Each solution shown in Table 2 below was flowed through a 5 tone (permeability: 500 md) core at a flow rate of 2 m/day according to the following procedure to examine changes in permeability.

(1)ブライン(0,1wt%NaCl水溶液)を注入
し、浸透率(K w )を測定する。
(1) Inject brine (0.1 wt% NaCl aqueous solution) and measure permeability (K w ).

(2)カチオン性重合体溶液(200ppmまたは40
0 ppm)を0.5空隙容積量注入する。
(2) Cationic polymer solution (200 ppm or 40
0 ppm) at a volume of 0.5 void volume.

(3)ブラインを1.0空隙容積量注入する。(3) Inject 1.0 void volume of brine.

(4)アニオン性重合体(加水分解ポリアクリルアミド
)溶液(100ppn+)を逆方向より10空隙容積量
注入する。
(4) Anionic polymer (hydrolyzed polyacrylamide) solution (100 ppn+) is injected in an amount of 10 void volumes from the opposite direction.

(5)ブラインを注入し、浸透率(K w )を測定す
る。
(5) Inject brine and measure permeability (Kw).

得られた浸透率低下係数を表2に示す。The obtained permeability reduction coefficients are shown in Table 2.

なお、比較例2は、手順2でアニオン性重合体を注入し
、手順4でカチオン性重合体溶液を注入したものである
In Comparative Example 2, an anionic polymer was injected in step 2, and a cationic polymer solution was injected in step 4.

実施例6〜7、比較例3 パラレルコアーテスト 直径2.5cm、長さ15cmの並列につないだ浸透率
60 m dと570mdのBerea 5and 5
toneのコアに以下の手順で下記の表3に示す各溶液
を流速2m/dayで流し、コアより流出する液量を調
べた。
Examples 6 to 7, Comparative Example 3 Parallel core test Berea 5 and 5 with permeability of 60 m d and 570 m d connected in parallel with diameter 2.5 cm and length 15 cm
Each solution shown in Table 3 below was flowed through the tone core at a flow rate of 2 m/day according to the following procedure, and the amount of liquid flowing out from the core was examined.

(1)ブライン(0,1wt%NaCI水溶液)を注入
し、浸透率(K w )を測定する。
(1) Inject brine (0.1 wt% NaCI aqueous solution) and measure permeability (K w ).

(2)カチオン性重合体溶液(200ppll)を0.
5空隙容積量注入する。
(2) Add cationic polymer solution (200ppll) to 0.00%.
Inject 5 void volumes.

(3)ブラインを1.0空隙容積量注入する。(3) Inject 1.0 void volume of brine.

(4)アニオン性重合体(加水分解ポリアクリルアミド
)溶液(100ppm)を逆方向より10空隙容積量注
入する。
(4) Anionic polymer (hydrolyzed polyacrylamide) solution (100 ppm) is injected in an amount of 10 pore volumes from the opposite direction.

(5)ブラインを注入し、浸透率(K w )を測定す
る。
(5) Inject brine and measure permeability (Kw).

60mdのコアの液量に対する570mdのコアの液量
の比を表3に示す。
Table 3 shows the ratio of the liquid amount of the 570 md core to the liquid amount of the 60 md core.

なお、実施例7は手順4でアニオン性重合体をカチオン
性重合体と同じ方向から注入した場合であり、比較例3
は手順2でアニオン性重合体を注入し、手順4でカチオ
ン性重合体溶液を注入した場合である。
In addition, Example 7 is the case where the anionic polymer was injected from the same direction as the cationic polymer in Step 4, and Comparative Example 3
This is the case where an anionic polymer was injected in step 2 and a cationic polymer solution was injected in step 4.

手続補正書(自発) 平成3年3月 日Procedural amendment (voluntary) March 1991 Day

Claims (1)

【特許請求の範囲】 1)あらかじめ水溶性カチオン性重合体を吸着させた地
層に、水溶性アニオン性重合体を接触させ油層の浸透率
を調整することを特徴とする石油回収方法。 2)生産井より水溶性カチオン性重合体を注入し、注入
井より水溶性アニオン性重合体を注入することを特徴と
する請求項第1項に記載の石油回収方法。
[Scope of Claims] 1) An oil recovery method characterized by adjusting the permeability of the oil layer by bringing a water-soluble anionic polymer into contact with a geological formation that has previously adsorbed a water-soluble cationic polymer. 2) The oil recovery method according to claim 1, characterized in that the water-soluble cationic polymer is injected from a production well, and the water-soluble anionic polymer is injected from an injection well.
JP574290A 1990-01-12 1990-01-12 Petroleum recovery with cationic and anionic polymers Expired - Fee Related JP2796867B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP574290A JP2796867B2 (en) 1990-01-12 1990-01-12 Petroleum recovery with cationic and anionic polymers

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP574290A JP2796867B2 (en) 1990-01-12 1990-01-12 Petroleum recovery with cationic and anionic polymers

Publications (2)

Publication Number Publication Date
JPH03212593A true JPH03212593A (en) 1991-09-18
JP2796867B2 JP2796867B2 (en) 1998-09-10

Family

ID=11619557

Family Applications (1)

Application Number Title Priority Date Filing Date
JP574290A Expired - Fee Related JP2796867B2 (en) 1990-01-12 1990-01-12 Petroleum recovery with cationic and anionic polymers

Country Status (1)

Country Link
JP (1) JP2796867B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1322093C (en) * 2004-09-15 2007-06-20 玉门石油管理局 Cation emulsion asphalt anti-collapse agent for well drilling fluid and its producing method
WO2016080142A1 (en) * 2014-11-19 2016-05-26 東洋製罐グループホールディングス株式会社 Mining method for underground resources, and hydrolyzable blocking agent for use in said method
JP2020527626A (en) * 2017-07-20 2020-09-10 サウジ アラビアン オイル カンパニー Mitigation of condensate banking using surface modification

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1322093C (en) * 2004-09-15 2007-06-20 玉门石油管理局 Cation emulsion asphalt anti-collapse agent for well drilling fluid and its producing method
WO2016080142A1 (en) * 2014-11-19 2016-05-26 東洋製罐グループホールディングス株式会社 Mining method for underground resources, and hydrolyzable blocking agent for use in said method
JP2016098503A (en) * 2014-11-19 2016-05-30 東洋製罐グループホールディングス株式会社 Underground resource mining method using hydraulic pressure fracturing method, and hydrolyzable antiblocking agent added to fluid used in hydraulic pressure fracturing
AU2015351297B2 (en) * 2014-11-19 2018-11-08 Toyo Seikan Group Holdings, Ltd. Method of extracting underground resources and hydrolysis-blocking agent for use in the method
US10487620B2 (en) 2014-11-19 2019-11-26 Toyo Seikan Group Holdings, Ltd. Method of extracting underground resources and hydrolysis-blocking agent for use in the method
JP2020527626A (en) * 2017-07-20 2020-09-10 サウジ アラビアン オイル カンパニー Mitigation of condensate banking using surface modification

Also Published As

Publication number Publication date
JP2796867B2 (en) 1998-09-10

Similar Documents

Publication Publication Date Title
CA2459672C (en) Organosilicon containing compositions for enhancing hydrocarbon production and method of using the same
US7182136B2 (en) Methods of reducing water permeability for acidizing a subterranean formation
CN105504158B (en) Intelligent gel particles capable of being crosslinked again under stratum condition and preparation method and application of intelligent gel particles
US3701384A (en) Method and composition for controlling flow through subterranean formations
US7013973B2 (en) Method of completing poorly consolidated formations
US4532052A (en) Polymeric well treating method
CA2520056C (en) Methods and compositions for improving hydrocarbon recovery by water flow intervention
US4460627A (en) Polymeric well treating method
CA1307457C (en) Sand consolidation methods
AU2002301861B2 (en) Subterranean Formation Water Permeability Reducing Methods
US9475976B2 (en) Methods and compositions of improving wellbore cleanout treatments
WO2012021213A1 (en) Delayed gelling agents
CN104936988A (en) Crosslinking of swellable polymer with PEI
SA91120183B1 (en) Foam to improve displacement efficiency in petroleum-bearing subterranean formations
WO1998006929A2 (en) Compositions and methods for modifying the permeability of subterranean formations
CN106947450B (en) Deep profile control and flooding agent with low initial viscosity and preparation method thereof
MXPA05005159A (en) Selective stimulation with selective water reduction.
GB2417044A (en) Compositions containing water control treatments and formation damage control additives and methods for their use
US8980800B2 (en) Methods for reducing fluid loss of a viscoelastic surfactant gel into a subterranean formation
WO2019183390A1 (en) Preformed particle gel for enhanced oil recovery
WO2018004624A1 (en) Acid diversion in naturally fractured formations
CN108410439A (en) A kind of method of gel foam and microemulsions in situ combination application oil well production increasing
GB2262117A (en) Conformance control in underground reservoirs
JPH0768427B2 (en) Aminoalkylated polyacrylamide-aldehyde gel, process for its production and its use
JPH03212593A (en) Recovering method for oil using cationic and anionic polymer

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

R370 Written measure of declining of transfer procedure

Free format text: JAPANESE INTERMEDIATE CODE: R370

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees