JPH032121B2 - - Google Patents

Info

Publication number
JPH032121B2
JPH032121B2 JP58197251A JP19725183A JPH032121B2 JP H032121 B2 JPH032121 B2 JP H032121B2 JP 58197251 A JP58197251 A JP 58197251A JP 19725183 A JP19725183 A JP 19725183A JP H032121 B2 JPH032121 B2 JP H032121B2
Authority
JP
Japan
Prior art keywords
group
acid
polymer
copolymer
formula
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP58197251A
Other languages
Japanese (ja)
Other versions
JPS6088561A (en
Inventor
Toshio Kawaguchi
Shinichiro Kunimoto
Keiji Sako
Koji Kusumoto
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tokuyama Corp
Original Assignee
Tokuyama Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokuyama Corp filed Critical Tokuyama Corp
Priority to JP58197251A priority Critical patent/JPS6088561A/en
Publication of JPS6088561A publication Critical patent/JPS6088561A/en
Publication of JPH032121B2 publication Critical patent/JPH032121B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Materials For Medical Uses (AREA)
  • Dental Preparations (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明は新規な歯牙用被覆材を提供する。詳し
くは、 (i) 式、
The present invention provides a novel tooth covering material. For details, (i) Eq.

【式】(但し、R1は水素原子又 はアルキル基であり、R2はアリール基、アル
キル基、アルコキシ基、アシルオキシ基又はア
ルコキシカルボニル基である)で示される重合
単位と 式、
[Formula] (However, R 1 is a hydrogen atom or an alkyl group, R 2 is an aryl group, an alkyl group, an alkoxy group, an acyloxy group, or an alkoxycarbonyl group) and the formula;

【式】(但し、R3 は水素又はカルボキシメチル基であり、n及び
mはゼロ又は1の数であり、nがゼロのときは
mは1でR3は水素原子であり、nが1のとき
はmはゼロでR3はカルボキシメチル基であり、
2つのカルボキシル基は無水カルボン酸基を形
成していてもよい)で示される重合単位とを含
む高分子体と (ii) 有機チタネート化合物 とを主成分とする歯牙用被覆材である。 尚、以下の説明にあつては、歯牙用被覆材をわ
かりやすく説明するため、次のような用語を使用
し、説明するものとする。 即ち、「封鎖材」という用語は、歯牙と修復合
金との間を封鎖するのに使用する被覆材を意味
し、「遮断被覆形成材」という用語は、歯質と唾
液、エツチング剤等の溶液或いは空気との間を遮
断するのに使用する被覆材を意味する。 生体硬組織用又は皮膚用被覆材は種々のものが
提案され、そのうち数種類のものについては市販
されている。しかしながら、次のような欠陥のた
め必ずしも満足のいく被覆材は存在しない。 例えば、歯科分野で充填されるアマルガムは充
填直後の辺縁封鎖性が良くないため、コーパライ
トが封鎖材として使用される。しかし、その封鎖
性は満足できるものではない。 従来、生体硬組織例えば歯質とエツチング剤例
えばりん酸水溶液、クエン酸水溶液等間の遮断被
膜形成材は、例えば特公昭43−15519号で提案さ
れているように種々のものが知られている。しか
し歯質特にエナメル質に対しては100Kg/cm2以上
の接着力が必要と言われており、現在上記の要求
を満足させるためにはエナメル質をエッチング剤
で脱灰しアンカー効果を利用しなければ達成出来
ない事情にある。そのため例えば歯科分野に於い
ては歯質を予め高濃度のエツチング剤例えばりん
酸水溶液で処理し機械的に保持形態を作る必要が
あつた。そのため高濃度のエツチング剤に耐える
遮断被膜形成材の開発が望まれていた。 また楔状欠損或いは歯肉の退縮によつて象牙質
が歯牙表面に露出した場合、冷水や外気等が該露
出した部分に接触すると歯髄刺激を起こし痛みを
感じる。同様に皮膚の切損、切りきずにあつても
痛みが生ずる。しかしながらこれらの痛みを保護
するための被覆材は満足なものがなかつた。 本発明者等は前記のような背景のもとに歯牙用
被覆材の開発を鋭意重ねて来た。その結果、疎水
性基と少なくとも2つのカルボキシル基又は1つ
の無水カルボン酸基を結合して有し且つ該カルボ
キシル基又は無水カルボン酸基は隣接する炭素原
子に結合してなる高分子体と、有機チタネート化
合物とよりなる被覆材は強く、透明な膜状物を形
成するだけでなく、形成された被膜は驚ろくべき
ことには強力な抗菌作用を有することを見出し本
発明を完成させここに提案するに至つた。 即ち、本発明は、 (i) 式、
[Formula] (However, R 3 is hydrogen or a carboxymethyl group, n and m are zero or 1, and when n is zero, m is 1 and R 3 is a hydrogen atom, and n is 1 When , m is zero and R 3 is a carboxymethyl group,
This is a tooth covering material whose main components are a polymer containing a polymer unit represented by (two carboxyl groups may form a carboxylic anhydride group) and (ii) an organic titanate compound. In the following description, the following terms will be used to explain the tooth covering material in an easy-to-understand manner. That is, the term "sealing material" refers to a covering material used to seal between a tooth and a restorative alloy, and the term "blocking covering material" refers to a covering material used to seal between a tooth and a solution such as saliva or an etching agent. Alternatively, it refers to a covering material used to block air. Various types of dressings for living body hard tissue or skin have been proposed, and several types of these are commercially available. However, there are not always satisfactory coating materials due to the following deficiencies. For example, amalgam filled in the dental field does not have good margin sealing properties immediately after filling, so copalite is used as a sealing material. However, its sealing properties are not satisfactory. Conventionally, various materials have been known to form a barrier film between hard biological tissues, such as teeth, and etching agents, such as phosphoric acid aqueous solution, citric acid aqueous solution, etc., as proposed in Japanese Patent Publication No. 15519/1983. . However, it is said that an adhesive strength of 100 kg/cm 2 or more is required for teeth, especially enamel, and currently, in order to satisfy the above requirements, the enamel is demineralized with an etching agent and the anchor effect is used. There are circumstances that would not be possible without it. For this reason, for example, in the dental field, it has been necessary to pre-treat tooth structure with a highly concentrated etching agent, such as an aqueous phosphoric acid solution, to mechanically create a retention form. Therefore, it has been desired to develop a barrier film forming material that can withstand high concentrations of etching agents. Furthermore, when dentin is exposed on the tooth surface due to a wedge-shaped defect or gingival recession, when cold water or outside air comes into contact with the exposed area, the tooth pulp is stimulated and pain is felt. Similarly, pain occurs when the skin is cut or cut. However, there have been no satisfactory dressings to protect against these pains. The present inventors have been diligently developing tooth covering materials based on the above-mentioned background. As a result, a polymer having a hydrophobic group and at least two carboxyl groups or one carboxylic anhydride group bonded to each other, and the carboxyl group or carboxylic anhydride group is bonded to an adjacent carbon atom, and an organic It was discovered that the coating material made of titanate compounds not only forms a strong and transparent film, but surprisingly, the formed film also has a strong antibacterial effect, and the present invention was completed and proposed here. I came to the conclusion. That is, the present invention provides formula (i),

【式】(但し、R1は水素原子又 はアルキル基であり、R2はアリール基、アル
キル基、アルコキシ基、アシルオキシ基又はア
ルコキシカルボニル基である)で示される重合
単位と式、
[Formula] (However, R 1 is a hydrogen atom or an alkyl group, R 2 is an aryl group, an alkyl group, an alkoxy group, an acyloxy group, or an alkoxycarbonyl group) and the formula;

【式】(但 し、R3は水素又はカルボキシメチル基であり、
n及びmはゼロ又は1の数であり、nがゼロの
ときはmは1でR3は水素原子であり、nが1
のときはmはゼロでR3はカルボキシメチル基
であり、2つのカルボキシル基は無水カルボン
酸基を形成していてもよい)で示される重合単
位とを含む高分子体と (ii) 有機チタネート化合物 とを主成分とする歯牙用被覆材である。 本発明の歯牙用被覆材の主成分の一つは前記特
定の重合単位で構成される高分子体である。 該高分子体に、少なくとも2つのカルボキシル
基又は1つの無水カルボン酸基を結合して有し且
つ該カルボキシル基又は無水カルボン酸基は隣接
する炭素原子に結合している必要性は口腔内のよ
うな湿潤下においても例えば歯質に対しても十分
な接着力を有し使用に耐えうるものとするためで
ある。 前記カルボキシル基又は無水カルボン酸基及び
疎水性基を有する高分子体は特に限定されず公知
のものを用いうるが一般には分子量が1000〜
100000の範囲のものが最も好適である。また該高
分子体を得る方法は特に限定されず公知の方法が
採用出来る。 本発明に用いる前記高分子は、30乃至700、特
に40乃至600の酸価を有するものが好適である。
本明細書において、酸価とは樹脂1gを中和する
に要するKOHのmg数として定義される。この酸
価は高分子中のカルボキシル基及び無水カルボン
酸基の濃度を表わすものであり、この酸価が上記
範囲よりも低いと、有機チタネートとの架橋点が
減少することにより、被膜の強靭性等が低下する
傾向がある。一方、この酸価が上記範囲よりも大
きいと、高分子から形成される膜が過度に親水性
となって、被膜の耐水性が失われる傾向がある。 本発明で用いる前記高分子体に結合した疎水性
基は特に限定されず公知のものが使用出来る。一
般に好適に使用される該疎水性基の代表的なもの
を例示すれば次のものである。 即ち、 (1) フエニル基、ナフチル基等のアリール基 (2) メチル基、エチル基、プロピル基、ブチル基
等のアルキル基 (3) エトキシ基、プロポキシ基、ブトキシ基等の
アルコキシ基 (4) アセチルオキシ基等のアシルオキシ基 (5) エトキシカルボニル基、ブトキシカルボニル
基等のアルコキシカルボニル基 また、上記(1)〜(5)で示される疎水性基は疎水性
の性状を損なわない限り他の置換基で置換されて
いてもよい。これらの置換基は例えば塩素、臭
素、沃素、フツ素等のハロゲン原子、アルキル
基、アルコキシ基、フエノキシ基等が一般的であ
る。 またこれらの疎水性基は詳しくは後述するよう
に、一般に本発明の高分子体を製造するときの原
料に基因して付与されることが多い。このような
疎水性基を付与する原料は特に制限されず公知の
ビニルモノマーが好適に使用される。特に好適に
使用される公知のビニルモノマーを例示すれば次
の通りである。即ち、前記(1)の疎水性基を有する
ものとしては、スチレン、ハロゲン化スチレン、
メチルスチレン、ハロゲン化メチルスチレン、ビ
ニルナフタレン等が、前記(2)の疎水性基を有する
ものとしてはプロピレン、イソブテン等が好適で
ある。同様に前記(3)の疎水性基を有するものとし
ては、エチルビニルエーテル、n−ブチルエーテ
ル等が、前記(4)の疎水性基を有するものとして
は、酢酸ビニル等が、前記(5)の疎水性基を有する
ものはメタクリル酸エチル、アクリル酸ブチル等
が好適である。 本発明に好適に使用される疎水性基導入用モノ
マーは、下記一般式 (式中R1は水素原子又はアルキル基であり、R2
はアリール基、アルキル基、アルコキシ基、ア
シルオキシ基又はアルコキシカルボニル基であ
る) で表わされる。 また本発明で用いる前記高分子に結合したカル
ボキシル基又は無水カルボン酸基は製法の如何に
かかわらず結果的に隣接する炭素原子にこれらの
基が結合しておればよい。一般には次のような方
法で好適に製造される。即ち隣接する炭素原子に
2つのカルボキシル基又は無水カルボン酸基を有
するビニル化合物例えばマレイン酸、フマル酸、
イタコン酸、無水マレイン酸、無水イタコン酸、
4−メタクリロキシエチルトリメリット酸又はそ
の無水物等を原料として重合又は共重合すること
によつて高分子体を製造する方法がある。また前
記隣接する炭素原子にそれぞれカルボン酸のエス
テル又は無水カルボン酸を有するビニルモノマー
例えば無水マレイン酸、マレイン酸モノエステ
ル、マレイン酸ジエステル、フマル酸モノエステ
ル、フマル酸ジエステルを1成分とする他の共重
合可能なビニルモノマーとの共重合体を製造して
おき、しかる後に該無水カルボン酸基又はカルボ
ン酸エステル基を加水分解することにより該無水
カルボン酸基又はカルボン酸エステル基の一部又
は全部をカルボキシル基に変換する方法も好適に
採用出来る。 本発明で用いる高分子体は一般には入手の容易
さ或いは取扱いの容易さ等の理由で工業的には分
子量が1000〜100000好ましくは2000〜50000程度
のものが好適である。上記のような高分子体を得
る方法は特に限定されるものではないが工業的に
は前記したような疎水性基を有するビニルモノマ
ーと隣接する炭素原子にそれぞれカルボキシル
基、カルボン酸エステル基、無水カルボン酸基を
結合したビニルモノマーとを共重合することによ
り、或いはその後加水分解することにより得る方
法が好適に採用される。 従つて、本発明を構成する高分子体は、(A)下記
[Formula] (where R 3 is hydrogen or carboxymethyl group,
n and m are numbers of zero or 1, when n is zero, m is 1, R 3 is a hydrogen atom, and n is 1
(in which case m is zero and R 3 is a carboxymethyl group, and the two carboxyl groups may form a carboxylic anhydride group); and (ii) an organic titanate. This is a tooth covering material whose main component is a compound. One of the main components of the tooth covering material of the present invention is a polymer composed of the above-mentioned specific polymer units. It is necessary that the polymer has at least two carboxyl groups or one carboxylic anhydride group bonded to it, and that the carboxyl group or carboxylic anhydride group is bonded to an adjacent carbon atom, such as in the oral cavity. This is to ensure that the adhesive has sufficient adhesion to, for example, tooth structure even under extremely humid conditions and can withstand use. The polymer having a carboxyl group or a carboxylic anhydride group and a hydrophobic group is not particularly limited, and known polymers can be used, but in general, polymers having a molecular weight of 1000 to 1000 are used.
A range of 100,000 is most preferred. Furthermore, the method for obtaining the polymer is not particularly limited, and any known method can be employed. The polymer used in the present invention preferably has an acid value of 30 to 700, particularly 40 to 600.
In this specification, the acid value is defined as the number of mg of KOH required to neutralize 1 g of resin. This acid value represents the concentration of carboxyl groups and carboxylic anhydride groups in the polymer, and if this acid value is lower than the above range, the number of crosslinking points with the organic titanate decreases, resulting in a decrease in the toughness of the coating. etc. tend to decrease. On the other hand, if the acid value is larger than the above range, the film formed from the polymer becomes excessively hydrophilic, and the water resistance of the film tends to be lost. The hydrophobic group bonded to the polymer used in the present invention is not particularly limited, and known ones can be used. Typical examples of the hydrophobic groups that are generally suitably used are as follows. That is, (1) Aryl groups such as phenyl group and naphthyl group (2) Alkyl groups such as methyl group, ethyl group, propyl group and butyl group (3) Alkoxy groups such as ethoxy group, propoxy group and butoxy group (4) Acyloxy groups such as acetyloxy groups (5) Alkoxycarbonyl groups such as ethoxycarbonyl groups and butoxycarbonyl groups In addition, hydrophobic groups shown in (1) to (5) above may be substituted with other substitutions as long as the hydrophobic properties are not impaired. It may be substituted with a group. These substituents generally include, for example, halogen atoms such as chlorine, bromine, iodine, and fluorine, alkyl groups, alkoxy groups, and phenoxy groups. Further, as will be described in detail later, these hydrophobic groups are generally provided based on the raw materials used when producing the polymer of the present invention. The raw material for imparting such a hydrophobic group is not particularly limited, and known vinyl monomers are preferably used. Examples of known vinyl monomers that are particularly preferably used are as follows. That is, as those having a hydrophobic group in (1) above, styrene, halogenated styrene,
Among methylstyrene, halogenated methylstyrene, vinylnaphthalene, etc., propylene, isobutene, etc. are preferable as those having the hydrophobic group described in (2) above. Similarly, ethyl vinyl ether, n-butyl ether, etc. have the hydrophobic group in (3) above, and vinyl acetate, etc. have the hydrophobic group in (4) above, and the hydrophobic group in (5) above. Ethyl methacrylate, butyl acrylate, etc. are suitable for those having a functional group. The hydrophobic group-introducing monomer preferably used in the present invention has the following general formula: (In the formula, R 1 is a hydrogen atom or an alkyl group, and R 2
is an aryl group, an alkyl group, an alkoxy group, an acyloxy group or an alkoxycarbonyl group). Further, the carboxyl group or carboxylic anhydride group bonded to the polymer used in the present invention only needs to be bonded to adjacent carbon atoms, regardless of the manufacturing method. Generally, it is suitably produced by the following method. That is, vinyl compounds having two carboxyl groups or carboxylic anhydride groups on adjacent carbon atoms, such as maleic acid, fumaric acid,
itaconic acid, maleic anhydride, itaconic anhydride,
There is a method of producing a polymer by polymerizing or copolymerizing 4-methacryloxyethyl trimellitic acid or its anhydride as a raw material. In addition, other monomers containing as one component a vinyl monomer having an ester of carboxylic acid or a carboxylic acid anhydride on the adjacent carbon atoms, such as maleic anhydride, maleic acid monoester, maleic acid diester, fumaric acid monoester, and fumaric acid diester, may also be used. A copolymer with a polymerizable vinyl monomer is produced, and then a part or all of the carboxylic anhydride group or carboxylic ester group is removed by hydrolyzing the carboxylic anhydride group or carboxylic ester group. A method of converting into a carboxyl group can also be suitably employed. The polymer used in the present invention is generally preferably one having a molecular weight of about 1,000 to 100,000, preferably about 2,000 to 50,000, for reasons such as ease of availability and handling. Although the method for obtaining the above-mentioned polymer is not particularly limited, industrially it is possible to obtain a vinyl monomer having a hydrophobic group as described above and a carboxyl group, a carboxylic acid ester group, or an anhydride group on the adjacent carbon atom, respectively. Preferably, a method is employed in which the material is obtained by copolymerizing with a vinyl monomer to which a carboxylic acid group is bonded, or by subsequent hydrolysis. Therefore, the polymer constituting the present invention has (A) the following formula:

【式】 式中、R1は水素原子又はアルキル基であり、
R2はアリール基、アルキル基、アルコキシ基、
アシルオキシ基又はアルコキシカルボニル基であ
る。 で表わされる単位の少なくとも1種と、(B)下記式 式中、R3は水素又はカルボキシメチル基であ
り、n及びmはゼロ又は1の数であり、nがゼロ
のときはmは1でR3は水素原子であり、nが1
のときはmはゼロでR3はカルボキシメチル基で
あり、2つのカルボキシル基は無水カルボン酸基
を形成していてもよい。 で表わされる単位の少なくとも1種とから成る。 また上記共重合を実施する場合は特に限定され
るものではなく、一般には次のような重合開始剤
で行なわれる重合が好適に採用される。例えば過
酸化ベンゾイル、過酸化ラウロイルなどの有機過
酸化物やアゾビスイソブチロニトリルなどのアゾ
化合物、トリブチルホウ素などの有機金属化合物
またはレドツクス系開始剤を用いて行なうラジカ
ル重合が好適に利用出来る。 前記高分子体は、該高分子体に含まれる該疎水
性基が、2つのカルボキシル基又は1つの無水カ
ルボン酸基を1モルとするとき0.7〜9.0モルの割
合で分子内に存在するものが好ましい。該疎水性
基が9.0モルを越えると歯牙との被膜形成力が得
られなくなる。この理由については今のところ明
確ではないが、高分子体の疎水性が高くなるため
に、歯牙との親和性が低くなるためであろうと推
定される。また該疎水性基が0.7モルより少ない
高分子体は、後述するカルボキシル基又は無水カ
ルボン酸基を付与する方法に工業的な良い方法が
ないので、一般に工業的に製造するのが困難とな
るだけでなく、得られる高分子体を用いた被膜の
耐水性が十分でなくなる傾向がある。 また前記カルボン酸エステル基、無水カルボン
酸基を加水分解する方法は特に限定されないが、
一般的には無水マレイン酸基、マレイン酸ジエス
テル、フマル酸ジエステルまたはイタコン酸ジエ
ステルを含む共重合体を適当な有機溶媒に溶解
し、これに水ならびに加水分解反応の促進剤とし
て酸またはアルカリ成分を少量加えて室温あるい
は加熱下に反応する方法が好適である。 また本発明の前記被覆材の他の1つの成分は有
機チタネート化合物である。該有機チタネート化
合物は特に限定されず公知のものが使用できる。
例えば、テトラ−iso−プロピルチタネート、テ
トラ−n−ブチルチタネート、テトラキス(2−
エチルヘキシル)チタネート、テトラステアリル
チタネート、ジ−iso−プロポキシ・ビス(アセ
チルアセトン)チタネート、ジ−n−ブトキシ・
ビス(トリエタノールアミン)チタネート、ジヒ
ドロキシ・ビス(ラクテイクアシド)チタネー
ト、テトラオクチレングリコールチタネート、ト
リ−n−ブトキシモノステアリルチタネート、イ
ソプロピルトリ−iso−ステアロイルチタネート、
イソプロピルトリドデシルベンゼンスルホニルチ
タネート、イソプロピルトリス(ジオクチルパイ
ロホスフエート)チタネート、テトラ−iso−プ
ロピルビス(ジオクチルホスフアイト)チタネー
ト、テトラオクチルビス(ジトリデシルホスフア
イト)チタネート、テトラ(2,2−ジアリルオ
キシメチル−1−ブチル)ビス(ジ−トリデシ
ル)ホスフアイトチタネート、ビス(ジオクチル
パイロホスフエート)オキシアセテートチタネー
ト、ビス(ジオクチルパイロホスフエート)エチ
レンチタネートなどが単独でまたは組合わせて特
に好適に使用される。また、上記チタネート化合
物のポリマーなどを用いても良い。 本発明においては、有機チタネートとして式 式中、R4はアルキル基であり、pはゼロ又は
20までの数である。 で表わされるチタネート、特にテトラアルキルチ
タネートを用いるのが好ましい。 本発明の被覆材は前記高分子体と有機チタネー
ト化合物を構成成分とするものである。これら主
成分の混合比は本発明の目的が達成される限り特
に制限されるものではない。一般には有機チタネ
ート化合物は、前記高分子体中のカルボキシル基
又は無水カルボン酸基を結合して有するユニツト
1モルに対して有機チタネート化合物が0.02モル
〜2モルの範囲となるように選べば好適である。 また本発明の被覆材の成分として用いる有機チ
タネート化合物をより安定な状態で使用するた
め、しばしば該有機チタネート化合物の安定剤を
使用すると好適である。特に本発明の被覆材の使
用形態に溶媒を使用する場合は、該溶媒の種類に
もよるが含水分を除去せず該溶媒を用いるときは
前記有機チタネート化合物の安定剤を使用すると
好ましい。該安定剤はその種類によつて本発明の
被覆材の使用態様を変えうる。例えばo−メトキ
シ安息香酸、o−エトキシ安息香酸、o−プロポ
キシ安息香酸等のo−アルコキシ安息香酸;ヒド
ロアクリル酸、β−ヒドロキシ酪酸、β−ヒドロ
キシイソバレリン酸等のβ−ヒドロキシカルボン
酸を安定剤として使用する場合は一つの包装容器
中に前記高分子体及び有機チタネート化合物を溶
媒に溶解した一液性タイプ製品とすることが出来
る。また該安定剤として、乳酸、α−ヒドロキシ
−n−酪酸、マンデル酸等のα−ヒドロキシカル
ボン酸;α−ヒドロキシエチルメタクリレート、
β−ヒドロキシプロピルアクリレート、グリセン
ジメタクリレート等のβ−ヒドロキシアルキル
(メタ)アクリレート;カテコール、グアヤコー
ル、ユージノール等のカテコール誘導体;プロリ
ン、4−メチレン−プロリン、4−メチル−プロ
リン等のプロリン誘導体;β−ブチロラクトン、
γ−ブチロラクトン、β−カプロラクトン等の環
状エステル類等を使用する場合は、溶媒に溶解し
た前記高分子体と同じく溶媒に溶解した有機チタ
ネート化合物及び該安定剤とを別々の容器に保有
し、使用時に両者を混合して被覆材とする二液性
タイプ製品とするのが好ましい。該一液性タイプ
及び該二液性タイプの各製品で使用される溶媒は
特に限定されず公知の溶媒から適宜選択して使用
すればよいが一般にはエチルアルコール、イソプ
ロピルアルコール等のアルコール類;酢酸エチ
ル;ジオキサン;テトラヒドロフラン等が好適で
ある。また前記有機チタネート化合物の安定剤の
添加量は該安定剤の種類によつて異なり一概に限
定出来ないが一般には有機チタネート化合物に対
して0.1モル〜4モル好ましくは0.5モル〜2モル
の範囲から選べば好適である。また該安定剤の添
加方法は有機チタネート化合物と予め混合して用
いても或いは他の成分と一諸に有機チタネート化
合物に添加して用いてもよい。 本発明の被覆材は前記高分子体及び有機チタネ
ート化合物を一液性又は二液性のタイプとして使
用すればよい。一般には前記したような溶媒に適
当な濃度例えば1〜30重量%となるように溶解し
て用いればよい。 また本発明の被覆材は上記濃度の溶液としたも
のを歯牙に塗布し、被膜を形成させることによつ
て使用すればよい。該被膜は使用分野によつて異
なるので必要に応じて該被膜の厚みを調整すれば
よい。より厚い被膜を必要とする場合は被覆材の
塗布を複数回くりかえして実施すればよい。 本発明の被覆材は歯牙表面に塗布し被膜を形成
させることにより、10〜90%濃度のりん酸、クエ
ン酸等のエツチング剤を完全に遮断することが出
来る。勿論唾液、冷水、空気との遮断も完全で、
楔状欠損或いは歯肉の退縮によつて露出した歯の
象牙質部を介した歯髄刺激を防ぐことが出来る。 また本発明の被覆材は上記歯牙に塗布し被膜を
形成させた上に、更に金、銀、アマルガム、金属
合金等の修復合金、歯科用無機セメント等を積層
することも出来る。本発明の被覆材は上記使用形
態では修復合金、無機セメントとの間で接着性が
ないが、歯牙と修復合金又は無機セメントとの間
の封鎖性は十分に発揮する。 本発明の被覆材は前記したように種々の形態で
使用出来るが、被膜及び被覆材自身抗菌作用を有
する優れた性質を発揮する。特に該抗菌作用は嫌
気性菌に対して有効である。このような作用が発
揮されるために本発明の被覆材は生体硬組織(特
に歯科の分野で)に対するものとして好適に使用
される。特に抗菌作用をする菌の代表的なものを
例示すると次ぎの通りである。 Bacteroides gingivalis 381 Actinomyces naeslundii ATCC 12104 Actinomyces viscosus ATCC 15987 Propionibacterium acnes EXC−1 Actinomyces israeli ATCC 12102 本発明を更に具体的に説明するために、以下実
施例を挙げて説明するが、本発明はこれらの実施
例に限定されるものではない。 製造例 1 500ml容量のガラス製セパラブルフラスコにシ
クロヘキサン200mlを入れ、これにスチレン5.2
g、無水マレイン酸4.9gならびにベイゾイルパ
ーオキサイド(以下BPOと略記する)0.05gを加
えて充分攪拌した。 次に、容器内を減圧、窒素置換した後、80℃で
4時間攪拌下に加熱重合を行ない室温まで冷却
後、生成した沈澱物を濾別した。得られた固体を
さらにベンゼン300mlで十分洗浄した後乾燥し白
色のポリマー8.7gを得た。このものの元素分析
から生成共重合体の組成を求めた結果、スチレン
48.4mol%、無水マレイン酸51.6mol%であつた。 次に、この生成物を80mlのジオキサンに容か
し、500ml容量のフラスコに入れて充分攪拌しな
がら、5重量パーセントの水酸化カリウム水溶液
100mlを加え10時間室温で反応させた。次に、濃
塩酸を加えて中和しさらに過剰の塩酸を加えるこ
とによつて白色固体の沈澱物を得た。この固体を
濾別後、中性になるまで充分水洗を繰返し、さら
に乾燥して8.0gの共重合体を得た。この生成物
の赤外吸収スペクトルを測定した結果、無水マレ
イン酸のカルボニル基に由来する特性吸収(1850
cm-1、1775cm-1)が完全消失し、新たにマレイン
酸のカルボニル基に由来する特性吸収が1720cm-1
に出現しておりほぼ定量的に加水分解反応が進行
していることが確認できた。すなわち、上記で得
た白色固体はスチレン48.4mol%、マレイン酸
51.6mol%を含有する共重合体であることが確認
できた。なお、このポリマーの酸価は370であつ
た。 製造例 2 スチレン−無水マレイン酸の共重合体として分
子量50000の市販品(モンサント(Monsanto)
社製)10gを200mlのジオキサンに溶かし、500ml
容量のフラスコに入れて充分攪拌しながら蒸留水
10gを加え、100℃で4時間加熱攪拌を行なつた。
次にこの溶液を室温まで冷却した後、2の蒸留
水中に投入することによつて綿状の白色ポリマー
が析出した。このポリマーを水洗乾燥することに
よつて白色固体9.8gを得た。この生成物の元素
分析ならびに赤外吸収スペクトルの結果より、ス
チレン−マレイン酸共重合体が得られたことを確
認した。なお、このポリマーの酸価は367であつ
た。 製造例 3〜4 スチレン−無水マレイン酸の共重合体として表
1に示した組成の異なる二種の市販品(アルコ
ケミカル(Arco Chemical)社製)を用いて、
製造例1と同様な方法で加水分解を行ない、原料
共重合体の元素分析結果及び加水分解後の赤外吸
収スペクトルの測定結果から同じく表1に示した
組成のスチレン−マレイン酸共重合体を得た。分
子量はそれぞれ1700、1900であり、酸価は251、
184であつた。
[Formula] In the formula, R 1 is a hydrogen atom or an alkyl group,
R 2 is an aryl group, an alkyl group, an alkoxy group,
It is an acyloxy group or an alkoxycarbonyl group. At least one type of unit represented by and (B) the following formula In the formula, R 3 is hydrogen or a carboxymethyl group, n and m are zero or 1, and when n is zero, m is 1 and R 3 is a hydrogen atom, and n is 1.
In the case of , m is zero and R 3 is a carboxymethyl group, and the two carboxyl groups may form a carboxylic anhydride group. It consists of at least one type of unit represented by Further, when carrying out the above-mentioned copolymerization, there are no particular limitations, and in general, polymerization carried out using the following polymerization initiator is suitably employed. For example, radical polymerization using an organic peroxide such as benzoyl peroxide or lauroyl peroxide, an azo compound such as azobisisobutyronitrile, an organometallic compound such as tributylboron, or a redox initiator can be suitably used. In the polymer, the hydrophobic groups contained in the polymer are present in the molecule at a ratio of 0.7 to 9.0 moles when two carboxyl groups or one carboxylic acid anhydride group are 1 mole. preferable. If the amount of the hydrophobic group exceeds 9.0 moles, it will not be possible to form a film with the tooth. Although the reason for this is not clear at present, it is presumed that the hydrophobicity of the polymer increases, resulting in a decrease in affinity with teeth. In addition, polymers containing less than 0.7 moles of hydrophobic groups are generally difficult to produce industrially because there is no good industrial method for imparting carboxyl groups or carboxylic acid anhydride groups, which will be described later. However, the water resistance of the resulting film using the polymer tends to be insufficient. In addition, the method of hydrolyzing the carboxylic acid ester group and carboxylic anhydride group is not particularly limited, but
Generally, a copolymer containing maleic anhydride groups, maleic diesters, fumaric diesters, or itaconic diesters is dissolved in a suitable organic solvent, and water and an acid or alkali component are added as accelerators for the hydrolysis reaction. A preferred method is to add a small amount and react at room temperature or under heating. Another component of the coating material of the present invention is an organic titanate compound. The organic titanate compound is not particularly limited, and known ones can be used.
For example, tetra-iso-propyl titanate, tetra-n-butyl titanate, tetrakis(2-
ethylhexyl) titanate, tetrastearyl titanate, di-iso-propoxy bis(acetylacetone) titanate, di-n-butoxy
Bis(triethanolamine) titanate, dihydroxy bis(lacteiacide) titanate, tetraoctylene glycol titanate, tri-n-butoxymonostearyl titanate, isopropyl tri-iso-stearoyl titanate,
Isopropyl tridodecylbenzenesulfonyl titanate, isopropyl tris(dioctylpyrophosphate) titanate, tetra-iso-propyl bis(dioctyl phosphite) titanate, tetraoctyl bis(ditridecyl phosphite) titanate, tetra(2,2-diallyloxymethyl) -1-Butyl)bis(di-tridecyl)phosphite titanate, bis(dioctylpyrophosphate)oxyacetate titanate, bis(dioctylpyrophosphate)ethylene titanate, and the like are particularly preferably used alone or in combination. Further, polymers of the titanate compounds mentioned above may also be used. In the present invention, the formula In the formula, R 4 is an alkyl group, and p is zero or
The number is up to 20. Preference is given to using titanates of the formula, especially tetraalkyl titanates. The coating material of the present invention contains the above polymer and an organic titanate compound as constituent components. The mixing ratio of these main components is not particularly limited as long as the object of the present invention is achieved. In general, it is preferable to select the organic titanate compound so that the amount of the organic titanate compound is in the range of 0.02 mol to 2 mol per mol of the unit having the carboxyl group or carboxylic anhydride group bonded in the polymer. be. Furthermore, in order to use the organic titanate compound used as a component of the coating material of the present invention in a more stable state, it is often preferable to use a stabilizer for the organic titanate compound. In particular, when a solvent is used in the usage form of the coating material of the present invention, it is preferable to use the organic titanate compound stabilizer when using the solvent without removing water content, although it depends on the type of the solvent. The manner in which the coating material of the present invention is used may vary depending on the type of stabilizer. For example, o-alkoxybenzoic acids such as o-methoxybenzoic acid, o-ethoxybenzoic acid, and o-propoxybenzoic acid; β-hydroxycarboxylic acids such as hydroacrylic acid, β-hydroxybutyric acid, and β-hydroxyisovaleric acid are stabilized. When used as an agent, it can be a one-component type product in which the polymer and organic titanate compound are dissolved in a solvent in one packaging container. In addition, as the stabilizer, α-hydroxycarboxylic acids such as lactic acid, α-hydroxy-n-butyric acid, and mandelic acid; α-hydroxyethyl methacrylate,
β-hydroxyalkyl (meth)acrylates such as β-hydroxypropyl acrylate and glycenedimethacrylate; Catechol derivatives such as catechol, guaiacol, and eugenol; Proline derivatives such as proline, 4-methylene-proline, and 4-methyl-proline; β- butyrolactone,
When using cyclic esters such as γ-butyrolactone and β-caprolactone, store the polymer dissolved in the solvent, the organic titanate compound dissolved in the same solvent, and the stabilizer in separate containers, and use. It is preferable to use a two-component type product in which the two are sometimes mixed to form a coating material. The solvent used in each of the one-component type and two-component type products is not particularly limited and may be appropriately selected from known solvents, but generally alcohols such as ethyl alcohol and isopropyl alcohol; acetic acid Ethyl; dioxane; tetrahydrofuran and the like are preferred. Further, the amount of the stabilizer added to the organic titanate compound varies depending on the type of the stabilizer and cannot be absolutely limited, but it is generally in the range of 0.1 mol to 4 mol, preferably 0.5 mol to 2 mol, based on the organic titanate compound. It is suitable if you choose. Further, the stabilizer may be added by being mixed with the organic titanate compound in advance, or may be added to the organic titanate compound together with other components. The coating material of the present invention may use the polymer and the organic titanate compound as a one-component or two-component type. Generally, it may be used by dissolving it in the above-mentioned solvent to a suitable concentration, for example, 1 to 30% by weight. The coating material of the present invention may be used by applying a solution of the above concentration to the tooth to form a film. Since the thickness of the coating varies depending on the field of use, the thickness of the coating may be adjusted as necessary. If a thicker coating is required, the coating material may be applied multiple times. By applying the coating material of the present invention to the tooth surface to form a film, it can completely block etching agents such as phosphoric acid and citric acid at a concentration of 10 to 90%. Of course, it is completely isolated from saliva, cold water, and air.
It is possible to prevent pulp stimulation through the exposed dentin of the tooth due to wedge-shaped defects or gingival recession. Further, the coating material of the present invention can be applied to the tooth to form a coating, and then a restorative alloy such as gold, silver, amalgam, metal alloy, dental inorganic cement, etc. can be further laminated. Although the coating material of the present invention does not have adhesive properties with the restorative alloy or inorganic cement in the above-mentioned usage mode, it exhibits sufficient sealing properties between the tooth and the restorative alloy or inorganic cement. Although the coating material of the present invention can be used in various forms as described above, the coating film and the coating material themselves exhibit excellent antibacterial properties. In particular, the antibacterial action is effective against anaerobic bacteria. Because such an effect is exerted, the coating material of the present invention is suitably used for biological hard tissues (particularly in the field of dentistry). In particular, typical examples of bacteria that have antibacterial effects are as follows. Bacteroides gingivalis 381 Actinomyces naeslundii ATCC 12104 Actinomyces viscosus ATCC 15987 Propionibacterium acnes EXC-1 Actinomyces israeli ATCC 12102 In order to explain the present invention more specifically, the present invention will be described below with reference to Examples. It is not limited. Production example 1 Put 200 ml of cyclohexane into a 500 ml separable glass flask, and add 5.2 ml of styrene to it.
g, 4.9 g of maleic anhydride, and 0.05 g of bayzoyl peroxide (hereinafter abbreviated as BPO) were added and thoroughly stirred. Next, the inside of the container was depressurized and replaced with nitrogen, and then heating polymerization was carried out at 80° C. for 4 hours with stirring. After cooling to room temperature, the formed precipitate was filtered. The obtained solid was further thoroughly washed with 300 ml of benzene and then dried to obtain 8.7 g of a white polymer. As a result of determining the composition of the produced copolymer from elemental analysis of this material, it was found that styrene
48.4 mol% and maleic anhydride 51.6 mol%. Next, this product was dissolved in 80 ml of dioxane, put into a 500 ml flask, and while stirring thoroughly, a 5% by weight aqueous potassium hydroxide solution was added.
100 ml was added and allowed to react at room temperature for 10 hours. Next, concentrated hydrochloric acid was added to neutralize the mixture, and then an excess of hydrochloric acid was added to obtain a white solid precipitate. This solid was filtered off, washed with water repeatedly until it became neutral, and further dried to obtain 8.0 g of a copolymer. As a result of measuring the infrared absorption spectrum of this product, we found that the characteristic absorption (1850
cm -1 , 1775 cm -1 ) completely disappeared, and a new characteristic absorption derived from the carbonyl group of maleic acid appeared at 1720 cm -1
It was confirmed that the hydrolysis reaction was progressing almost quantitatively. That is, the white solid obtained above contains 48.4 mol% styrene and maleic acid.
It was confirmed that the copolymer contained 51.6 mol%. The acid value of this polymer was 370. Production Example 2 A commercially available styrene-maleic anhydride copolymer with a molecular weight of 50,000 (Monsanto)
Dissolve 10g of (manufactured by) in 200ml of dioxane and 500ml
Pour distilled water into a large capacity flask and stir thoroughly.
10 g was added, and the mixture was heated and stirred at 100° C. for 4 hours.
Next, this solution was cooled to room temperature and then poured into the distilled water described in step 2 to precipitate a flocculent white polymer. This polymer was washed with water and dried to obtain 9.8 g of a white solid. From the results of elemental analysis and infrared absorption spectrum of this product, it was confirmed that a styrene-maleic acid copolymer was obtained. The acid value of this polymer was 367. Production Examples 3 to 4 Two types of commercially available styrene-maleic anhydride copolymers with different compositions shown in Table 1 (Alco
Using chemical (manufactured by Arco Chemical),
Hydrolysis was carried out in the same manner as in Production Example 1, and a styrene-maleic acid copolymer having the same composition shown in Table 1 was obtained from the elemental analysis results of the raw material copolymer and the measurement results of the infrared absorption spectrum after hydrolysis. Obtained. The molecular weights are 1700 and 1900, respectively, and the acid value is 251.
It was 184.

【表】 製造例 5 内容300mlの耐圧ガラス容器中に、無水マレイ
ン酸35gと90mgのアゾビスイソブチロニトリル
(以下AIBNと略記する)を含むベンゼン50mlを
加え、ドライアイス−メタノール浴で冷却しなが
ら内容を減圧下で窒素置換を行ない、次いで精製
プロピレン12gを液化計量器を通して蒸留により
加えた。次に、60℃で36時間攪拌を続け共重合を
行なつた。重合終了後、内容物を大量の無水エー
テル中に投入して生成共重合体を沈澱させ、傾斜
法でよく洗浄し、すみやかに減圧乾燥器中で乾燥
した。収率は60%であつた。元素分析により無水
マレイン酸55.6mol%、プロピレン44.4mol%、
であつた。 次にこの生成物を、製造例1と同様な方法で加
水分解してプロピレン−マレイン酸共重合体24.2
gを得た。この共重合体の赤外吸収スペクトルを
測定した結果、原料中の無水マレイン酸基はほぼ
定量的にマレイン酸に変換していることが確認さ
れた。なお、このポリマーの酸価は508であつた。 製造例 6 内容300mlの耐圧ガラス容器中に35.7gの無水
マレイン酸と90mgのAIBNを含むベンゼン50mlを
加える。これに12.5gのイソブテンを液化計量器
を通して蒸留により仕込み、次いで60℃で15分間
共重合を行なう。重合終了後内容物を大量の無水
エーテル中に注いで生成共重合体を沈澱させ、傾
斜法により上澄み部を捨て無水エーテルで充分洗
浄した後減圧乾燥する。収率は43.3%であつた。
このものは元素分析よりイソブテンを47.1mol
%、無水マレイン酸52.9mol%含む共重合体であ
つた。 次に、この生成物を製造例1と同様な方法で加
水分解してイソブテン−マレイン酸共重合体20.5
gを得た。この共重合体の赤外吸収スペクトルを
測定した結果、原料中の無水マレイン酸基は、ほ
ぼ定量的にマレイン酸に変換していることが確認
された。なお、この共重合体の酸価は470であつ
た。 製造例 7 500ml容量のガラス製セパラブルフラスコに、
ベンゼン200mlを入れ、これにn−ブチルビニル
エーテル5.3g、無水マレイン酸4.9gならびに
AIBN0.05gを加えて充分攪拌した。 次に、容器を減圧、窒素置換した後、60℃で6
時間加熱重合を行ない、生成した沈澱を濾別し
た。このものの元素分析から生成共重合体の組成
を求めた結果、n−ブチルビニルエーテル
49.8mol%、無水マレイン酸50.2mol%であつた。 次に、この生成物を200mlのジオキサンに溶か
し、500ml容量のフラスコに入れて充分攪拌しな
がら蒸留水10gを加え、60℃で2時間加熱攪拌を
行なつた。得られた高分子溶液を、ドライアイス
−メタノールで固化した後、凍結乾燥することに
よつて10.1gの白色固体が得られた。この生成物
の赤外吸収スペクトルを測定することによつて無
水マレイン酸基の大部分がマレイン酸基に変つた
ことが確認された。ポリマーの酸価は375であつ
た。 製造例 8 n−オクタデシルビニルエーテル−無水マレイ
ン酸の共重合体として、ポリサイエンス
(Polysciences.Inc.)社製のものを用いて製造例
2と同様な方法で加水分解を行ない、原料共重合
体の元素分析結果及び加水分解後の赤外吸収スペ
クトルの測定結果から同じくn−オクタデシルビ
ニルエーテル−マレイン酸の共重合体を得た。こ
のポリマーの酸価は196であつた。 製造例 9 イタコン酸30g、スチレン20gをジオキサン
200gに溶かし、BPOをモノマーに対して0.1%加
え、10℃で5時間重合を行なつた。得られたポリ
マーをヘキサン1に入れて沈澱分離し濾過乾燥
後、さらに蒸留水で洗浄することによつて未反応
のイタコン酸を除去した。収率は4.2%であつた。
元素分析の結果より、イタコン酸49.0モル%、ス
チレン51.0モル%であることが分つた。このポリ
マーの酸価は340であつた。 製造例 10 スチレンとフマル酸ジエチルエステルをAIBN
を開始剤として用い60℃、20時間重合させてポリ
マーを得た。共重合物の組成は、元素分析よりス
チレン56.5モル%、フマル酸ジエスチルエステル
43.5モル%であつた。次にこのポリマーを100ml
のエルレンマイヤーフラスコに0.5g入れたもの
に、濃硫酸30mlを加え室温に放置した。2日間で
ポリマーは完全に溶解し黄色の溶液が得られた。
これを大量の氷水中に注ぐとスチレン−フマル酸
共重合体が沈澱として析出した。これを濾過後、
十分水洗をくり返し最後に乾燥して0.45gの固体
が得られた。このポリマーの酸価は93であつた。 製造例 11 酢酸ビニル−無水マレイン酸の共重合体とし
て、ポリサイエンス(Polysciences.Inc.)社製の
ものを用い、製造例7と同様な方法で加水分解を
行ない、共重合体の元素分析結果及び加水分解後
の赤外吸収スペクトルの測定結果から、酢酸ビニ
ル−マレイン酸の共重合体が得られた。このポリ
マーの酸価は399であつた。 製造例 12 p−クロロスチレンと無水マレイン酸を、
BPOを開始剤として用い製造例1と同じ条件で
重合を行なつた。得られた共重合体の元素分析の
結果から、p−クロロスチレン47.9mol%、無水
マレイン酸52.1mol%であつた。次に、この生成
物を製造例7と同様な方法で加水分解を行ない、
生成重合体の元素分析結果及び加水分解後の赤外
吸収スペクトルの測定結果から酢酸ビニル−マレ
イン酸の共重合体を得た。このポリマーの酸価は
318であつた。 製造例 13 p−クロロメチルスチレンと無水マレイン酸を
BPOを開始剤として用い、製造例1と同じ条件
で重合を行なつた。得られた共重合体の元素分析
の結果から、p−クロロメチルスチレン48.9mol
%、無水マレイン酸51.1mol%であつた。次に、
この生成物を製造例7と同様な方法で加水分解を
行ない、生成共重合体の元素分析結果及び加水分
解後の赤外吸収スペクトルの測定結果からp−ク
ロロメチルスチレン−マレイン酸の共重合体を得
た。このポリマーの酸価は301であつた。 実施例 1 本発明の遮断被膜形成材がリン酸およびクエン
酸水溶液を遮断する能力を有する事を確認するた
めに次の様な方法を用いてテストを行なつた。 まず、孔径3μのメンブランフイルターを蒸留
水に1時間浸漬したものを取り出し、表面を窒素
ガスを吹きつけて乾燥した。 次に遮断材(裏装材)として市販品のコーパラ
イト、ダイカルならびに第1表で示した遮断被膜
形成材を裏面に塗布し、再度窒素ガスを吹きつけ
て溶媒を除去した。エッチング材としては37%オ
ルトリン酸水溶液と10%クエン酸水溶液を用い、
遮断材の上に一滴落して自然放置した。 上記遮断材を透過するリン酸およびクエン酸を
検知するため、PH試験紙を上記メンブランフイ
ルターの下に置き、色が変化した時点を通過時間
とした。 その結果、遮断材を全く使用しないものはリン
酸水溶液ならびにクエン酸水溶液の透過時間が15
秒であり、コーパライト(商品名)を使用したも
のが1分10秒で、またダイカル(商品名)を使用
したものは10分以上であつた。 これに対して表2で示した本発明の接着性被膜
形成材を該遮断材として使用した結果、リン酸水
溶液の透過時間はいずれも10分以上であつた。
[Table] Production Example 5 50 ml of benzene containing 35 g of maleic anhydride and 90 mg of azobisisobutyronitrile (hereinafter abbreviated as AIBN) was added to a 300 ml pressure-resistant glass container, and the mixture was cooled in a dry ice-methanol bath. At the same time, the contents were purged with nitrogen under reduced pressure, and then 12 g of purified propylene was added by distillation through a liquefaction meter. Next, stirring was continued for 36 hours at 60°C to carry out copolymerization. After the polymerization was completed, the contents were poured into a large amount of anhydrous ether to precipitate the resulting copolymer, thoroughly washed by a decanting method, and immediately dried in a vacuum dryer. The yield was 60%. By elemental analysis, maleic anhydride 55.6 mol%, propylene 44.4 mol%,
It was hot. Next, this product was hydrolyzed in the same manner as in Production Example 1 to obtain a propylene-maleic acid copolymer 24.2
I got g. As a result of measuring the infrared absorption spectrum of this copolymer, it was confirmed that the maleic anhydride groups in the raw material were almost quantitatively converted to maleic acid. The acid value of this polymer was 508. Production Example 6 Add 50 ml of benzene containing 35.7 g of maleic anhydride and 90 mg of AIBN to a 300 ml pressure-resistant glass container. To this, 12.5 g of isobutene was charged by distillation through a liquefaction meter, and then copolymerization was carried out at 60° C. for 15 minutes. After the polymerization is completed, the contents are poured into a large amount of anhydrous ether to precipitate the resulting copolymer, and the supernatant is discarded by a decanting method, thoroughly washed with anhydrous ether, and then dried under reduced pressure. The yield was 43.3%.
This substance contains 47.1mol of isobutene according to elemental analysis.
The copolymer contained 52.9 mol% of maleic anhydride. Next, this product was hydrolyzed in the same manner as in Production Example 1 to obtain 20.5% of isobutene-maleic acid copolymer.
I got g. As a result of measuring the infrared absorption spectrum of this copolymer, it was confirmed that the maleic anhydride groups in the raw material were almost quantitatively converted to maleic acid. The acid value of this copolymer was 470. Production example 7 In a 500ml glass separable flask,
Add 200ml of benzene, add 5.3g of n-butyl vinyl ether, 4.9g of maleic anhydride and
0.05 g of AIBN was added and thoroughly stirred. Next, after depressurizing the container and replacing it with nitrogen, the container was heated to 60℃ for 6 hours.
Polymerization was carried out by heating for a period of time, and the resulting precipitate was filtered off. As a result of determining the composition of the produced copolymer from elemental analysis of this material, it was found that n-butyl vinyl ether
49.8 mol% and maleic anhydride 50.2 mol%. Next, this product was dissolved in 200 ml of dioxane, placed in a 500 ml flask, and 10 g of distilled water was added with thorough stirring, followed by heating and stirring at 60° C. for 2 hours. The obtained polymer solution was solidified with dry ice-methanol and then freeze-dried to obtain 10.1 g of white solid. By measuring the infrared absorption spectrum of this product, it was confirmed that most of the maleic anhydride groups were converted to maleic acid groups. The acid value of the polymer was 375. Production Example 8 A copolymer of n-octadecyl vinyl ether-maleic anhydride manufactured by Polysciences Inc. was used and hydrolyzed in the same manner as in Production Example 2 to obtain a raw material copolymer. A copolymer of n-octadecyl vinyl ether-maleic acid was similarly obtained from the results of elemental analysis and the measurement results of infrared absorption spectrum after hydrolysis. The acid value of this polymer was 196. Production example 9 30g of itaconic acid and 20g of styrene were mixed with dioxane.
The mixture was dissolved in 200 g, BPO was added in an amount of 0.1% based on the monomer, and polymerization was carried out at 10° C. for 5 hours. The obtained polymer was poured into hexane 1, precipitated, filtered and dried, and unreacted itaconic acid was removed by washing with distilled water. The yield was 4.2%.
The results of elemental analysis revealed that itaconic acid was 49.0 mol% and styrene was 51.0 mol%. The acid value of this polymer was 340. Production example 10 Styrene and fumaric acid diethyl ester are made into AIBN
was used as an initiator and polymerized at 60°C for 20 hours to obtain a polymer. The composition of the copolymer was determined by elemental analysis to be 56.5 mol% styrene and diethyl fumarate.
It was 43.5 mol%. Next, add 100ml of this polymer.
30 ml of concentrated sulfuric acid was added to 0.5 g of the solution in an Erlenmeyer flask, and the mixture was left at room temperature. In 2 days, the polymer was completely dissolved and a yellow solution was obtained.
When this was poured into a large amount of ice water, the styrene-fumaric acid copolymer precipitated out. After filtering this,
After repeated washing with water and finally drying, 0.45 g of solid was obtained. The acid value of this polymer was 93. Production Example 11 A vinyl acetate-maleic anhydride copolymer manufactured by Polysciences Inc. was used and hydrolyzed in the same manner as Production Example 7, and the results of elemental analysis of the copolymer were From the measurement results of the infrared absorption spectrum after hydrolysis, a vinyl acetate-maleic acid copolymer was obtained. The acid value of this polymer was 399. Production example 12 p-chlorostyrene and maleic anhydride,
Polymerization was carried out under the same conditions as in Production Example 1 using BPO as an initiator. The results of elemental analysis of the obtained copolymer revealed that it contained 47.9 mol% of p-chlorostyrene and 52.1 mol% of maleic anhydride. Next, this product was hydrolyzed in the same manner as in Production Example 7,
A vinyl acetate-maleic acid copolymer was obtained from the elemental analysis results of the produced polymer and the measurement results of the infrared absorption spectrum after hydrolysis. The acid value of this polymer is
It was 318. Production example 13 p-chloromethylstyrene and maleic anhydride
Polymerization was carried out under the same conditions as in Production Example 1 using BPO as an initiator. From the results of elemental analysis of the obtained copolymer, 48.9 mol of p-chloromethylstyrene
%, maleic anhydride 51.1 mol%. next,
This product was hydrolyzed in the same manner as in Production Example 7, and based on the elemental analysis results of the resulting copolymer and the measurement results of the infrared absorption spectrum after hydrolysis, a p-chloromethylstyrene-maleic acid copolymer was obtained. I got it. The acid value of this polymer was 301. Example 1 In order to confirm that the barrier film forming material of the present invention has the ability to block phosphoric acid and citric acid aqueous solutions, a test was conducted using the following method. First, a membrane filter with a pore size of 3 μm was soaked in distilled water for 1 hour, then taken out, and the surface was dried by blowing nitrogen gas. Next, commercially available Copalite, Dical, and the barrier film forming materials shown in Table 1 were applied to the back surface as barrier materials (backing materials), and nitrogen gas was again blown to remove the solvent. As etching materials, 37% orthophosphoric acid aqueous solution and 10% citric acid aqueous solution were used.
A drop was placed on the barrier material and left alone. In order to detect phosphoric acid and citric acid passing through the above-mentioned blocking material, a PH test paper was placed under the above-mentioned membrane filter, and the time when the color changed was determined as the passage time. As a result, the permeation time of phosphoric acid and citric acid aqueous solutions was 15% when no barrier material was used.
The time was 1 minute 10 seconds for the one using Copalite (trade name), and over 10 minutes for the one using Dycal (trade name). On the other hand, when the adhesive film forming material of the present invention shown in Table 2 was used as the barrier material, the permeation time of the phosphoric acid aqueous solution was 10 minutes or more in all cases.

【表】【table】

【表】 実施例 2 ヒト抜去歯の唇面に直径3mm、深さ2mmの窩洞
を形成した。次に表2No.1〜No.13で示した封鎖材
ならびに従来使われているものとしてコーパライ
トを各々窩壁にうすく塗布した後、表3に示す合
金をそれぞれ充填した。充填1時間後に37℃の水
中に保存し、1日後は4℃と60℃のフクシン水溶
液中に1分間づつ交互に60回、浸漬するパーコレ
ーシヨンテストを行ない、辺縁封鎖性を試験し
た。 その後抜去歯を中央で切断し、窩洞と充填物の
間に色素(フクシン)の侵入があるかどうかを調
べた。 尚上記テストはそれぞれ1種類の実験について
5個のサンプルを使用して再現性を確かめた。そ
の結果、上記組成物を用いずに直接表3に示す合
金を充填した場合、あるいはコーパライトを塗布
し、その後表3に示す合金を充填したものについ
ては、全部のサンプルに色素の侵入が見られた。 一方、表2No.1〜No.13の封鎖材については、い
ずれも色素の侵入が認められず、良好な封鎖結果
を得た。
[Table] Example 2 A cavity with a diameter of 3 mm and a depth of 2 mm was formed on the labial surface of an extracted human tooth. Next, the sealing materials shown in Table 2 No. 1 to No. 13 and the conventionally used copalite were each thinly applied to the cavity walls, and then the alloys shown in Table 3 were respectively filled. One hour after filling, it was stored in water at 37°C, and one day later, it was subjected to a percolation test in which it was immersed in fuchsin aqueous solutions at 4°C and 60°C 60 times for 1 minute alternately to test its margin sealing properties. The extracted tooth was then sectioned down the center to examine whether there was any pigment (fuchsin) intruding between the cavity and the filling. The reproducibility of the above tests was confirmed using five samples for each type of experiment. As a result, when the alloy shown in Table 3 was directly filled without using the above composition, or when Copalite was applied and then filled with the alloy shown in Table 3, intrusion of pigment was observed in all samples. Ta. On the other hand, with respect to the sealing materials No. 1 to No. 13 in Table 2, no penetration of the dye was observed, and good sealing results were obtained.

【表】 実施例 3 本発明の遮断被膜形成材がリン酸亜鉛セメント
の未反応リン酸を遮断する能力を有する事を確認
するために、次の様な方法を用いてテストを行な
つた。 まず、孔径3μのメンブランフイルターを蒸留
水に1時間浸漬したものを取り出し、表面を窒素
ガスを吹きつけて乾燥した。 次に遮断材として表4に示した遮断被膜形成材
を表面に塗布し、再度窒素ガスを吹きつけて溶媒
を除去した。 さらに市販のリン酸亜鉛セメントとしてエリー
ト100を用い、処方に従つて練和した後、遮断材
の上に盛り、ガラス板を載せ100gの荷重をかけ
放置した。 上記遮断材を透過するリン酸を検知するため、
PH試験紙を上記メンブランフイルターの下に置
き、色が変化した時点を通過時間とした。 その結果、遮断材を全く使用しないものはリン
酸水溶液の透過時間が15秒であるのに対して、本
発明の遮断材を用いたものは、いずれも10分以上
であつた。
[Table] Example 3 In order to confirm that the barrier film forming material of the present invention has the ability to block unreacted phosphoric acid in zinc phosphate cement, a test was conducted using the following method. First, a membrane filter with a pore size of 3 μm was soaked in distilled water for 1 hour, then taken out, and the surface was dried by blowing nitrogen gas. Next, a barrier film forming material shown in Table 4 was applied as a barrier material to the surface, and nitrogen gas was again blown to remove the solvent. Furthermore, Elite 100 was used as a commercially available zinc phosphate cement, and after kneading it according to the recipe, it was placed on a barrier material, a glass plate was placed on it, and a load of 100 g was applied to it. In order to detect phosphoric acid that passes through the above barrier material,
A PH test paper was placed under the membrane filter, and the time when the color changed was determined as the passing time. As a result, the permeation time of the phosphoric acid aqueous solution was 15 seconds in the case where no barrier material was used, whereas it was 10 minutes or more in all cases using the barrier material of the present invention.

【表】【table】

【表】 実施例 4 ヒト抜去歯の唇面に直径3mm、深さ2mmの窩洞
を形成し、その窩洞に表5で示したように製造例
1〜13で得られた共重合体のエタノール溶液から
成るA液と、有機チタネートのエタノール溶液か
ら成るB液を等量ずつ混合した後、塗布した。塗
布後、窒素ガスで乾燥させ、窩洞にフクシン水溶
液を満たし、37℃、100%湿度の恒温室で1日保
存した。次に、本発明の被覆材の耐水性を調べる
ために、抜去歯を中央で切断し、フクシン水溶液
が歯質内部まで侵入しているかどうかを調べた。
その結果、ブランクとして本発明の被覆材を塗布
しなかつたものでは歯質にフクシンによる着色が
見られたが、本発明の被覆材を塗布したものは、
いずれも色素の侵入が見られず、良好な結果が得
られた。
[Table] Example 4 A cavity with a diameter of 3 mm and a depth of 2 mm was formed on the labial surface of an extracted human tooth, and an ethanol solution of the copolymer obtained in Production Examples 1 to 13 was placed in the cavity as shown in Table 5. After mixing equal amounts of Solution A consisting of the following and Solution B consisting of an ethanol solution of an organic titanate, the mixture was applied. After application, it was dried with nitrogen gas, the cavity was filled with fuchsin aqueous solution, and it was stored for one day in a constant temperature room at 37°C and 100% humidity. Next, in order to examine the water resistance of the coating material of the present invention, the extracted tooth was cut at the center, and it was examined whether the fuchsin aqueous solution had penetrated into the tooth structure.
As a result, staining due to fuchsin was observed on the tooth substance of the blanks to which the coating material of the present invention was not applied, but the teeth to which the coating material of the present invention was applied showed
Good results were obtained in all cases, with no dye penetration observed.

【表】 実施例 5 歯頚部に楔状欠損があり、空気あるいは冷水が
触れた場合に痛みを感じる患者に対して表5のNo.
1に示したA液とB液を混合した後楔状欠損部に
塗布したところ、空気及び冷水との接触による痛
みが解消された。 実施例 6 Brain Heart Infusion培地(寒天とBrain
Heart Infusionから成る培地)でシヤーレ内に
平板を作成した。寒天平板上に培養した下記の菌
の希釈液を400ml滴下して表面に一様に広げた後、
表面を乾燥させた。 実施例1の表2のNo.1の(A)液及び(B)液をよく混
合し、これにロ紙のデイスクをひたした後、エタ
ノールを蒸発させて、平板上にのせて、48hr嫌気
培養を行つた。 48時間後、いずれの菌についてもロ紙のふちに
幅が数mmの抗菌帯が生成していた。 使用した菌 Bacteroides gingivalis 381 Actinomyces naeslundii ATCC 12104 Actinomyces viscosus ATCC 15987 Propionibacterium acnes EXC−1 Actinomyces israeli ATCC 12102
[Table] Example 5 No. 5 in Table 5 was applied to a patient who has a wedge-shaped defect in the tooth neck and feels pain when exposed to air or cold water.
When solutions A and B shown in 1 were mixed and applied to the wedge-shaped defect, the pain caused by contact with air and cold water was resolved. Example 6 Brain Heart Infusion medium (agar and Brain
A plate was prepared in a shear plate using a medium (medium consisting of Heart Infusion). After dropping 400 ml of the diluted solution of the following bacteria cultured on an agar plate and spreading it evenly over the surface,
Let the surface dry. Mix liquids (A) and (B) of No. 1 in Table 2 of Example 1 well, soak a paper disk in this, evaporate the ethanol, place it on a flat plate, and heat it anaerobically for 48 hours. Culture was carried out. After 48 hours, an antibacterial zone several millimeters wide had formed at the edge of the paper for all bacteria. Bacteria used Bacteroides gingivalis 381 Actinomyces naeslundii ATCC 12104 Actinomyces viscosus ATCC 15987 Propionibacterium acnes EXC-1 Actinomyces israeli ATCC 12102

Claims (1)

【特許請求の範囲】 1(i) 式、【式】(但し、R1は水素原子 又はアルキル基であり、R2はアリール基、ア
ルキル基、アルコキシ基、アシルオキシ基又は
アルコキシカルボニル基である)で示される重
合単位と式【式】(但 し、R3は水素又はカルボキシメチル基であり、
n及びmはゼロ又は1の数であり、nがゼロの
ときはmは1でR3は水素原子であり、nが1
のときはmはゼロでR3はカルボキシメチル基
であり、2つのカルボキシル基は無水カルボン
酸基を形成していてもよい)で示される重合単
位とを含む高分子体と (ii) 有機チタネート化合物 とを主成分とする歯牙用被覆材。
[Claims] 1(i) Formula, [Formula] (wherein R 1 is a hydrogen atom or an alkyl group, and R 2 is an aryl group, an alkyl group, an alkoxy group, an acyloxy group, or an alkoxycarbonyl group) A polymerized unit represented by the formula [Formula] (where R 3 is hydrogen or a carboxymethyl group,
n and m are numbers of zero or 1, when n is zero, m is 1, R 3 is a hydrogen atom, and n is 1
(when m is zero, R 3 is a carboxymethyl group, and the two carboxyl groups may form a carboxylic anhydride group), and (ii) an organic titanate. A tooth covering material whose main component is a compound.
JP58197251A 1983-10-21 1983-10-21 Cover material for hard tissue or skin of living body Granted JPS6088561A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP58197251A JPS6088561A (en) 1983-10-21 1983-10-21 Cover material for hard tissue or skin of living body

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58197251A JPS6088561A (en) 1983-10-21 1983-10-21 Cover material for hard tissue or skin of living body

Publications (2)

Publication Number Publication Date
JPS6088561A JPS6088561A (en) 1985-05-18
JPH032121B2 true JPH032121B2 (en) 1991-01-14

Family

ID=16371354

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58197251A Granted JPS6088561A (en) 1983-10-21 1983-10-21 Cover material for hard tissue or skin of living body

Country Status (1)

Country Link
JP (1) JPS6088561A (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6305936B1 (en) * 1997-02-19 2001-10-23 Ultradent Products, Inc. Polymerizable isolation barriers with reduced polymerization strength and methods for forming and using such barriers

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS56138107A (en) * 1980-03-28 1981-10-28 Kanebo Ltd Resin molding material for medical and dental use, investment for repair and repairing material
JPS5996180A (en) * 1982-11-24 1984-06-02 Tokuyama Soda Co Ltd Adhesive

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS56138107A (en) * 1980-03-28 1981-10-28 Kanebo Ltd Resin molding material for medical and dental use, investment for repair and repairing material
JPS5996180A (en) * 1982-11-24 1984-06-02 Tokuyama Soda Co Ltd Adhesive

Also Published As

Publication number Publication date
JPS6088561A (en) 1985-05-18

Similar Documents

Publication Publication Date Title
JPH0463842B2 (en)
US4533701A (en) Adhesive coating material
US4535102A (en) Adhesive coating material
Lee et al. Catechol-thiol-based dental adhesive inspired by underwater mussel adhesion
DE3536077A1 (en) POLYMERIZABLE ACID AND ACID DERIVATIVES COMPOUNDS, MIXTURES CONTAINING THE SAME AND THEIR USE
EP0103420B1 (en) Adhesive coating material
JPH032121B2 (en)
JPS6316431B2 (en)
WO1997008177A1 (en) Fumaric acid derivative and polymer thereof
JPS6316433B2 (en)
US4648844A (en) Dental lining composition
JPH0529666B2 (en)
JPS62227957A (en) Bondable film-forming material
JPS6316434B2 (en)
JPS6013866A (en) Film-forming adhesive material
JPH0597630A (en) Water-based nail enamel
JP4969800B2 (en) Dental materials, dental compositions, dental adhesives, remineralization accelerators, bioadhesives and caries detection materials
JPH0414030B2 (en)
CN113045698A (en) Zwitterionic polymer and preparation method and application thereof
JPS6339032B2 (en)
JPH0572833B2 (en)
JPS6089405A (en) Adhesive
JPS63203604A (en) Sealing material
JPH03130210A (en) Dental cement hardening liquid
JPS6089404A (en) Adhesive between composite resin restorative dental material and ebur dentis