JPH0321122A - Echo canceller circuit for full duplex modem - Google Patents

Echo canceller circuit for full duplex modem

Info

Publication number
JPH0321122A
JPH0321122A JP15471689A JP15471689A JPH0321122A JP H0321122 A JPH0321122 A JP H0321122A JP 15471689 A JP15471689 A JP 15471689A JP 15471689 A JP15471689 A JP 15471689A JP H0321122 A JPH0321122 A JP H0321122A
Authority
JP
Japan
Prior art keywords
echo
far
signal
filter
end echo
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP15471689A
Other languages
Japanese (ja)
Inventor
Ryoichi Miyamoto
宮本 良一
Shinsuke Takada
真資 高田
Yoshikazu Nakano
善和 中野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Oki Electric Industry Co Ltd
Original Assignee
Oki Electric Industry Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Oki Electric Industry Co Ltd filed Critical Oki Electric Industry Co Ltd
Priority to JP15471689A priority Critical patent/JPH0321122A/en
Publication of JPH0321122A publication Critical patent/JPH0321122A/en
Pending legal-status Critical Current

Links

Landscapes

  • Cable Transmission Systems, Equalization Of Radio And Reduction Of Echo (AREA)

Abstract

PURPOSE:To simplify the structure of an echo canceller circuit and to effectively cancel near end and far end echoes without being influenced by a time-varying element by individually forming the pseudo signals of the near end and far end echoes through different filters. CONSTITUTION:Application filters are divided into near end and far end echo canceller adaptive filters 21, 22. A bulk delay 20 is connected to the input stage of the filter 22 to hold a time difference required for the return of a far end echo F from a transmission point of time. Thereby, a sending signal S for forming a far end pseudo echo component is effectively inputted to the filter 22. Thereby, the number of taps of the filter 22 can be reduced. The output of the filter 22 is inputted to a phase follow-up circuit 23 to allow the input signal to follow up the frequency of an error signal E. Thereby a pseudo signal, i.e., a far end echo canceling signal SE, formed from the circuit 23 is allowed to further approximate to a practical far end echo. Consequently, a time-varying element such as a frequency offset and a phase jitter to be applied to the far end echo on a transmission line can be effectively canceled.

Description

【発明の詳細な説明】 [産楽]二の利用分町] 本発明は、全2重通信モテム用エフー+ヤンセラ回路に
係り、特に、疑似エコーを生成するエコー牛ヤンセラの
性能を改善したものに関する。
[Detailed Description of the Invention] [Sanraku] Ni-no-Usatsu Bunmachi] The present invention relates to an F+Yancer circuit for a full-duplex communication motem, and in particular, a device that improves the performance of the echo-Yancer circuit that generates pseudo echoes. Regarding.

[従来の技術] モデムか対向して相互にデータ通信ずる2線式全2重モ
デムでは、送信信号か自己モデム内のハイブリッドで反
射されて生じる近端エコーと、相手側の局内のハイブリ
ッドで同様に生して廻り込んで来る遠ff:16エコー
とが存在し、これらか相手モデムからの受信信号を妨害
し正常な通信を阻害する。
[Prior Art] In a two-wire full-duplex modem in which the modems communicate data with each other, there is a near-end echo that occurs when the transmitted signal is reflected by the hybrid in the own modem, and a similar echo that occurs in the hybrid in the other party's station. There are far FF:16 echoes that are generated and circulate, and these interfere with the received signal from the other party's modem and impede normal communication.

これらのエコーを消去するために、従来、特開昭6 1
 − 2 /1 2 1 2 7号公報に開示されるエ
コーキャンセラ回路かあった。その原理を第2図を用い
て簡il1に説明する。
In order to eliminate these echoes, conventionally,
- There was an echo canceller circuit disclosed in the 2/12127 publication. The principle will be briefly explained using FIG. 2.

端末側から情報信号か自局Gに入刀され、これを符号変
換器1で多値の送信信号Sに変換する。
An information signal is input from the terminal side to the own station G, and the code converter 1 converts this into a multi-level transmission signal S.

この送信信号Sはエコーキャンセラ14へ入力される一
方、ロールフィルタ2,変調器3,D/A変換器4,送
信フィルタ5を経てハイブリソ1・6を介して伝送路へ
送出される。
This transmission signal S is input to the echo canceller 14, while passing through the roll filter 2, modulator 3, D/A converter 4, transmission filter 5, and sent out to the transmission path via the hybrids 1 and 6.

しかし、ハイブリット6で生じる近ケ『11エコーN及
び、また相手局■内でのハイブリットで発生して戻って
来た遠端エコーFか受信側への廻り込み、相手局Iから
の受信信号Rに重畳する。これらの重畳信号は受信フィ
ルタ7,A/D変換器8,復調器9,ロールオフフィル
タ10を通り加算器19に至る。ここで、エコーキャン
セラ14て生成された疑似エコーSか差し引かれる。即
ち、近O:i+:エコーN,遠端エコーFが除かれて受
信信号Rが得られる。除かれずに残った残留エコーと受
信信号Rとの和Pは、判定回路11,符号変換器12を
通って受信情報信号か得られ端末側へ送られる。
However, the near echo "11 echo N" generated by hybrid 6, and the far end echo F generated by the hybrid in the other station (■) and returned to the receiving side, and the received signal R from the other station I. superimposed on These superimposed signals pass through a reception filter 7, an A/D converter 8, a demodulator 9, and a roll-off filter 10, and reach an adder 19. Here, the pseudo echo S generated by the echo canceller 14 is subtracted. That is, near O:i+: echo N and far end echo F are removed to obtain received signal R. The sum P of the residual echo remaining without being removed and the received signal R passes through a determination circuit 11 and a code converter 12 to obtain a received information signal and is sent to the terminal side.

一方、判定結果と、残留エコーおよび受信信号の和Pと
の差分を加算器l3により求め、これを誤差信号Eとし
てエコーキャンセラ14の適応フィルタ16の係数制御
部と利得制御回路l7とに供給する。適応フィルタ16
の係数制御と利得制御回路17の利得制御とは誤差信号
Eが最小となるように行われる。エコーキャンセラ14
に固定フィルタ15を設けて、その出力と適応フィルタ
16の出力とを加算器18に導き、加算結果を更に利得
制御回路l7に人力して利得制御した」二で、上述した
疑似エコーSを生成している。
On the other hand, the difference between the determination result and the sum P of the residual echo and the received signal is obtained by an adder l3, and this is supplied as an error signal E to the coefficient control section of the adaptive filter 16 of the echo canceller 14 and the gain control circuit l7. . Adaptive filter 16
The coefficient control of and the gain control of the gain control circuit 17 are performed so that the error signal E is minimized. echo canceller 14
A fixed filter 15 was provided in the filter 15, and its output and the output of the adaptive filter 16 were guided to an adder 18, and the addition result was further manually input to a gain control circuit 17 for gain control. are doing.

なお、固定フィルタ15を設けているのは、適応フィル
タ16のエコーインパルス応答のクイナミックレンシを
小さくするためてある。
Note that the fixed filter 15 is provided in order to reduce the dynamic amplitude of the echo impulse response of the adaptive filter 16.

[発明が解決しようとする課題] しかしながら、近端エコーと遠端エコーとのトータル疑
似エコーを、共通の適応フィルタで生成するようにした
従来のエコーキャンセラ回路によると、次のような欠点
があった。
[Problems to be Solved by the Invention] However, the conventional echo canceller circuit that uses a common adaptive filter to generate a total pseudo echo of near-end echo and far-end echo has the following drawbacks. Ta.

(1)フィルタのタノプ数が大きくなる。(1) The filter number increases.

適応フィルタは複数の遅延素子を直列接続して、これら
のタップ出力の荷重和を得るようにして構成されている
ものであるが、近端エコーと遠端エ3 コーとの間の時間差が長いと(第4図に示すフラットデ
ィレイ区間)、その長い分たけ遅延素子を多く必要とす
る結果、フィルタのタップ数が多くなる。その結果、規
模の大きな適応フィルタが必要となリコス1・アップに
つながる。
An adaptive filter is constructed by connecting multiple delay elements in series to obtain a weighted sum of their tap outputs, but the time difference between the near-end echo and the far-end echo is long. (flat delay section shown in FIG. 4), the longer the length, the more delay elements are required, and as a result, the number of filter taps increases. As a result, the cost increases by 1.0, which requires a large-scale adaptive filter.

(2)時変要素があると十分にキャンセルされない。(2) If there is a time-varying element, it will not be canceled sufficiently.

伝送路を伝わって来る遠端エコーには、伝送路上で周波
数オフセットや位相ジッタ等の時変要素の影響を受ける
場合かあるが、この時変要素を考慮していないため、時
変要素を含んだ遠D:tAエコーを十分にキャンセルで
きない。
The far-end echoes traveling along the transmission path may be affected by time-varying elements such as frequency offset and phase jitter on the transmission path, but these time-varying elements are not taken into account, so it does not include time-varying elements. Daen D: tA echo cannot be canceled sufficiently.

本発明の目的は、近端エコーの疑似信号と、遠端エコー
の疑似信号とを異なるフィルタで別個に生戊することに
よって、上述した従来技術の欠点を解消して、構造を簡
素化でき、遠端エコーに時変要素か含まれている場合に
あっても、時変要素による影響を受けることなく、近端
エコーおよび遠端エコーを有効にキャンセルすることが
可能な全2重モデム用エコーキャンセラ回路を提供する
ことにある。
An object of the present invention is to solve the above-mentioned drawbacks of the prior art and simplify the structure by separately generating a pseudo signal of a near-end echo and a pseudo signal of a far-end echo using different filters. An echo for full-duplex modems that can effectively cancel near-end echoes and far-end echoes without being affected by time-varying elements even if the far-end echo contains time-varying elements. The purpose of the present invention is to provide a canceller circuit.

4 [課題を解決するための手段] 本発明の全2重モデム用エコーキャンセラ回路は、送信
信号を発した自局で生じる近端エコーと相手局で生じる
遠端エコーとが重畳された受信信号から、適応フィルタ
で生戊した疑似エコーを差し引くことにより、受信信号
に重畳されたエコー戊分を除去するように構成されてい
る。
4 [Means for Solving the Problems] The echo canceller circuit for a full-duplex modem of the present invention produces a received signal in which a near-end echo generated at the own station that has issued the transmission signal and a far-end echo generated at the opposite station are superimposed. The configuration is such that the echo component superimposed on the received signal is removed by subtracting the pseudo echo generated by the adaptive filter from the received signal.

このような構成において、」二記適応フィルタを近端エ
コーの疑似信号を作成する近端用適応フィルタと、遠端
エコーの疑似信号を作成する遠端用適応フィルタとに分
け、遠端用適応フィルタの入力段には遠端エコーの応答
時間送信信号を遅延して入力するバルクディレイ用の遅
延手段を設ける。
In such a configuration, the adaptive filter described in section 2 is divided into a near-end adaptive filter that creates a near-end echo pseudo signal and a far-end adaptive filter that creates a far-end echo pseudo signal. The input stage of the filter is provided with bulk delay delay means for delaying and inputting the response time transmission signal of the far end echo.

また、上記遠端用適応フィルタの出力段には遠端エコー
の疑似信号を遠端エコーに同期させる同期回路を設けて
、この同期回路の出力と」二記近端用適応フィルタの出
力とを受信信号から差し引くように描成したちのてある
In addition, a synchronization circuit for synchronizing the pseudo signal of the far-end echo with the far-end echo is provided at the output stage of the far-end adaptive filter, and the output of this synchronization circuit and the output of the near-end adaptive filter mentioned above are connected. It is plotted to be subtracted from the received signal.

[作用] 送信信号がバルクディレイ用の遅延手段に人力されると
、送信信号は遠D:I:エコーの応答ttjf間たけ遅
延して後段の遠端用適応フィルタに入力される。
[Operation] When the transmission signal is input to the delay means for bulk delay, the transmission signal is delayed by the distance ttjf of the far D:I:echo response and is input to the far end adaptive filter at the subsequent stage.

すると、遠端川適応フィルタから出力される遠端エコー
の疑似信号は、遠端エコーが応答するタイミングから直
ちに作成される。このため、遠端エコーの疑似信号を作
成するための1・一タルの遅延時間は変わらないものの
、遠端エコーか応答するまでの遅延時間をハルクティレ
イ用の遅延千段か肩代わりしてくれることになる。
Then, the far-end echo pseudo signal output from the far-end adaptive filter is created immediately from the timing at which the far-end echo responds. For this reason, although the delay time of 1.1 tar for creating the far-end echo pseudo signal remains the same, the delay time until the far-end echo responds can be replaced by the 1,000-stage delay for Hulk Tilley. Become.

従って、近端エコーと遠端エコーとの応答I1:!,.
 [HIの時間差に関係無く、ハルクティレイ用の遅延
丁段の遅延時間に相当ずるタノプ数を遠端用適応フィル
タの夕,プ数から除くことかてきる。
Therefore, the response between the near-end echo and the far-end echo I1:! 、.
[Regardless of the time difference between HIs, it is possible to remove the delay number corresponding to the delay time of the delay stage for the Halkti Ray from the delay number of the far-end adaptive filter.

また、遠端用適用フィルタから遠端エコーの疑似信号か
出力されると、この出力は同期回路に入力される。
Furthermore, when a far-end echo pseudo signal is output from the far-end application filter, this output is input to the synchronization circuit.

すると、遠端エコーの疑似信号は遠D#5エコーに同1
りIずるため、伝送路上一(: ,L′.l ?+*数
Aフセノ)・やイI7相ジノタ等の時変要素か遠端エコ
ーに含まれている場合であーても、この遠端エコーと遠
’JRaエコーの疑似信号とは位相か一致する。
Then, the pseudo signal of the far end echo is the same as the far D#5 echo.
Therefore, even if a time-varying element such as one on the transmission line (: , L'. The pseudo signals of the end echo and the far 'JRa echo match in phase.

従って、受信信号から近端エコーの疑似信号及び遠端エ
コーの疑似信号を差し引くと、受信信号から遠端エコー
成分も十分にキャンセルされる。
Therefore, when the near-end echo pseudo signal and the far-end echo pseudo signal are subtracted from the received signal, the far-end echo component is also sufficiently canceled from the received signal.

[実施例] 以下、本発明の−実施例を第1図,第3図〜第5図を用
いて説明する。
[Example] Hereinafter, an example of the present invention will be described using FIGS. 1 and 3 to 5.

第1図は本発明の全2重モテム用エコーキャンセラ回路
の一例を示す。なお、本実施例で第1図に示した従来例
と異なる点は、エコーキャンセラ14の中身であり、そ
の他従来例と同−機能を有する部分には同一の符号をイ
」シてその詳細な説明を省略する。
FIG. 1 shows an example of an echo canceller circuit for a full-duplex motem according to the present invention. The difference between this embodiment and the conventional example shown in FIG. The explanation will be omitted.

符号変換器1て変換された多値の送信信号Sをエコーキ
ャンセラ14に導いて分岐させ、分岐信号の一方を入力
とずる近端エコーキャンセラ用適応フィルタ2lを設け
て、これにより近端エコー打消し信号(近端エコーの疑
似信号)SNを発生させる。
A multi-level transmission signal S converted by the code converter 1 is guided to an echo canceller 14 to be branched, and an adaptive filter 2l for a near-end echo canceller is provided which inputs one of the branched signals, thereby canceling the near-end echo. A signal (pseudo signal of near-end echo) SN is generated.

また分岐信号の他方をハルクティレイ2oを介7 して遅延させ、この遅延信号を入力とする遠i,ji,
jエコーキャンセラ用適応フィルタ22を設ける。この
遠端エコーキャンセラ用適応フィルタ22の出力を同期
回路としての位相追従回路23に入力して、これより遠
端エコー打消し信号(遠端エコーの疑似信号)Srを発
生させる。
In addition, the other branch signal is delayed through the Hulk relay 2o, and this delayed signal is input to the remote i, ji,
An adaptive filter 22 for echo canceller is provided. The output of this far-end echo canceller adaptive filter 22 is input to a phase tracking circuit 23 as a synchronization circuit, thereby generating a far-end echo cancellation signal (pseudo signal of far-end echo) Sr.

そして、近端エコー打消し信号SNと遠端エコ− 1”
T’消し信号81〜とを加算器24に加えて、1・ータ
ルエコー打(1″jし信号Sを生1茂し、これをエフー
キャンセラ14から出力する。
Then, the near-end echo cancellation signal SN and the far-end echo 1"
The T' cancellation signals 81 to 81 are added to the adder 24 to generate a signal S, which is output from the effect canceller 14.

ここで、エコーキャンセラ14内の2つの適応フィルタ
21.22および位相追従回路23の制御入力部には、
加算器13により求められた誤差信号Eを供給している
Here, the control input sections of the two adaptive filters 21 and 22 and the phase tracking circuit 23 in the echo canceller 14 include:
The error signal E obtained by the adder 13 is supplied.

上記適応フィルタ21.22は収束性と安定性の面から
非巡回型ディジタルフィルタか適当てある。具体的には
、第3図に示すように、遅延素子Tの各夕,プの出力を
、係数制御部Kにより増幅率を制御された係数増幅器a
で任意に増幅し、これらの荷重和を加算器Σて得るよう
に構成された8 1・ランスバーサルフィルタが適当てある。なお、その
他のフィルタを否定するものではなく、例えば巡回型テ
ィンタルフィルタを用いることも可能である。
The adaptive filters 21 and 22 may be acyclic digital filters or the like from the viewpoint of convergence and stability. Specifically, as shown in FIG.
An 81 Lanceversal filter configured to arbitrarily amplify and obtain the sum of these weights using an adder Σ is suitable. Note that other filters are not excluded, and it is also possible to use, for example, a recursive tintal filter.

遠烟エコーキャンセラ用適応フィルタ22の入力段に設
けられるハルクティレイ2oは、第4図に示すように、
近端エコーNの応答よりも先行する送信信号の始まりと
、遠端エフーFの応答との間の時間差を受け持つ。この
ようにハルクディレイ20を用いることかできる理由は
、近端エコーNと遠端エコーFとのインパルス応答間が
フラットなディレイを持っているからである。バルクデ
ィレイ20は、具体的には、端子か入出力端子のみて途
中にタップのない、遅延手段としては最も簡易な多段の
ンフトレンスタにより構I戊することかできるが、途中
にタソブかあっても構わない。
As shown in FIG. 4, the Hulk relay 2o provided at the input stage of the adaptive filter 22 for far smoke echo canceller is
It is responsible for the time difference between the beginning of the transmitted signal that precedes the response of the near-end echo N and the response of the far-end echo F. The reason why the Hulk delay 20 can be used in this way is that there is a flat delay between the impulse responses of the near-end echo N and the far-end echo F. Specifically, the bulk delay 20 can be configured with a multi-stage amplifier, which is the simplest delay means, with only terminals or input/output terminals and no taps in the middle. I do not care.

また、そのティレイ長さについてはモテムのトレーニン
グ期間中に最適値に決定される。
Also, the length of the tiling is determined to be the optimum value during Motem's training period.

また、遠端エコーキャンセラ用適応フィルタ22の出力
段に設けられる同期回路としての位相追従回路23は、
その方式として、A P C (Automatic 
Phase Control)や水晶フィルタ方式(リ
ンキング方式),バースト注入ロック方式等種々考えら
れるが、ここでは第5図に示すように、ICを用いた回
路で最もよく用いられるP L l、方式を例示してあ
る。即ち、遠端エコーキャンセラ用適応フィルタ出力を
変調器MDによりアナログ信号に変換してPLLに導き
、この周波数と誤差信号Eの周波数との位相差を電圧に
変換する。この変換電圧をフィードバックして誤差信号
Eの周波数に追随させ、これを復調器DEてディジタル
信号に変換して遠端エコー打消し信号SFを得る。なお
、PLLは1次もしくは2次のループ回路て構或ずるの
が一般的である。
Further, the phase tracking circuit 23 as a synchronization circuit provided at the output stage of the far-end echo canceller adaptive filter 22 is
The method is APC (Automatic
Various methods are possible, such as phase control), crystal filter method (linking method), and burst injection lock method, but here we will exemplify the P L l method that is most commonly used in circuits using ICs, as shown in Figure 5. There is. That is, the output of the adaptive filter for the far-end echo canceller is converted into an analog signal by the modulator MD and guided to the PLL, and the phase difference between this frequency and the frequency of the error signal E is converted into a voltage. This converted voltage is fed back to follow the frequency of the error signal E, and is converted into a digital signal by the demodulator DE to obtain the far-end echo cancellation signal SF. Note that the PLL is generally a primary or secondary loop circuit.

さて、次に上述した構成の作用を説明する。Next, the operation of the above-described configuration will be explained.

送信信号Sは多値の信号であり、この信号Sはエコーキ
ャンセラl4に導かれて、近端エコーキャンセラ用適応
フィルタ21に入力され、これより近端エコー打消し信
号S.が作1戊される。
The transmission signal S is a multilevel signal, and this signal S is guided to the echo canceller l4 and input to the near-end echo canceller adaptive filter 21, from which the near-end echo cancellation signal S. The first one was created.

また、送信信号Sはバルクディレイ20を通って遅延さ
せられ、遠端エコーキャンセラ用適応フィルタ22へも
人力される。遠端エコーキャンセラ用適応フィルタ22
の出力は位相追従回路23に入力され、ここで伝送路上
で受ける周波数オフセッ1・の補償分が計算されて、こ
の補償分を含んた遠端エコー打消し信号S,か作成され
る。作成された近端エコー打消し信号SNと、遠端エコ
ー打消し信号SFとは加算器24に加えられて加算され
、トータルエコー打消し信号Sが生戊される。
Further, the transmission signal S is delayed through a bulk delay 20 and is also input to an adaptive filter 22 for a far-end echo canceller. Adaptive filter 22 for far-end echo canceller
The output is input to the phase tracking circuit 23, where a compensation amount for the frequency offset 1 received on the transmission path is calculated, and a far-end echo cancellation signal S, which includes this compensation amount, is created. The created near-end echo cancellation signal SN and far-end echo cancellation signal SF are added to an adder 24 to generate a total echo cancellation signal S.

一方、送{g 信号Sはロールオフフィルタ2,変調器
3,D/A変換器4,送信フィルタ5を経てハイブリッ
ド6を介して伝送路へ送出される。そして、既述したよ
うに近端エコーN1遠端エコーFおよび受信信号Rの重
畳した信号が、受信フィルタ7,A/D変換器8,復調
器9,ロールオフフィルタ10を通り加算器19に達す
る。
On the other hand, the transmission {g signal S passes through a roll-off filter 2, a modulator 3, a D/A converter 4, a transmission filter 5, and is sent out to a transmission path via a hybrid 6. Then, as described above, the superimposed signal of the near-end echo N1, far-end echo F, and reception signal R passes through the reception filter 7, A/D converter 8, demodulator 9, and roll-off filter 10, and then enters the adder 19. reach

この加算器19で、エコーキャンセラ14で生成された
!・一タルエコー打消し信号(疑似エコー)Sか重畳信
号から差し引かれて、受信信号Rと残留エコーとの加算
信号Pが得られる。加算信号PII は判定回路11,符号変換器12を通って受信情報信号
が得られ、端末側へ送られる。
This adder 19 generates the ! generated by the echo canceller 14! - The total echo cancellation signal (pseudo echo) S is subtracted from the superimposed signal to obtain a sum signal P of the received signal R and the residual echo. The addition signal PII passes through a determination circuit 11 and a code converter 12 to obtain a received information signal, which is sent to the terminal side.

また、加算信号Pは、判定回路11の判定結果と共に加
算器13に導かれて、これらの差分が求められる。この
差分が誤差信号Eとして近端エコーキャンセラ用適応フ
ィルタ21,遠端エコーキャンセラ用適応フィルタ22
,位相追従回路23へ入力され、誤差信号Eが最小とな
るように適応制御される。この適応制御には例えば最急
降下広などを用いることができる。
Further, the addition signal P is guided to the adder 13 together with the determination result of the determination circuit 11, and the difference between them is determined. This difference is used as an error signal E in the near-end echo canceller adaptive filter 21 and the far-end echo canceller adaptive filter 22.
, are input to the phase tracking circuit 23, and are adaptively controlled so that the error signal E is minimized. For example, steepest descent width can be used for this adaptive control.

以上述ヘたように本実施例によれば、適用フィルタを近
端エコーキャンセラ用適用フィルタ2lと遠端エコーキ
ャンセラ用適用フィルタ22とに分離し、遠端エコーキ
ャンセラ用適応フィルタ22の人力段にバルクディレイ
20を介挿して、送信時点から遠端エコーFか回り込ん
で戻って来るまでの時間差をバルクディレイ2により受
け持つようにしたので、遠端エコーキャンセラ用適応フ
ィルタ22へは遠端疑似エコー成分を作成する送信信号
Sが有効に入力されることとなる。したが12 って、遠端エコーキャンセラ用適応フィルタ22のタッ
プ数に上記時間差分の多数の単位遅延素子を設ける必要
がなくなり、遠端エコーキャンセラ用適応フィルタ22
のタソプ数を大幅に減少することができる。その結果、
遠端エコーキャンセラ用適応フィルタ22のタノプ数を
近端エコーキャンセラ用適応フィルタ2lと同列にする
ことができ、両フィルタ21.22の総タップ数も、従
来の共通適応フィルタに比して小さくすることができる
As described above, according to this embodiment, the applied filter is separated into the near-end echo canceller applied filter 2l and the far-end echo canceller applied filter 22, and Since the bulk delay 20 is inserted to take care of the time difference from the time of transmission until the far-end echo F wraps around and returns, the far-end pseudo echo is sent to the far-end echo canceller adaptive filter 22. The transmission signal S that creates the component is effectively input. Therefore, it is no longer necessary to provide a large number of unit delay elements for the above-mentioned time difference in the number of taps of the adaptive filter 22 for far-end echo canceller, and the adaptive filter 22 for far-end echo canceller
The number of tassops can be significantly reduced. the result,
The number of taps of the adaptive filter 22 for the far-end echo canceller can be made the same as that of the adaptive filter 2l for the near-end echo canceller, and the total number of taps of both filters 21 and 22 is also smaller than that of the conventional common adaptive filter. be able to.

さらに遠端エコーキャンセラ用適応フィルタ22の出力
を後段に設けた位相追従回路23に入力して、そのフィ
ルタ出力を時変要素の影響を受けている誤差信号Eの周
波数に追随させるようにしたので、位相追従回路23か
ら作威される疑似信号、即ち遠端エコー打消し信号SP
は、実際の遠端エコーに一層近付けることかてきる。し
たがって、伝送路上で遠端エコーに加わった周波数オフ
セット,位相ジッタ等の時変要素を有効にキャンセルす
ることかできる。
Furthermore, the output of the far-end echo canceller adaptive filter 22 is input to the phase tracking circuit 23 provided at the subsequent stage, so that the filter output follows the frequency of the error signal E, which is affected by time-varying elements. , a pseudo signal generated from the phase tracking circuit 23, that is, a far-end echo cancellation signal SP
can approximate the actual far-end echo even more. Therefore, time-varying elements such as frequency offset and phase jitter added to the far-end echo on the transmission path can be effectively canceled.

このようにし−5二−..4!,.’ Z.j−.,i
,1i・例(,、{句!、H:VI易なハノレクティレ
イて適応7・イ几く・の一部谷代用てき、しかも時変要
素を含んたーI−二U−に、J、る擾乱を減らずことか
てきるのて、安価て通(言品’M ” ljtjlい仝
2重モテムが得られる。
In this way-52-. .. 4! 、. 'Z. j-. ,i
,1i・Example(,,{phrase!,H: VI Easy Hanorectilei adapted 7・I 几く・ as a substitute for some of the valleys, and also included time-varying elements - I-2U-, J, Ru As long as the disturbance is not reduced, it is possible to obtain a double motem at a low cost.

な43、L記した実施例では位相追従回路への人力信号
を誤X・仁S3, Eとずる場きについて述べたか、本
発明はこれに限定されるちので1よなく、時変黒素か含
まれている信冒てあA]ばよく、例えば受(11信号R
そのもの、あるいは受信信−畳に残留エコーの乗った加
算信号I)ヲ用いる、二ともできる。
In the embodiment described in 43 and L, the manual signal to the phase tracking circuit is changed to erroneous If the credit card contains A], for example, the receiver (11 signal R
Either can be used, or an added signal I) with a residual echo added to the received signal can be used.

「発明の効果1 本発明によれば次の効果を発揮ケる,、(1)適応フィ
ルタを近端エコーの疑似信号を作る近む:1l;用適応
フィルタと、遠y:11エコ−(;+)疑似13−弓を
作る遠瑞用適比、フィルタとに分けたの゛、丁、より,
凶爪:的に受信信号に重畳されているエコー成分を受信
f八号から取り除くことかてきる。
Effects of the Invention 1 According to the present invention, the following effects can be achieved. (1) An adaptive filter is used to create a pseudo signal of a near-end echo. ;+) Pseudo 13 - Applicability ratio for making a bow, filter and divided into ゛, ding, more,
The trick: The echo component superimposed on the received signal can be removed from the received f8 signal.

(2)中間夕,プのない構造簡jlなハルクティレイ用
の遅延手段を設けて、遠端エコーか応答するまでの遅延
時間を遅延丁段に肩代わりさせるようにしたのて、クノ
ブ故に応して構造が複雑となる遠台;!1:川j7 1
.a:フィルタの持つタップ数を減らずことか7き、仝
体構或を節素化できる。
(2) By providing a delay means for the Hulk Tilley with a simple structure and no intermediate delay, the delay time until the far-end echo responds is taken over by the delay means. Todai has a complicated structure;! 1: River j7 1
.. a: Without reducing the number of taps the filter has, the body structure can be made more frugal.

(3)遠端エコーの疑似信号を遠端エコーに同期させる
同期回路を設けることにより、遠端エコーに時弯要素か
急まれている場合てあっても、時変要素による影響を受
けることなく、近端エコーおよひ遠端エコ−を打効にキ
ャンセルすることができる。
(3) By providing a synchronization circuit that synchronizes the pseudo signal of the far-end echo with the far-end echo, even if the far-end echo has a time-varying element, it will not be affected by the time-varying element. , near-end echo and far-end echo can be effectively canceled.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本介明による全2重モテム用エコーキャンセラ
回路の一実施例を示すブロック図、第2図は全2重モテ
l・用エコーキャンセラ回路の従来M 4乃くずブロ・
7ク図、第3図は本実施例で用いる適応フィル冫・79
例なくてある1・ランスハーサルフィ・レクの構1戊図
 第1図はエコーインパルス応答を示す説明図、第5図
は本実施例で用いる位相追従回路の−例を示すブロック
図である。 14はエコーキャンセラ、19は受信信号からl5 疑似エコーを差1引< 力r+算器、20はハルクディ
レイ用の遅延手段であるハルクディレイ、21は近6W
aエコーキャンセラ用適応フィルタ、22は遠端エコー
キャンセラ用適応フィルタ、23は同期回路としての位
相追従回路、Sは送信信号、Gは自局、Nは近端j′:
・一、Iは相手局、rrは遠端エコー、Rは受信{警号
、SNは近端エコーの灯似信号である近端エコー1’l
li’4 L信号、S,、は遠b:6jエコーの疑似信
号てあるの遠端エコー打〆肖し信号である。 16 手続主市正書(自発) 平成元年10月30日
FIG. 1 is a block diagram showing an embodiment of an echo canceller circuit for a full-duplex modem according to the present invention, and FIG. 2 is a block diagram showing an example of an echo canceller circuit for a full-duplex modem according to the present invention.
Figures 7 and 3 show the adaptive filter used in this example.
Figure 1 is an explanatory diagram showing an echo impulse response, and Figure 5 is a block diagram showing an example of a phase tracking circuit used in this embodiment. 14 is an echo canceller, 19 is a received signal by subtracting l5 pseudo echo by 1 < force r + calculator, 20 is a Hulk delay which is a delay means for Hulk delay, and 21 is a near 6W
a adaptive filter for the echo canceller, 22 an adaptive filter for the far end echo canceller, 23 a phase tracking circuit as a synchronization circuit, S the transmission signal, G the own station, N the near end j':
・1, I is the other station, rr is the far end echo, R is the reception {alarm signal, SN is the near end echo 1'l which is the light signal of the near end echo
The li'4 L signal, S, is a far end echo imprint signal of the far b:6j echo pseudo signal. 16 Proceeding City Authorization (Volunteer) October 30, 1989

Claims (1)

【特許請求の範囲】  送信信号を発した自局で生じる近端エコーと相手局で
生じる遠端エコーとが重畳された受信信号から、適応フ
ィルタで生成した疑似エコーを差し引くことにより、受
信信号に重畳されたエコー成分を除去する全2重モデム
用エコーキャンセラ回路において、 上記適応フィルタを近端エコーの疑似信号を作成する近
端用適応フィルタと、遠端エコーの疑似信号を作成する
遠端用適応フィルタとに分け、遠端用適応フィルタの入
力段には遠端エコーの応答時間送信信号を遅延して入力
するバルクディレイ用の遅延手段を設け、 遠端用適応フィルタの出力段には遠端エコーの疑似信号
を遠端エコーに同期させる同期回路を設け、 該同期回路の出力と上記近端用適応フィルタの出力とを
受信信号から差し引くようにしたことを特徴とする全2
重モデム用エコーキャンセラ回路。
[Claims] By subtracting the pseudo echo generated by the adaptive filter from the received signal, which is a superimposition of the near-end echo generated at the own station that issued the transmission signal and the far-end echo generated at the other station, the received signal is In an echo canceller circuit for a full-duplex modem that removes superimposed echo components, the above adaptive filter is used as a near-end adaptive filter that creates a pseudo signal of the near-end echo, and a far-end adaptive filter that creates a pseudo signal of the far-end echo. The input stage of the far-end adaptive filter is provided with bulk delay delay means that delays the response time transmission signal of the far-end echo, and the output stage of the far-end adaptive filter is A synchronization circuit for synchronizing the pseudo signal of the end echo with the far end echo is provided, and the output of the synchronization circuit and the output of the near end adaptive filter are subtracted from the received signal.
Echo canceller circuit for heavy modem.
JP15471689A 1989-06-19 1989-06-19 Echo canceller circuit for full duplex modem Pending JPH0321122A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP15471689A JPH0321122A (en) 1989-06-19 1989-06-19 Echo canceller circuit for full duplex modem

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP15471689A JPH0321122A (en) 1989-06-19 1989-06-19 Echo canceller circuit for full duplex modem

Publications (1)

Publication Number Publication Date
JPH0321122A true JPH0321122A (en) 1991-01-29

Family

ID=15590405

Family Applications (1)

Application Number Title Priority Date Filing Date
JP15471689A Pending JPH0321122A (en) 1989-06-19 1989-06-19 Echo canceller circuit for full duplex modem

Country Status (1)

Country Link
JP (1) JPH0321122A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0332233A (en) * 1989-06-22 1991-02-12 Internatl Business Mach Corp <Ibm> Echo removing equipment for adjusting echo removing equipment coefficient in full duplex transmission
JPH0563662A (en) * 1991-08-27 1993-03-12 Ind Technol Res Inst Circuit simulating remote-end echo path and echo canceller
WO1994014248A1 (en) * 1992-12-07 1994-06-23 Telstra Corporation Limited Far end echo canceller
CN108604883A (en) * 2016-11-15 2018-09-28 思科技术公司 System architecture for supporting digital pre-distortion and full duplex in cable network environment

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0332233A (en) * 1989-06-22 1991-02-12 Internatl Business Mach Corp <Ibm> Echo removing equipment for adjusting echo removing equipment coefficient in full duplex transmission
JPH0563662A (en) * 1991-08-27 1993-03-12 Ind Technol Res Inst Circuit simulating remote-end echo path and echo canceller
WO1994014248A1 (en) * 1992-12-07 1994-06-23 Telstra Corporation Limited Far end echo canceller
CN108604883A (en) * 2016-11-15 2018-09-28 思科技术公司 System architecture for supporting digital pre-distortion and full duplex in cable network environment

Similar Documents

Publication Publication Date Title
US4935919A (en) Full duplex modem having two echo cancellers for a near end echo and a far end echo
AU680981B2 (en) Method for determining the location of echo in an echo cancellar
DE69530040T2 (en) METHOD FOR ECHOCOMPENSATION AND ECHOPE PATH ESTIMATION
US4087654A (en) Echo canceller for two-wire full duplex data transmission
US4362909A (en) Echo canceler with high-pass filter
US4751730A (en) Process and system for improving echo cancellation within a transmission network
CA1251269A (en) Noise cancellation
JPS5842665B2 (en) Echo/forward integrated equalizer
US3535473A (en) Self-adjusting echo canceller
US4633046A (en) Adaptive echo canceller
GB2029175A (en) Transmission line digital echo cancellation
JPS59144225A (en) Initially setting method and device of filter coefficient
US4334128A (en) Echo canceler for homochronous data transmission systems
US6256383B1 (en) IIR filter of adaptive balance circuit for long tail echo cancellation
JPS5842664B2 (en) Adaptive echo canceller
EP0065796B1 (en) Arrangement for cancelling echo signals
GB2075313A (en) Echo cancellers
AU613418B2 (en) Echo canceller
US5311503A (en) Terminal apparatus for full-duplex data transmission having an echo canceller
JPH0321122A (en) Echo canceller circuit for full duplex modem
US4158232A (en) Adaptive corrector
JPS59131232A (en) Method of erasing echo
JPH0526375B2 (en)
JPS58117715A (en) Recursive filter type bridged tap equalizer
JPS61199338A (en) Echo canceller training system