JPH03211600A - Vector quantization method - Google Patents

Vector quantization method

Info

Publication number
JPH03211600A
JPH03211600A JP2007340A JP734090A JPH03211600A JP H03211600 A JPH03211600 A JP H03211600A JP 2007340 A JP2007340 A JP 2007340A JP 734090 A JP734090 A JP 734090A JP H03211600 A JPH03211600 A JP H03211600A
Authority
JP
Japan
Prior art keywords
vector
representative
vectors
quantization
determined
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2007340A
Other languages
Japanese (ja)
Inventor
Shigeru Hosoi
茂 細井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP2007340A priority Critical patent/JPH03211600A/en
Publication of JPH03211600A publication Critical patent/JPH03211600A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To shorten the time for quantization by classifying the representative vectors by a zero cross number to plural pieces of groups, determining the zero cross number of the input vector to be subjected to quantization and calculating distortions with the representative vector within the corresponding group. CONSTITUTION:The zero cross number n of the input vector is calculated and if this n is nj-1<n<nj, this input vector is determined as to have the shape approximate to the shape of the j-th representative vector. The distortion di of all the representative vectors belonging to this group is calculated. The representative vector of the number (i) at which the distortion di is smallest is determined. This vector is determined as the representative vector for the input vector X and the number (i) of the decided representative vector is made the quantization value of the input vector X. Since the number of the representa tive vectors to be subjected to the calculation of the distortions is limited in such a manner, the time for the calculation processing at the time of determin ing the definite representative vector is shortened.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は、音声信号等をベクトル量子化するためのベク
トル量子化方法に関する。
DETAILED DESCRIPTION OF THE INVENTION Field of the Invention The present invention relates to a vector quantization method for vector quantizing audio signals and the like.

従来の技術 一般に、音声信号等をA/D変換したディジタル信号を
コンピュータ処理して量子化するために、ベクトル量子
化することが行われている。
2. Description of the Related Art In general, vector quantization is performed to quantize digital signals obtained by A/D conversion of audio signals and the like by computer processing.

第3図はこのような従来のベクトル量子化処理のフロー
チャートを示している。まず、下記(1)式として表わ
される入力ベクトルXに対し、予め設定された下記(2
)式として表わされるM個の代表ベクトルYi(但し、
i=1.2.3・・M)との歪cliを全てのiについ
て下記(3)式によって計算する(ステップ1.2.3
)。
FIG. 3 shows a flowchart of such conventional vector quantization processing. First, for the input vector X expressed as the following equation (1), the following (2
) M representative vectors Yi (where,
i = 1.2.3...M) is calculated by the following equation (3) for all i (step 1.2.3
).

X= (Xt、X2.X5−−・  ・、X5)−(1
)Vi= (Yll、 Yiz、 Yis・・・、Yi
N)・・・(2)そして歪diが最も小さくなる番号の
iの代表ベクトルを求め(ステップ4)、それを入力ベ
クトルXに対する代表ベクトルと決定しくステップ5(
このように決定される代表ベクトルを他の代表ベクトル
と区別するため、以下、確定代表ベクトルという。)、
その確定代表ベクトルの番号iを入力ベクトルχの量子
化値とするものである。
X= (Xt, X2.X5−-・・,X5)−(1
)Vi= (Yll, Yiz, Yis..., Yi
N)...(2) Then, find the representative vector of number i that gives the smallest distortion di (step 4), decide it as the representative vector for the input vector X, and use step 5 (
In order to distinguish the representative vector determined in this way from other representative vectors, it is hereinafter referred to as a determined representative vector. ),
The number i of the determined representative vector is used as the quantization value of the input vector χ.

第4図は入力ベクトルの成分数N=2、代表ベクトルの
数をM=4としたときの、入力ベクトルx1代表ベクト
ルYiの関係を示しており、6は代表ベクトル、7は入
力ベクトル、8は代表ベクトル間の境界線である。
Figure 4 shows the relationship between the input vector x1 and the representative vector Yi when the number of components of the input vector is N=2 and the number of representative vectors is M=4, where 6 is the representative vector, 7 is the input vector, and 8 is the representative vector. is the boundary line between representative vectors.

代表ベクトルViを設定するには、予め入力ベクトル大
の分布と同様な分布を有するトレーニング用のベクトル
(以下、トレーニングベクトルという。)を使用し、そ
れを必要とする代表ベクトルYiO数Mの領域に分割し
、全体の歪が最小となる代表ベクトルを決定する。
To set the representative vector Vi, first use a training vector (hereinafter referred to as training vector) that has a distribution similar to the distribution of the large input vector, and apply it to the area of the required representative vectors YiO number M. Divide and determine the representative vector that minimizes the overall distortion.

このように、上記従来のベクトル量子化方法によっても
入力ベクトルの量子化を行なうことができる。
In this way, input vectors can also be quantized using the conventional vector quantization method described above.

発明が解決しようとする課題 しかしながら、上記従来のベクトル量子化方法では、1
回の量子化毎に全ての代表ベクトルについて歪を算出し
なければならず、計算量が多大となり、実時間での処理
が困難になるという問題があった。
Problems to be Solved by the Invention However, in the above conventional vector quantization method, 1
Distortion must be calculated for all representative vectors each time quantization is performed, which increases the amount of calculation and makes real-time processing difficult.

本発明は、このような従来の問題を解決するものであり
、量子化処理時間を短縮できる優れたベクトル量子化方
法を提供することを目的とする。
The present invention solves these conventional problems, and aims to provide an excellent vector quantization method that can shorten the quantization processing time.

課題を解決するための手段 本発明は、上記目的を達成するたぬ、音声信号等をベク
トル量子化する際に、代表ベクトルの零交差数により代
表ベクトルを複数個のグループに分類するとともに量子
化を行なう入力ベクトルの零交差数を求め、求められた
零交差数に相当するグループ内の代表ベクトルについて
のみ歪を計算し、歪を計算する対象の代表ベクトルの数
を制限することにより、確定代表ベクトルを決定する際
の計算処理時間を短縮するようにしたものである。
Means for Solving the Problems The present invention achieves the above objects by classifying representative vectors into a plurality of groups based on the number of zero crossings of the representative vectors and quantizing them when vector quantizing an audio signal or the like. By calculating the number of zero crossings of the input vector that performs This is designed to shorten the calculation processing time when determining a vector.

作用 したがって、本発明によれば、量子化計算対象の代表ベ
クトルの数を低減して量子化するため、計算処理時間が
短縮され、量子化処理が速くなり、実時間処理ができる
という効果を有する。
Therefore, according to the present invention, since the number of representative vectors to be subjected to quantization calculation is reduced and quantized, calculation processing time is shortened, quantization processing becomes faster, and real-time processing is possible. .

実施例 第1図は本発明の一実施例の量子化方法の手順を示すフ
ローチャート、第2図は代表ベクトルのグループ分類の
一例を示す図である。この実施例においては、予め全て
の代表ベクトルについてそれぞれのベクトルの零交差数
Qkを求める。ディジタル信号の場合には、実際に信号
の振幅が零の値をとるとは限らないので、隣接する成分
が正負の異なる値になったときを1回の零交差とする。
Embodiment FIG. 1 is a flowchart showing the procedure of a quantization method according to an embodiment of the present invention, and FIG. 2 is a diagram showing an example of group classification of representative vectors. In this embodiment, the number of zero crossings Qk of each vector is determined in advance for all representative vectors. In the case of a digital signal, since the amplitude of the signal does not always actually take a value of zero, one zero crossing is defined as when adjacent components have different positive and negative values.

この零交差数により、第2図に示すように、代表ベクト
ルをL個のグループに分類する。次いで、零交差数がn
j−++l〜nJである代表ベクトルをj番目の代表グ
ループとする。
Based on the number of zero crossings, the representative vectors are classified into L groups as shown in FIG. Then, the number of zero crossings is n
Let the representative vectors j−++l to nJ be the j-th representative group.

次に、量子化を行なう手順について説明する。Next, the procedure for performing quantization will be explained.

まず、入力ベクトルの零交差数nを計算する(ステップ
11)。このnが、nj−tan≦nJであった場合、
この入力ベクトルは第j番目の代表ベクトルグループと
形状が近いものと決定しくステップ12)、このグルー
プに属する全ての代表ベクトルについてのみ歪diの計
算を行なう(ステップ13.14.15)。歪diの計
算には上記(3)式を用いる。そして最も歪diが小さ
くなる番号iの代表ベクトルを求ぬ(ステップ16)、
それを入力ベクトルXに対する代表ベクトルと決定しく
ステップ17)、その確定代表ベクトルの番号iを入力
ベクトルXの量子化値とする。
First, the number n of zero crossings of the input vector is calculated (step 11). If this n is nj-tan≦nJ,
This input vector is determined to be close in shape to the j-th representative vector group (step 12), and distortion di is calculated only for all representative vectors belonging to this group (steps 13.14.15). The above equation (3) is used to calculate the strain di. Then, find the representative vector of number i that gives the smallest distortion di (step 16).
This is determined to be the representative vector for the input vector X (step 17), and the number i of the determined representative vector is set as the quantized value of the input vector X.

このように、上記実施例によれば、第jグループに属す
る代表ベクトルの数をkjとすると、この方法での代表
バタン、代表ベクトルと距離、歪を計算する回数は、最
初にグループ化したL回であり、この回数は、全ての代
表ベクトルと比較を行なう場合の計算回数、 よりも少なく、確定代表ベクトルを決定する際の計算処
理時間を短縮することができるという利点を有する。
As described above, according to the above embodiment, if the number of representative vectors belonging to the j-th group is kj, the number of times to calculate the representative button, representative vector, distance, and distortion in this method is the first grouped L. This number of times is less than the number of calculations when comparing all representative vectors, and has the advantage that the calculation processing time when determining the final representative vector can be shortened.

発明の効果 本発明は、上記実施例から明らかなように、音声信号等
をベクトル量子化する場合において、代表ベクトルの零
交差数により代表ベクトルを複数個のグループに分類す
るとともに量子化を行なう入力ベクトル内の代表ベクト
ルについてのみ歪を計算することにより、歪を計算する
対象の代表ベクトルの数を制限しているので、確定代表
ベクトルを決定する際の計算処理時間を短縮することが
できるという効果を有する。
Effects of the Invention As is clear from the above embodiments, when vector quantizing an audio signal or the like, the present invention classifies representative vectors into a plurality of groups based on the number of zero crossings of the representative vector, and also divides the input into which quantization is performed. By calculating distortion only for representative vectors within a vector, the number of representative vectors for which distortion is calculated is limited, so the calculation processing time when determining a final representative vector can be reduced. has.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の一実施例におけるベクトル量子化手順
を示すフローチャート、第2図は同実施例における分類
された代表ベクトルの一例を示す図、第3図は従来のベ
クトル量子化手順を示すフローチャート、第4図は従来
例における代表ベクトルの配置の一例を示す図である。
Fig. 1 is a flowchart showing a vector quantization procedure in an embodiment of the present invention, Fig. 2 is a diagram showing an example of classified representative vectors in the same embodiment, and Fig. 3 shows a conventional vector quantization procedure. The flowchart, FIG. 4, is a diagram showing an example of the arrangement of representative vectors in a conventional example.

Claims (1)

【特許請求の範囲】[Claims] 音声信号等をベクトル量子化する際に、代表ベクトルの
零交差数により代表ベクトルを複数個のグループに分類
するとともに量子化を行なう入力ベクトルの零交差数を
求め、上記求められた零交差数に相当するグループ内の
代表ベクトルについてのみ歪を計算することを特徴とす
るベクトル量子化方法。
When vector quantizing an audio signal, etc., the representative vector is classified into multiple groups based on the number of zero crossings of the representative vector, and the number of zero crossings of the input vector to be quantized is determined, and the number of zero crossings determined above is calculated. A vector quantization method characterized by calculating distortion only for representative vectors in corresponding groups.
JP2007340A 1990-01-17 1990-01-17 Vector quantization method Pending JPH03211600A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007340A JPH03211600A (en) 1990-01-17 1990-01-17 Vector quantization method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007340A JPH03211600A (en) 1990-01-17 1990-01-17 Vector quantization method

Publications (1)

Publication Number Publication Date
JPH03211600A true JPH03211600A (en) 1991-09-17

Family

ID=11663212

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007340A Pending JPH03211600A (en) 1990-01-17 1990-01-17 Vector quantization method

Country Status (1)

Country Link
JP (1) JPH03211600A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07110695A (en) * 1993-09-27 1995-04-25 Internatl Business Mach Corp <Ibm> Voice coding device and method

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07110695A (en) * 1993-09-27 1995-04-25 Internatl Business Mach Corp <Ibm> Voice coding device and method

Similar Documents

Publication Publication Date Title
JP2977969B2 (en) Image processing system edge detection method and apparatus
Van Hulle Clustering approach to square and non-square blind source separation
US4728927A (en) Apparatus and method for performing comparison of two signals
JPH03211600A (en) Vector quantization method
Moura et al. DCT/DST and Gauss-Markov fields: Conditions for equivalence
US6026178A (en) Image processing apparatus using neural network
Khalfa et al. Blind audio source separation based on high exploration particle swarm optimization
Kostek Rough set and fuzzy set methods applied to acoustical analyses
JPS59161782A (en) Pattern matching method
JPS62183284A (en) Encoder
Somasundaram et al. Simple and Fast Ordered Codebook for Vector Quantization
JPH0321948B2 (en)
JPH03209921A (en) Vector quantizing method
Ozturk et al. Applications of Itakura-Saito type spectral distortion measures to image analysis and classification
JPH04175885A (en) Picture feature selecting system for generalized hough transformation
Miteran et al. Classification board for real time image segmentation
Mirchandani et al. Efficient implementation of neural nets using an optimal relationship between number of patterns, input dimension and hidden nodes
Sugiyama et al. Exact incremental projection learning in the presence of noise
He et al. Designing CNN genes for binary image edge smoothing and noise removing
JPH05189572A (en) Pattern classifying device
JPH09190420A (en) Pattern recognition device
Stiles et al. Some limitations of linear memory architectures for signal processing
Miteran et al. Real time image segmentation using FPGA and parallel processor
JPS6170859A (en) Treatment of picture information
Uchino et al. High performance hybrid-ICA to increase convergence speed and accuracy with use of RBF network