JPH03211864A - Heat radiating device for functional element of electronic equipment - Google Patents

Heat radiating device for functional element of electronic equipment

Info

Publication number
JPH03211864A
JPH03211864A JP637790A JP637790A JPH03211864A JP H03211864 A JPH03211864 A JP H03211864A JP 637790 A JP637790 A JP 637790A JP 637790 A JP637790 A JP 637790A JP H03211864 A JPH03211864 A JP H03211864A
Authority
JP
Japan
Prior art keywords
heat
cavity
functional element
vapor
liquid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP637790A
Other languages
Japanese (ja)
Inventor
Hiroyuki Mutsukawa
六川 裕幸
Yoichi Oikawa
陽一 及川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujitsu Ltd
Original Assignee
Fujitsu Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu Ltd filed Critical Fujitsu Ltd
Priority to JP637790A priority Critical patent/JPH03211864A/en
Publication of JPH03211864A publication Critical patent/JPH03211864A/en
Pending legal-status Critical Current

Links

Landscapes

  • Cooling Or The Like Of Semiconductors Or Solid State Devices (AREA)

Abstract

PURPOSE:To radiate the heat produced by a functional element more efficiently in a stable state by providing radiation fins to the outer surface of the cavity section of a sealed container. CONSTITUTION:The heat produced by a semiconductor element 2 is absorbed by the working liquid 4 in a liquid reservoir 3a adjacent to the element 2 and the vapor of the liquid 4 produced by the heat of the element 2 moves upward and reaches a cavity section 3b. After reaching the cavity 3b, the vapor further moves toward the end of the cavity 3b along the upper surface of the cavity 3b. While the vapor move in such way, the heat of the vapor is removed by radiation fins 5 and the vapor is condensed to the liquid which returns to the liquid reservoir 3a along the lower surface of the cavity 36. As the internal heat movement by the vaporization and liquefaction of the working liquid 4 continues, the semiconductor element 2 which is the heat source is effectively cooled. Therefore, the heat of a functional element can be radiated to the outside effectively and stably and the reliability, etc., of the element can be improved.

Description

【発明の詳細な説明】 〔概 要〕 電子機器の機能素子の放熱装置に関し、機能素子の発す
る熱をより効果的に安定排出し得る放熱装置を提供する
ことを目的とし、電子機器の筺体内に上下方向に平行に
配設される基板に実装された機能素子の放熱装置におい
て、機能素子に垂直な水平方向に位置し且つこれに直接
又は間接に接触する液だまり部と、該液だまり部の上方
側に位置し且つ基板に垂直な水平方向に延びる、該液だ
まり部に連続した空洞部とから成る、内部に所定量の作
動液が封入された密封容器と、該密封容器の空洞部の外
部面に設けた放熱フィン、とを有するよう構成する。
[Detailed Description of the Invention] [Summary] Regarding a heat dissipation device for a functional element of an electronic device, the purpose of the present invention is to provide a heat dissipation device that can more effectively and stably discharge the heat generated by the functional element. In a heat dissipation device for a functional element mounted on a substrate arranged vertically in parallel to A sealed container in which a predetermined amount of working fluid is sealed, the container comprising a cavity located above and extending in a horizontal direction perpendicular to the substrate and continuous with the liquid pool, and the cavity of the sealed container. radiating fins provided on the external surface of the radiator.

〔産業上の利用分野〕[Industrial application field]

本発明は、電子機器の筺体内に上下方向に平行に配設さ
れる基板に実装された機能素子の放熱装置に関する。
The present invention relates to a heat dissipation device for a functional element mounted on a substrate arranged vertically in parallel within a housing of an electronic device.

〔従来の技術〕[Conventional technology]

電子機器、特に光通信装置の基板に実装された半導体素
子や光半導体素子等の機能素子を効果的に冷却するため
、自然的又は強制的な空気対流による熱拡散、あるいは
ペルチェ素子及びこれに接続された放熱フィンによる排
熱などの方法が実用に供されている。
In order to effectively cool functional elements such as semiconductor elements and optical semiconductor elements mounted on the substrates of electronic devices, especially optical communication equipment, thermal diffusion through natural or forced air convection, or Peltier elements and connections thereto are used. Methods such as heat dissipation using heat dissipation fins have been put into practical use.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

しかるに、近時の伝送速度の飛躍的な高速化等に伴い、
より効果的に機能素子を冷却でき、しかもその安定性・
信頼性が高い放熱装置の出現が切望されている。
However, with the recent dramatic increase in transmission speed,
Functional elements can be cooled more effectively, and their stability and
There is a strong need for a highly reliable heat dissipation device.

[課題を解決するための手段] 上記課題を解決するために本発明によれば、電子機器の
筺体内に上下方向に平行に配設される基板に実装された
機能素子の放熱装置において、機能素子に垂直な水平方
向に位置し且つこれに直接又は間接に接触する液だまり
部と、該液だまり部の上方側に位置し且つ基板に垂直な
水平方向に延びる、該液だまり部に連続した空洞部とか
ら成る、内部に所定量の作動液が封入された密封容器と
、該密封容器の空洞部の外部面に設けた放熱フィン、と
を有することを構成上の特徴とする。
[Means for Solving the Problems] In order to solve the above problems, according to the present invention, in a heat dissipation device for a functional element mounted on a substrate arranged vertically in parallel in a housing of an electronic device, the function a liquid pool located in the horizontal direction perpendicular to the element and in direct or indirect contact with the element; and a liquid pool located above the liquid pool and extending in the horizontal direction perpendicular to the substrate and continuous with the liquid pool. The present invention is characterized in that it includes a sealed container having a cavity in which a predetermined amount of working fluid is sealed, and heat radiation fins provided on the outer surface of the cavity of the sealed container.

〔作 用〕 機能素子の熱はこれに垂直な水平方向に位置する液だま
り部内の作動液に気化熱として吸収され、その蒸気は上
方側の空洞部に至る。そして空洞部内において基板に垂
直な水平方向に移動することにより、空洞部の外部面に
設けた放熱フィンによって除熱され、液化する一方、こ
の熱はフィンから外部に排出される。このような一連の
過程が次から次に起きることによって、機能素子は効果
的に冷却される。
[Function] The heat of the functional element is absorbed as heat of vaporization by the working fluid in the liquid pool located in the horizontal direction perpendicular to the functional element, and the vapor reaches the upper cavity. By moving within the cavity in a horizontal direction perpendicular to the substrate, heat is removed by heat dissipation fins provided on the external surface of the cavity and liquefied, while this heat is discharged to the outside from the fins. The functional element is effectively cooled by a series of such processes occurring one after another.

〔実施例〕〔Example〕

以下、本発明の実施例を図面に基づいて説明する。 Embodiments of the present invention will be described below based on the drawings.

第1図乃至第3図は、本発明に係る電子機器の機能素子
の放熱装置の第1の実施例を示す図、第4図乃至第6図
は、第2の実施例を示す図である。
1 to 3 are diagrams showing a first embodiment of a heat dissipation device for a functional element of an electronic device according to the present invention, and FIGS. 4 to 6 are diagrams showing a second embodiment. .

先ず第1実施例について説明するに第1乃至3図を参照
すると、前面が開口した箱型の図示しない筺体内には上
下に立てた基板1 (一部分のみ図示)が脱着自在に配
設され、この基板1上には半導体素子2が載置されてい
る。半導体素子2の上(第3図においては左側)には、
そこに直接その液だまり部3aが全面的に接触する、所
定温度以上になると気化する常温液体の揮発性物質(作
動液)4が内部に所定量封入されている密封容器3が耐
熱性を有する例えば導電性接着剤(図示せず)を介して
取着されている。なお、図示しないが例えばプラスチッ
ク製ねしによって密封容器3を半導体素子2に対して機
械的に固定することもできる。密封容器3は、横断面が
内外部共に矩形状の液だまり部3aに加えて、その上方
側に位置し且つ基Fi1に垂直な水平方面(第3図にお
いて左方)に延びる、液だまり部3aに連続した空洞部
3bを有する。横断面が内外部共に矩形状のこの空洞部
3bの上面には、空気中に熱が良好に拡散するように表
面積を多くとったいわゆる放熱フィン5が複数個規則正
しく立設されている。
First, to explain the first embodiment, referring to FIGS. 1 to 3, a board 1 (only a portion of which is shown) that stands up vertically is disposed in a box-shaped casing (not shown) with an open front and is detachable. A semiconductor element 2 is placed on this substrate 1. Above the semiconductor element 2 (on the left side in FIG. 3),
The sealed container 3, in which the liquid pool portion 3a directly contacts the entire surface thereof, has heat resistance and has a predetermined amount of a room-temperature liquid volatile substance (working fluid) 4 sealed therein that evaporates when the temperature exceeds a predetermined temperature. For example, it is attached via a conductive adhesive (not shown). Although not shown, the sealed container 3 can also be mechanically fixed to the semiconductor element 2 using, for example, plastic screws. In addition to a liquid pool part 3a having a rectangular cross section both inside and outside, the sealed container 3 has a liquid pool part 3a located above the pool part 3a and extending in a horizontal direction perpendicular to the group Fi1 (to the left in FIG. 3). It has a cavity 3b continuous to 3a. On the upper surface of the cavity 3b, which has a rectangular cross section both inside and outside, a plurality of so-called heat radiation fins 5 having a large surface area are regularly arranged upright so that heat can be diffused well into the air.

以上の構成より成る本実施例の放熱装置においては、半
導体素子2の熱はこれに密着した液だまり部3a内の作
動液4の気化熱として吸収され、その蒸気は内部上部に
移動して空洞部3bに至る。
In the heat dissipation device of this embodiment having the above configuration, the heat of the semiconductor element 2 is absorbed as heat of vaporization of the working fluid 4 in the liquid pool 3a that is in close contact with the semiconductor element 2, and the vapor moves to the upper part of the interior and forms the cavity. This leads to part 3b.

そしてその内部上面に沿って端部方向(第3図において
は基板1から離れる左方向)に更に移動する。このとき
蒸気は放熱フィン5により除熱され(従って、放熱フィ
ン5はこの熱を大気中に放熱する)、凝縮液化して空洞
部3b下面を伝って液だまり部3aに還流する。この作
動液4の気化・液化による内部熱移動が連続して起き、
これにより熱源たる半導体素子2は効果的に冷却される
ことになる。また、このようにコンパクトに装置を構成
したため基板面内方向に関する専有スペースを小さくで
き、基板実装密度の向上が図れる。
Then, it further moves toward the end (to the left away from the substrate 1 in FIG. 3) along its internal upper surface. At this time, the heat of the steam is removed by the heat radiation fins 5 (therefore, the heat radiation fins 5 radiate this heat into the atmosphere), the steam is condensed and liquefied, and flows along the lower surface of the cavity 3b to the liquid pool 3a. Internal heat transfer occurs continuously due to vaporization and liquefaction of the working fluid 4,
As a result, the semiconductor element 2, which is a heat source, is effectively cooled. Further, since the device is configured compactly in this way, the dedicated space in the in-plane direction of the board can be reduced, and the board mounting density can be improved.

なお、作動液4は、常温では液体であるが特定(所望)
の温度以上になると気化する凝縮性液体、例えばエタノ
ール、フロン等を用いることができる。また、密封容器
3は熱の良導体で形成されることが好ましく、例えばア
ルミニウムや銅等が考えられる。
Note that although the hydraulic fluid 4 is a liquid at room temperature, it may be specified (desired)
It is possible to use a condensable liquid that vaporizes when the temperature exceeds , such as ethanol or chlorofluorocarbon. Further, the sealed container 3 is preferably formed of a good thermal conductor, such as aluminum or copper.

次に第2実施例について説明するに第4乃至6図を参照
すると、本実施例の密封容器13はぞの空洞部13bが
上記第1実施例のものと異なり円柱形状を有している。
Next, referring to FIGS. 4 to 6 to describe the second embodiment, the cavity 13b of the sealed container 13 of this embodiment has a cylindrical shape, unlike that of the first embodiment.

そしてこの円柱状の空洞部13bは、所定間隔で並べた
複数個の方形状板材(放熱フィン15)の中央を垂直に
貫通したような外観を呈してそれらと接合されている。
The cylindrical cavity 13b has the appearance of perpendicularly penetrating the center of a plurality of rectangular plates (radiating fins 15) arranged at predetermined intervals, and is joined to them.

従って、半導体素子2の熱が液だまり部13aの作動液
4によって奪われ、その熱が放熱フィン15から外部に
排出されるという一連の内部熱移動に関しては上記第1
実施例と特に変わることはないが、本構造によればその
滑らかな外観(円柱)形状によって空洞部13b周囲の
空気の流れを著しく促進でき、また放熱フィン15の表
面積がより多(とれ、優れた放熱効果が期待できる。
Therefore, regarding the series of internal heat transfers in which the heat of the semiconductor element 2 is taken away by the working fluid 4 in the liquid pool 13a and the heat is discharged to the outside from the radiation fins 15, the above-mentioned first
Although there is no particular difference from the embodiment, according to this structure, the air flow around the cavity 13b can be significantly promoted due to its smooth appearance (cylindrical shape), and the surface area of the heat dissipation fins 15 is larger (larger and better). It can be expected to have a heat dissipation effect.

最後に、幾つかの異なる実施例について簡単に説明する
と、第7図に示す実施例は、上記第1及び第2実施例の
変形であり、密封容器23の液だまり部23aを基板1
に一体的に埋設し、この液だまり部23aの上に熱源で
ある半導体素子2を載置した構造を有する。このように
構成するのは半導体素子2が専有する基板部分の有効活
用のためであり、これにより基板1からの密封容器の突
び出し量(高さ)を抑えることができ、あるいはその分
、放熱フィン25を多く設けることができる。
Finally, to briefly explain several different embodiments, the embodiment shown in FIG. 7 is a modification of the first and second embodiments, and the liquid pool 23a of the sealed container 23 is
It has a structure in which the semiconductor element 2, which is a heat source, is placed on top of the liquid pool 23a. This configuration is for effective use of the substrate portion exclusively occupied by the semiconductor element 2, and as a result, the amount (height) of the sealed container protruding from the substrate 1 can be suppressed, or by that much. A large number of radiation fins 25 can be provided.

第8図に示す実施例も同様に、上記第1及び第2実施例
(あるいは第7図の実施例)の変形であるが、熱源であ
る機能素子32と液だまり部23aとが直接接触しない
点で大きく異なる。すなわち、この部材間にはいわゆる
ベルチェ素子3oが介装される。このように構成するの
は機能素子32を単に冷却するのみならず、その温度を
作意的(遠隔操作的)に一定に安定保持するためである
。第8図(a)は機能素子32上にベルチェ素子3o及
び液だまり部23aをこの順序で載置した構造、同図(
b)は液だまり部23aを基板1内に埋設した構造を示
す。本実施例の適用の対象となり得る機能素子32とし
ては、冷却温度を低(且つ精度良く保持されるべきモジ
ュール、例えば光半導体素子とその駆動回路とをパッケ
ージ内に収容した超高速光電子複合バ、ケージモジュー
ル等が考えられる。
The embodiment shown in FIG. 8 is also a modification of the first and second embodiments (or the embodiment shown in FIG. 7), but the functional element 32, which is a heat source, does not come into direct contact with the liquid pool 23a. They differ greatly in points. That is, a so-called Beltier element 3o is interposed between these members. The purpose of this configuration is not only to simply cool the functional element 32, but also to intentionally (remotely control) maintain its temperature constant and stable. FIG. 8(a) shows a structure in which the Vertier element 3o and the liquid pool 23a are placed in this order on the functional element 32;
b) shows a structure in which the liquid pool portion 23a is buried within the substrate 1. The functional element 32 to which this embodiment can be applied is a module whose cooling temperature must be kept low (and maintained with high precision), such as an ultra-high-speed optoelectronic composite module housing an optical semiconductor element and its driving circuit in a package. A cage module etc. can be considered.

なお、言うまでもないが上述した全ての実施例に対して
、冷却ファン等から成る強制空冷装置を付設してこれと
併用することによってより効果的に機能素子の熱を外部
に放出することが可能である。
Needless to say, it is possible to radiate the heat of the functional elements to the outside more effectively by attaching and using a forced air cooling device consisting of a cooling fan or the like to all of the above-mentioned embodiments. be.

〔発明の効果〕〔Effect of the invention〕

作動液の気化・液化作用による熱移動によって機能素子
の熱を外部に効果的に安定排出でき、これらの素子の信
頼性等を飛躍的に向上せしめることが可能となる。
The heat of the functional elements can be effectively and stably discharged to the outside by heat transfer due to the vaporization and liquefaction of the working fluid, making it possible to dramatically improve the reliability of these elements.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明に係る電子機器の機能素子の放熱装置の
第1実施例の斜視図、 第2図は基板正面から見た第1実施例の要部断面平面図
、 第3図は基板側面から見た第1実施例の断面側面図、 第4図は第2実施例の斜視図、 第5図は第2実施例の要部断面正面図、第6図は第2実
施例の断面側面図、 第7図は別の実施例の断面側面図、 第8図は更に別の実施例の側面図である。 1・・・基板、 2・・・半導体素子、 3・・・密封
容器、3a・・・液だまり部、      3b・・・
空洞部、4・・・揮発性物t(作動液)、 5・・・放
熱フィン、13・・・密封容器、     13a・・
・液だまり部、13b・・・空洞部、       1
5・・・放熱フィン、23・・・密封容器、     
23a・・・液だまり部、23b・・・空洞部、   
    25・・・放熱フィン、32・・・機能素子。 放熱!!置の第1実施例の斜視図 第1 = 第 国 基板の側方より見た第1実施例の断面図第2実施例の斜
視図 第 図 第2実施例の正面図 別の実施例 第7ヌ 更に別の実施例 第 図
FIG. 1 is a perspective view of a first embodiment of a heat dissipation device for a functional element of an electronic device according to the present invention, FIG. 2 is a cross-sectional plan view of the main part of the first embodiment as seen from the front of the board, and FIG. 3 is a board FIG. 4 is a perspective view of the second embodiment. FIG. 5 is a front cross-sectional view of the main parts of the second embodiment. FIG. 6 is a cross-section of the second embodiment. FIG. 7 is a cross-sectional side view of another embodiment, and FIG. 8 is a side view of still another embodiment. DESCRIPTION OF SYMBOLS 1... Substrate, 2... Semiconductor element, 3... Sealed container, 3a... Liquid pool part, 3b...
Cavity part, 4... Volatile substance t (working fluid), 5... Radiation fin, 13... Sealed container, 13a...
・Liquid pool part, 13b... Cavity part, 1
5... Heat radiation fin, 23... Sealed container,
23a...Liquid pool part, 23b...Cavity part,
25...Radiation fin, 32...Functional element. Heat radiation! ! Perspective view of the first embodiment of the device No. 1 = Cross-sectional view of the first embodiment seen from the side of the country board Perspective view of the second embodiment Diagram Front view of the second embodiment Different embodiment No. 7 Yet another embodiment figure

Claims (1)

【特許請求の範囲】[Claims] 1、電子機器の筺体内に上下方向に平行に配設される基
板(1)に実装された機能素子(2、32)の放熱装置
において、機能素子(2、32)に垂直な水平方向に位
置し且つこれに直接又は間接に接触する液だまり部(3
a、13a、23a)と、該液だまり部(3a、13a
、23a)の上方側に位置し且つ基板(1)に垂直な水
平方向に延びる、該液だまり部(3a、13a、23a
)に連続した空洞部(3b、13b、23b)とから成
る、内部に所定量の作動液(4)が封入された密封容器
(3、13、23)と、該密封容器(3、13、23)
の空洞部(3b、13b、23b)の外部面に設けた放
熱フィン(5、15、25)、とを有することを特徴と
する電子機器の機能素子の放熱装置。
1. In a heat dissipation device for functional elements (2, 32) mounted on a substrate (1) arranged vertically in parallel in the housing of an electronic device, in a horizontal direction perpendicular to the functional elements (2, 32). A liquid pool (3) located and in direct or indirect contact with this
a, 13a, 23a) and the liquid pool portion (3a, 13a
, 23a) and extends in the horizontal direction perpendicular to the substrate (1).
), a sealed container (3, 13, 23) in which a predetermined amount of hydraulic fluid (4) is sealed, and a cavity (3b, 13b, 23b) continuous to the container (3, 13, 23); 23)
A heat dissipation device for a functional element of an electronic device, characterized in that it has a heat dissipation fin (5, 15, 25) provided on an external surface of a cavity (3b, 13b, 23b).
JP637790A 1990-01-17 1990-01-17 Heat radiating device for functional element of electronic equipment Pending JPH03211864A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP637790A JPH03211864A (en) 1990-01-17 1990-01-17 Heat radiating device for functional element of electronic equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP637790A JPH03211864A (en) 1990-01-17 1990-01-17 Heat radiating device for functional element of electronic equipment

Publications (1)

Publication Number Publication Date
JPH03211864A true JPH03211864A (en) 1991-09-17

Family

ID=11636690

Family Applications (1)

Application Number Title Priority Date Filing Date
JP637790A Pending JPH03211864A (en) 1990-01-17 1990-01-17 Heat radiating device for functional element of electronic equipment

Country Status (1)

Country Link
JP (1) JPH03211864A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007300048A (en) * 2006-05-08 2007-11-15 Gigabyte Technology Co Ltd Heat dissipation printed circuit board and its construction for conducting heat by heat pipe
JP2012524977A (en) * 2009-04-22 2012-10-18 スリーエム イノベイティブ プロパティズ カンパニー Lighting assembly and system

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007300048A (en) * 2006-05-08 2007-11-15 Gigabyte Technology Co Ltd Heat dissipation printed circuit board and its construction for conducting heat by heat pipe
JP2012524977A (en) * 2009-04-22 2012-10-18 スリーエム イノベイティブ プロパティズ カンパニー Lighting assembly and system

Similar Documents

Publication Publication Date Title
US5168919A (en) Air cooled heat exchanger for multi-chip assemblies
US6410982B1 (en) Heatpipesink having integrated heat pipe and heat sink
US6263959B1 (en) Plate type heat pipe and cooling structure using it
US3226602A (en) Heat transferring mounting panels for electric components and circuits
US5283715A (en) Integrated heat pipe and circuit board structure
US7092255B2 (en) Thermal management system and method for electronic equipment mounted on coldplates
US6490160B2 (en) Vapor chamber with integrated pin array
US6625024B2 (en) Power converter enclosure
US4145708A (en) Power module with isolated substrates cooled by integral heat-energy-removal means
US7304842B2 (en) Apparatuses and methods for cooling electronic devices in computer systems
US6749013B2 (en) Heat sink
JP2020515031A (en) System, method, and apparatus for passive cooling of UAVs
EP2089911A1 (en) Heat dissipation system for photovoltaic array interconnection sytem
KR20020093897A (en) Cooling device for cooling components of the power electronics, said device comprising a micro heat exchanger
US20050157469A1 (en) Cooling arrangement for a printed circuit board with a heat-dissipating electronic element
GB2342152A (en) Plate type heat pipe and its installation structure
JPH03211864A (en) Heat radiating device for functional element of electronic equipment
US20070295488A1 (en) Thermosyphon for operation in multiple orientations relative to gravity
JPH11101585A (en) Plate-type heat pump and its packaging structure
JPH0632409B2 (en) Electronic device cooling device
JP4267977B2 (en) Cooling module
JPH03209859A (en) Semiconductor cooling device
RU2355140C2 (en) Device for heat dissipation at radio electronic device elements
JPS61255042A (en) Heat sink for semiconductor device
JPH0529512A (en) Electronic parts package