JPH03211456A - Ultrasonic probe for boiler tube flaw detection - Google Patents

Ultrasonic probe for boiler tube flaw detection

Info

Publication number
JPH03211456A
JPH03211456A JP2007623A JP762390A JPH03211456A JP H03211456 A JPH03211456 A JP H03211456A JP 2007623 A JP2007623 A JP 2007623A JP 762390 A JP762390 A JP 762390A JP H03211456 A JPH03211456 A JP H03211456A
Authority
JP
Japan
Prior art keywords
probe
tube
probes
flaw detection
eccentric
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2007623A
Other languages
Japanese (ja)
Inventor
Masaaki Torii
正明 取違
Keiichi Iwamoto
啓一 岩本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Heavy Industries Ltd
Original Assignee
Mitsubishi Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Heavy Industries Ltd filed Critical Mitsubishi Heavy Industries Ltd
Priority to JP2007623A priority Critical patent/JPH03211456A/en
Publication of JPH03211456A publication Critical patent/JPH03211456A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2291/00Indexing codes associated with group G01N29/00
    • G01N2291/02Indexing codes associated with the analysed material
    • G01N2291/025Change of phase or condition
    • G01N2291/0258Structural degradation, e.g. fatigue of composites, ageing of oils
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2291/00Indexing codes associated with group G01N29/00
    • G01N2291/04Wave modes and trajectories
    • G01N2291/044Internal reflections (echoes), e.g. on walls or defects

Landscapes

  • Investigating Or Analyzing Materials By The Use Of Ultrasonic Waves (AREA)

Abstract

PURPOSE:To detect cracking in the axial direction of a tube in the best state and to easily pass a curved tube part by making the probe eccentric in a radial direction according to the internal passage of the tube and storing the eccentric probe in the cut part of a probe main body at the curved tube part. CONSTITUTION:The probe main body 7 is provided with cantilevers 8a and 8b symmetrically by using a pin 9 and also fitted with probes 6a and 6b, and the quantity of eccentricity is adjusted with a cap nut 12 for eccentricity quantity adjustment. Spring shafts 13 are fitted before and behind the probes 6a and 6b, which are driven and rotated by a shaft 13 and a rotor shaft 14 in double structure. Then when the probes pass through the curved tube part, a lever 8b and the probe 6b which contact the internal wall of the tube are stored in the cut part of the main body 7. The probe 6a is also the same. Consequently, the cracking in the axial direction of the tube can be detected in the best state at all time and the probes can pass through the curved tube part smoothly.

Description

【発明の詳細な説明】 〔竜業上の利用分野〕 本発明は、ゲイラチェープの付着金物溶接部に発生する
管軸方向のき裂を管の内側から水浸法で採石するための
メイラチ為−ゾ深傷用超音波探触子に関する。
[Detailed Description of the Invention] [Field of industrial application] The present invention is a method for removing cracks in the pipe axis direction that occur in the welded parts of metal fittings of a gayra chape from the inside of the pipe by a water immersion method. Regarding an ultrasonic probe for deep wounds.

〔従来の技術〕[Conventional technology]

火力〆イラの過熱器や再熱器等の付着金物浴接部には、
発停Vc#なう熱応力に起因し九疲労き裂が発生する。
Do not apply adhesives to the contact parts of the superheater, reheater, etc. of the fireworks.
A fatigue crack occurs due to thermal stress caused by Vc#.

しかし、過熱器や再7I!%器等は、チェープ間隔が5
0〜100震と侠いために険査Aが接近できない。この
ため、従来疲労き裂の確認は、サンプル管全採取するこ
とによシ行なわれていた。
However, the superheater and the 7I! For percentage instruments etc., the chain interval is 5
Due to the 0 to 100 earthquakes, Surveyor A cannot approach. For this reason, fatigue cracks have conventionally been confirmed by taking the entire sample tube.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

上記したように、火力〆イラの過熱器や再熱器等の付着
金物溶接部のように検査員が接近できない箇所に発生す
るき裂は、適当な非破壊検査の手段がない。よって、き
裂の有無確認は、サンプル管を採取し、破壊調査するこ
とによシ行なわれてきた。そのため、調査箇所が限定さ
れ、サンプル採取位置の復旧にも多大表費用を要してい
た。
As mentioned above, there is no suitable non-destructive inspection method for cracks that occur in locations that cannot be accessed by inspectors, such as the welded parts of adhered metals in the superheater and reheater of a thermal power plant. Therefore, the presence or absence of cracks has been confirmed by taking a sample tube and conducting a destructive investigation. As a result, the survey locations were limited, and a large amount of costs were required to restore the sample collection locations.

本発明は上記のような点Kliみなされ九もので、ボイ
ラチェーツの付着金物1’l接部に発生するき裂を非破
壊的に検査できるメイラチェープ探傷用超音波探触子を
提供することを目的とする。
The present invention has been made in view of the above-mentioned points, and an object of the present invention is to provide an ultrasonic probe for mailer chain flaw detection that can non-destructively inspect cracks that occur in the contact area of attached metal 1'l of boiler chases. shall be.

〔課題を解決するための手段〕[Means to solve the problem]

本発明は、火力〆イラの過熱器や再熱器等の付着金物溶
接部のよづに検査員が接近できない箇所に発生する管軸
方向のき裂を管の内側から超音波探傷の水浸法を利用し
て非破壊的に検出するための回転型探触子に関するもの
で、管の内径に応じて上記管の半径方向に任意の量九は
探触子を偏心させる偏心機構を有し、かつ、上記探触子
を上記管内で回転させる機構、および曲管部等では、偏
心した探触子を探触子本体内に収納する支持機構を具備
し次ものである。
The present invention uses ultrasonic water immersion to detect cracks in the pipe axis direction that occur in locations where inspectors cannot access the welded parts of adhered metal such as superheaters and reheaters in fireworks. This relates to a rotary probe for non-destructive detection using the method, and has an eccentric mechanism that decenters the probe by an arbitrary amount in the radial direction of the tube depending on the inner diameter of the tube. , and the mechanism for rotating the probe within the tube and the bent tube section include a support mechanism for housing the eccentric probe within the probe body.

〔作用〕[Effect]

上記の構成によれば、〆イラチェープの付着金物溶接部
に発生するき裂を管の内側から超音波探傷の水浸法を利
用して非破壊的に検査できるので、検査員が接近できな
い火力ダイクの過熱器や再熱器等の付着金物溶接部の検
査が可能ち0.検査のための管外表面の研磨も不要であ
る。また、管軸方向のき裂を探傷するために、管の仕様
に合わせて半径方向に任意の量だけ探触子を偏心できる
ので、異径管でループが形成される熱交換器の探傷が1
個の回転型探触子で可能であ)、曲管部等では偏心した
探触子が探触子本体内に収納されるので管内への挿入性
も容謳である。
According to the above configuration, it is possible to non-destructively inspect the cracks that occur in the welded parts of the metal fittings of the final pipe from the inside of the tube by using the water immersion method of ultrasonic flaw detection. It is possible to inspect the welded parts of adhered metals such as superheaters and reheaters. There is also no need to polish the outer tube surface for inspection. In addition, in order to detect cracks in the tube axis direction, the probe can be decentered by an arbitrary amount in the radial direction according to the tube specifications, making it possible to detect cracks in heat exchangers where loops are formed with tubes of different diameters. 1
(This is possible with a single rotary probe), and since the eccentric probe is housed in the probe body in a curved pipe section, it is also easy to insert into the pipe.

〔実施例〕〔Example〕

以下、図面を参照して本発明の一実施例を説明する。 Hereinafter, one embodiment of the present invention will be described with reference to the drawings.

第1図はメイラチェープ1の付着金物2の溶接部3に発
生し穴管軸方向Ωき裂4をチェープ1の内側から水5を
介して超音波で探傷する場合の要領を示したものである
。第1図に示すように、管軸方向のき裂4を探傷するた
めには、超音波探触子6をチェープ1の半径方向に数■
偏心させる必要がある。
Figure 1 shows the procedure for detecting an Ω crack 4 in the axial direction of the hole tube, which occurs in the welded part 3 of the metal fitting 2 attached to the mailer tape 1, using ultrasonic waves from inside the tape 1 through water 5. . As shown in FIG.
It needs to be eccentric.

第2図は過熱器管として一般的な数種類のチューブにつ
いて、探触子の偏心量と欠陥エコー高さの関係を調査し
たもので、超音波探触子6の偏心量が6〜8−のときが
最も探傷感度が高いことがわかる。
Figure 2 shows the relationship between the eccentricity of the probe and the defect echo height for several types of tubes commonly used as superheater tubes. It can be seen that flaw detection sensitivity is highest when

第3図は本発明の回転型探触子の構成を示す側面図であ
る。この回転型探触子は、管軸方向のき裂を管の内側か
ら探傷するためのもので、探触子本体7に2本のカンチ
レバー8*、8bがカンナレバー止めどン9で対称に取
付けられている。このカンチレバー8*、8bには、そ
れぞれ探触子6h、6bが装着されている。ま九、2本
のカンチレバー8*、8bは、支点部(カンチレバー止
めピン9部)に取付けられたバネ10とビン1ノにより
常に偏心しようとするが、探触子本体7に偏心量調整用
袋ナツト12が螺合されているので、同ナツト12と接
触する位置までしか偏心できない。
FIG. 3 is a side view showing the configuration of the rotary probe of the present invention. This rotary probe is used to detect cracks in the tube axis direction from the inside of the tube, and two cantilevers 8* and 8b are symmetrically attached to the probe body 7 with cannalever stoppers 9. It is being Probes 6h and 6b are attached to the cantilevers 8* and 8b, respectively. Nine, the two cantilevers 8* and 8b always try to be eccentric due to the spring 10 and pin 1 attached to the fulcrum part (cantilever fixing pin 9 part), but the probe body 7 has a device for adjusting the amount of eccentricity. Since the cap nut 12 is screwed together, it can only be eccentric to a position where it comes into contact with the cap nut 12.

さらに、本実施例では、探触子本体yt−all芯する
ための治具を装着するために、探触子61゜6bの前後
にスプリングシャフト13が取付けらnでいる。このス
ゲリングシャフト13は、第6図に示すように、偏心量
調整用袋ナツト12部に内蔵され九ベアリング31に直
結されている。探触子6*、6bは、スプリングシャフ
ト13と二重構造となったロータシャフト14で回転駆
動される。
Furthermore, in this embodiment, spring shafts 13 are attached to the front and rear of the probe 61.degree. 6b in order to mount a jig for centering the probe body yt-all. As shown in FIG. 6, this sliding shaft 13 is built into the eccentricity adjusting cap nut 12 and directly connected to the nine bearing 31. The probes 6*, 6b are rotationally driven by a rotor shaft 14 which has a double structure with a spring shaft 13.

すなわち、第6図に示すように、探触子本体7とスプリ
ングシャフト13の間にベアリング31が内翼され、探
触子本体7とロータシャフト14がセットビス32で直
結されている九め、ロータシャフト14の回転に痒りて
探触子木淳7も回転することになる。
That is, as shown in FIG. 6, a bearing 31 is provided between the probe body 7 and the spring shaft 13, and the probe body 7 and the rotor shaft 14 are directly connected with a set screw 32. Due to the rotation of the rotor shaft 14, the probe Mokujun 7 also rotates.

第4図は本発明の回転型探触子がI*ff1lを通過す
る様子を示したものである。この@転層S水子は、メイ
ラチェープ16の曲管Hを通過する際に管の内壁に接触
したカンチレバー8bと探触子6bが、探触子本体7の
切欠部に収納される。探触子6aについても同様である
。これによシ、血管部をスムーズ通過できる。ま之、曲
管部を通過して直管部に移動すると、切欠部に収納され
たカンチレバー8bと探触子6bが偏心量g4!Ii用
袋ナツト12で予め設定され次位ll1tで突出(I心
)する、こ九によシ、管軸方向のき裂の探傷が可能とな
る。
FIG. 4 shows how the rotary probe of the present invention passes through I*ff1l. The cantilever 8b and the probe 6b, which came into contact with the inner wall of the tube when passing through the curved tube H of the mailer tape 16, are housed in the notch of the probe body 7. The same applies to the probe 6a. This allows for smooth passage through blood vessels. However, when the cantilever 8b and the probe 6b, which are housed in the notch, move through the curved pipe section and move to the straight pipe section, the eccentricity g4! It is possible to detect cracks in the tube axis direction by using this hole, which is set in advance with the cap nut 12 for Ii and protrudes (I center) at the next position ll1t.

すなわち、第6図に示すように、ナツト12を矢印入方
向にねじ込むと、カンチレバー8bが矢印B方向に移動
し、探触子6bの偏心量が小さく表る。ま九、ナツト1
2を矢印入方向とは逆の方向へ移動させると、探触子6
bの1心量は大きくなる。探触子6aについても同様で
ある。このように、接触子6*、6bの偏心i1cナツ
ト12により予めセットして、探St行うものである(
管の仕様により変化する)。
That is, as shown in FIG. 6, when the nut 12 is screwed in the direction of the arrow, the cantilever 8b moves in the direction of the arrow B, and the amount of eccentricity of the probe 6b appears small. Maku, Natsu 1
When probe 2 is moved in the opposite direction to the arrow entry direction, probe 6
The amount of one core of b increases. The same applies to the probe 6a. In this way, the probe St is set in advance using the eccentric i1c nuts 12 of the contacts 6* and 6b.
(varies depending on pipe specifications).

第5図は本発明の回転型探触子を使用して、〆イラチェ
ープの仮型スイーサ溶接部(管軸方向溶接部)を探傷し
ている様子を示す図である。第5図において、探触子本
体7は、その前後に取付けられた調芯治具17によシ、
メイラチエ−216の中心線上に保持される。探触子6
*、6bは、蕗に一定の偏心量で?イラチェーf1g内
全回転し、付着金物溶接部の探傷全行なう、なお、第5
図中、18は調芯治具弁えバネ、19は押えノクネ調整
ナツト、20は案内ガイド、21は溶接部そして、22
は仮型スイーサである。
FIG. 5 is a diagram showing a state in which a temporary sweeter weld (weld in the tube axis direction) of a final trap is being flaw-detected using the rotary probe of the present invention. In FIG. 5, the probe main body 7 is attached to the centering jig 17 installed at the front and rear of the probe main body 7.
It is held on the centerline of the mailbox 216. Probe 6
*, 6b is a certain amount of eccentricity in the butterbur? The inside of the eraser f1g is fully rotated, and the flaw detection of the welded parts of the attached metal parts is carried out.
In the figure, 18 is an alignment jig valve spring, 19 is a presser foot adjustment nut, 20 is a guide, 21 is a welding part, and 22
is a temporary sweeter.

ここで、調芯治具17の調芯機構および案内ガイド2Q
の構造について説明する。
Here, the alignment mechanism of the alignment jig 17 and the guide 2Q
We will explain the structure of

調芯治具17は、素材にナイロン33を使用している。The centering jig 17 is made of nylon 33.

製造時にひと株当シの素材数と素材の長さが管理されて
おり、第7図に示すよりに、調芯治具17の径が管の内
径より大きい場合、ナイロン33が一様につぶれ、探触
子本体7の調芯が可能となる。この場合、探触子本体7
の調芯が悪いと、回転時に探触子6m、6bの偏心量が
一定せずに探傷不能となる。また、案内ガイド20は、
スプリングシャフト13の先端にテフロン製のゴールを
取シ付けたものであり、溶接部の内面などの突起物があ
る場所で、スプリングシャフト13の先端がつっかえる
ことを防止する。この案内ガイド20は、スプリングシ
ャフト13にビス止めされている。
During manufacturing, the number of materials per piece and the length of the materials are controlled, and as shown in Figure 7, if the diameter of the centering jig 17 is larger than the inner diameter of the tube, the nylon 33 will be crushed uniformly. , alignment of the probe body 7 becomes possible. In this case, the probe body 7
If the alignment is poor, the eccentricity of the probes 6m and 6b will not be constant during rotation, making flaw detection impossible. In addition, the guide 20 is
A goal made of Teflon is attached to the tip of the spring shaft 13 to prevent the tip of the spring shaft 13 from getting stuck where there is a protrusion such as the inner surface of a welded part. This guide 20 is fixed to the spring shaft 13 with screws.

〔発明の効果〕〔Effect of the invention〕

以上のように本発明によれば、管の内面側から水浸法に
よシダイラチェープの付着金物溶接部のき裂を探傷でき
るので、検査のための研磨が不要である。また管の仕様
にあわせて半径方向に任意の量だけ探触子を偏心させる
機能を有しているので、管軸方向のき裂を常に最適な状
態で探傷できる・また、曲管部を通過する際には、偏心
した探触子が回転型接触子本体の切欠部に収納されるの
で、曲管部の通過もスムーズである。
As described above, according to the present invention, it is possible to detect cracks in the welded part of the adhered metal of the cedar chain from the inner surface of the pipe by the water immersion method, so there is no need for polishing for inspection. In addition, it has a function to decenter the probe by an arbitrary amount in the radial direction according to the pipe specifications, so cracks in the pipe axis direction can always be detected in the optimal condition. When doing so, the eccentric probe is housed in the notch of the rotary contact body, so it passes smoothly through the curved pipe section.

さらに、2チヤンネルを採用し、一方の探触子で溶妥余
盛の位置全確認しながら、残)の探触子で探1するので
、探傷位置を間違うこともない。
Furthermore, since a two-channel system is used, and one probe is used to confirm the entire position of the melt overfill, the remaining probe is used to detect the flaw, so there is no mistake in the flaw detection position.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の一実施例に係る探傷方法を説明するた
めの図、第2図は同実施例の回転型探触子の偏心量と欠
陥エコー高さとの関係を示す図、第3図は同実施例の回
転型探触子の構成を示す側面図、第4図は同実施例の回
転型探触子が曲管部を通過する様子を示す側面図、第5
図は同実施例の回転型探触子がス(−サ溶接部を探傷し
ている様子を示す斜視図、第6図は同実施例の回転型探
触子の回転機構の構成を示す図、第7図は同実施例の調
芯治具の調芯機構を説明するための図でおる。 6aおよび6b・・・探触子、7・・・探触子本体、8
&および8b・・・カンチレバー 9・・・カンチレバ
ー止めビン、10・・・バネ、11・・・ビン、12・
・・ナツト、3・・・スプリングシャフト。
FIG. 1 is a diagram for explaining a flaw detection method according to an embodiment of the present invention, FIG. 2 is a diagram showing the relationship between the eccentricity of the rotary probe and the defect echo height of the same embodiment, and FIG. The figure is a side view showing the configuration of the rotary probe of the same embodiment, FIG. 4 is a side view showing how the rotary probe of the same embodiment passes through the curved pipe section, and
The figure is a perspective view showing how the rotary probe of the same embodiment detects flaws in the welded part, and FIG. 6 is a diagram showing the configuration of the rotation mechanism of the rotary probe of the same embodiment. , FIG. 7 is a diagram for explaining the alignment mechanism of the alignment jig of the same embodiment. 6a and 6b... probe, 7... probe body, 8
& and 8b...Cantilever 9...Cantilever stopper, 10...Spring, 11...Bin, 12.
...Natsuto, 3...Spring shaft.

Claims (1)

【特許請求の範囲】  管軸方向のき裂を管の内側から超音波探傷の水浸法を
利用して検査する回転型探触子であって、上記管の内径
に応じて探触子を上記管の半径方向に偏心させる偏心機
構と、 上記探触子を上記管内で回転させる回転機構と、上記探
触子を探触子本体内に収納可能に支持する支持機構とを
具備してなることを特徴とする、イラチューブ探傷用超
音波探触子。
[Scope of Claims] A rotary probe for inspecting cracks in the axial direction of a tube from the inside of the tube using the water immersion method of ultrasonic flaw detection, the probe being The tube is provided with an eccentric mechanism that decenters the tube in the radial direction, a rotation mechanism that rotates the probe within the tube, and a support mechanism that supports the probe so that it can be stored in the probe body. An ultrasonic probe for IRATUBE flaw detection.
JP2007623A 1990-01-17 1990-01-17 Ultrasonic probe for boiler tube flaw detection Pending JPH03211456A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007623A JPH03211456A (en) 1990-01-17 1990-01-17 Ultrasonic probe for boiler tube flaw detection

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007623A JPH03211456A (en) 1990-01-17 1990-01-17 Ultrasonic probe for boiler tube flaw detection

Publications (1)

Publication Number Publication Date
JPH03211456A true JPH03211456A (en) 1991-09-17

Family

ID=11670948

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007623A Pending JPH03211456A (en) 1990-01-17 1990-01-17 Ultrasonic probe for boiler tube flaw detection

Country Status (1)

Country Link
JP (1) JPH03211456A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011075383A (en) * 2009-09-30 2011-04-14 Mitsubishi Heavy Ind Ltd In-pipe insertion ultrasonic flaw inspection apparatus

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4892088A (en) * 1972-03-09 1973-11-29
JPS59126950A (en) * 1983-01-11 1984-07-21 Power Reactor & Nuclear Fuel Dev Corp Optimum condition automatically holding type ultrasonic flaw detector

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4892088A (en) * 1972-03-09 1973-11-29
JPS59126950A (en) * 1983-01-11 1984-07-21 Power Reactor & Nuclear Fuel Dev Corp Optimum condition automatically holding type ultrasonic flaw detector

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011075383A (en) * 2009-09-30 2011-04-14 Mitsubishi Heavy Ind Ltd In-pipe insertion ultrasonic flaw inspection apparatus

Similar Documents

Publication Publication Date Title
US5767410A (en) Lamb wave ultrasonic probe for crack detection and measurement in thin-walled tubing
CN108562647B (en) PA-TOFD combined ultrasonic detection device and method for polyethylene pipeline hot-melt butt joint
JP6236224B2 (en) Tube inspection device and method
JPH0584865B2 (en)
US10048225B2 (en) Apparatus and method for inspection of tubes in a boiler
JPH0781990B2 (en) Rotating cross-wound eddy current coil head for inspecting tubes
JPH03211456A (en) Ultrasonic probe for boiler tube flaw detection
JP4730123B2 (en) Nondestructive inspection jig and ultrasonic nondestructive inspection equipment
EP1882923A3 (en) Method and apparatus for ultrasonic inspection of steel pipes
JPH068807B2 (en) Ultrasonic probe holder
JP2994852B2 (en) Ultrasonic probe for boiler tube flaw detection
JP2862397B2 (en) Ultrasonic probe for boiler tube flaw detection
JP2000352563A (en) Ultrasonic flaw detector for cladding tube
JPS61194352A (en) Apparatus for inspecting container mouth neck part
JP3710417B2 (en) Nondestructive inspection method for pipe joints
JPH04276547A (en) Ultrasonic testing method for surface layer part of cylindrical body
JP2539019B2 (en) Ultrasonic flaw detection
Light et al. Detection and sizing of defects in control rod drive mechanism penetrations using eddy current and ultrasonics
Rachev Advanced ultrasonic array processing for pipeline inline inspection
JPH1164298A (en) Ultrasonic oblique angle flaw detecting apparatus
JPH0545341A (en) Ultrasonic probe for flaw inspection of boiler tube
KR200165200Y1 (en) Ultrasonic tester for the nuclear power plant steam generator sleeved-tubing
KR100441961B1 (en) Tracking Device for Automatic Ultrasonic Inspection on Horizontal Tube of Boiler
JP4985149B2 (en) Nondestructive inspection jig
JPH0634607A (en) Device and method for testing eddy-current detection