JPH0321112A - Manufacture of surface acoustic element - Google Patents

Manufacture of surface acoustic element

Info

Publication number
JPH0321112A
JPH0321112A JP15611289A JP15611289A JPH0321112A JP H0321112 A JPH0321112 A JP H0321112A JP 15611289 A JP15611289 A JP 15611289A JP 15611289 A JP15611289 A JP 15611289A JP H0321112 A JPH0321112 A JP H0321112A
Authority
JP
Japan
Prior art keywords
piezoelectric substrate
comb
air gap
surface acoustic
electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP15611289A
Other languages
Japanese (ja)
Inventor
Yoshio Sato
良夫 佐藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujitsu Ltd
Original Assignee
Fujitsu Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu Ltd filed Critical Fujitsu Ltd
Priority to JP15611289A priority Critical patent/JPH0321112A/en
Publication of JPH0321112A publication Critical patent/JPH0321112A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To simplify the formation of an air gap and to improve the production yield and yield rate by arranging space forming parts on plural prescribed positions between a non-piezo-electric substrate and a piezo-electric substrate and bonding both the substrates through the space forming parts to form the air gap. CONSTITUTION:In the manufacturing method of an surface acoustic wave element obtained by arranging the piezo-electric substrate 1 oppositely to a comb line electrode 3 formed on the non-piezo-electric substrate 4 through the air gap 2, an electrode 3 and a lead guiding part 30 are formed on the substrate 4, the space formation parts 5 having height necessary for forming height necessary for forming the air gap 2 are arranged on plural positions excluding the electrode 3 formed between both substrates 4, 1 and a surface wave propagation part and both the substrates 4, 1 are bonded and fixed through the space formation parts 5. Since the space formation parts 5 are formed on plural prescribed position and both the substrates are bonded and fixed through the space formation parts 5 in said constitution, the air gap can be extremely simply formed.

Description

【発明の詳細な説明】 (概要] 弾性表面波素子の製造方法に関し、 弾性表面波素子の電極の質量効果をなくし、41}域内
特性やスプリアス特性を向上さ一吐ることを11的とし
、 圧電体基板と、非圧電体基板上に形成された櫛形電極と
が、エアギャップを介して対面配置されてなる弾性表面
波素子の製造方法において、非圧電体基板上に櫛形電極
およびリード導出部を形成し、前記非圧電体基板と圧電
体基板の間の、前記櫛形電極と表面波伝播部を除く複数
箇所に、前記エアギャップを形成するために必要な高さ
を有するスペース形成部を配設し、前記j1圧電休払板
と前記圧電体基板とを前記スペース形成部を挟んて接着
固定ずるように弾性表面波素子の製造方法を構成する。
[Detailed Description of the Invention] (Summary) Regarding a method for manufacturing a surface acoustic wave device, the objective is to eliminate the mass effect of the electrodes of the surface acoustic wave device, improve the internal characteristics and spurious characteristics, and In a method for manufacturing a surface acoustic wave device, in which a piezoelectric substrate and a comb-shaped electrode formed on a non-piezoelectric substrate are disposed facing each other with an air gap therebetween, the comb-shaped electrode and a lead lead-out portion are formed on the non-piezoelectric substrate. and space forming portions having a height necessary for forming the air gap are arranged at multiple locations between the non-piezoelectric substrate and the piezoelectric substrate, excluding the comb-shaped electrode and the surface wave propagation portion. The method for manufacturing a surface acoustic wave element is configured such that the j1 piezoelectric break plate and the piezoelectric substrate are bonded and fixed with the space forming portion in between.

〔産業上の利用分野] 本発明は弾性表面波素子、とくに、エアギャ,ブ電極型
の弾性表面波素子の製造方法に関する。
[Industrial Field of Application] The present invention relates to a method for manufacturing a surface acoustic wave device, particularly an air gap electrode type surface acoustic wave device.

近年、情報処理機器や通信機器の高速化にともなって、
搬送波や信号波の周波数411fは益h高周波域にソフ
トしてきており、それに対応して高周波における安定度
の高い基準信号の発生や.位相同期用の素子,あるいは
、フィルタなどが必要となり、最近はこれらの用途に弾
性表面波素子、たとえば、弾性表面波フィルタや弾性表
面波共振子が使用されるようになってぎた。
In recent years, with the increase in speed of information processing equipment and communication equipment,
Frequencies 411f of carrier waves and signal waves have been softened to high frequency ranges, and correspondingly, highly stable reference signals have been generated at high frequencies. Phase synchronization elements or filters are required, and recently surface acoustic wave elements such as surface acoustic wave filters and surface acoustic wave resonators have come to be used for these purposes.

今後、その小形、安価という特徴を生かして、自動車電
話,携帯電話などの移動体無線への展開が期待されてお
り、より一層の高周波化と帯域特性や電力特性の優れた
弾性表面波素子の開発が求められている。
In the future, by taking advantage of its small size and low cost, it is expected that it will be used in mobile radio applications such as car phones and mobile phones. development is required.

〔従来の技術〕[Conventional technology]

弾性表面波素子,たとえば、弾性表面波フィルタは、電
気一機械結合係数が大きく、しかも周波数の温度係数が
比較的小さい基板、たとえば、36゜回転YカットーX
伝播LiTa03 (36゜Y  X LiTaO:+
)単結晶基板の上に、励振および受信用の櫛型電極を設
けた3端子あるいは4端子型素子である。
A surface acoustic wave element, for example, a surface acoustic wave filter, uses a substrate having a large electrical-mechanical coupling coefficient and a relatively small temperature coefficient of frequency, for example, a 36° rotation Y cut-X
Propagation LiTa03 (36°Y X LiTaO:+
) It is a three-terminal or four-terminal device in which comb-shaped electrodes for excitation and reception are provided on a single crystal substrate.

櫛型電極の櫛歯の巾(L),櫛歯間のスペース(S)櫛
歯ピ・ノチ(P)は表面波の波長をλとすると、通常、
L=S一λ/4,P一λ/2といった設計値のものが多
い。たとえば、中心周波数1 6 0 M I−1 z
を得るためには、前記基板1のX伝播表面波の音速40
90m/sからλ−26μmが算出され、電極ピッチは
13μm,電極中および電極間隔は6.5μmとなる。
The width (L) of the comb teeth of the comb-shaped electrode, the space between the comb teeth (S), and the pitch (P) of the comb teeth are usually expressed as follows, where λ is the wavelength of the surface wave.
There are many design values such as L=S-λ/4 and P-λ/2. For example, the center frequency 1 6 0 M I-1 z
In order to obtain the sound velocity of the X-propagating surface wave of the substrate 1,
λ-26 μm is calculated from 90 m/s, the electrode pitch is 13 μm, and the inside and electrode spacing is 6.5 μm.

第7図は従来の弾性表面波素子の構或の2つの例を示す
図で、同図(イ)は従来例の斜視図、同図(ロ)は従来
例のA−A’断面図、同図(ハ)は他の従来例の八一八
′断面図である。図中、100(よ圧電体基板で,たと
えば、36゜Y −X LiTaOa板である。110
は励振用櫛形電極、111および1124;1そのリー
ド導出部、120は受信用櫛形電極、121および12
2はそのリード導出部である。
FIG. 7 is a diagram showing two examples of the structure of a conventional surface acoustic wave element, in which figure (a) is a perspective view of the conventional example, figure (b) is an AA' cross-sectional view of the conventional example, FIG. 3(C) is a sectional view of another conventional example at 818'. In the figure, 100 (a piezoelectric substrate, for example, a 36°Y-X LiTaOa board. 110
1 is a comb-shaped electrode for excitation, 111 and 1124; 1 its lead lead-out portion; 120 is a comb-shaped electrode for reception; 121 and 12
2 is its lead lead-out portion.

これら電極の材料にはAuのような電気抵抗の小さい金
属が好ましいが、密度の高い金属は表面波振動に対する
質量効果によって、帯域内リンプル特性や挿入損失特性
への悪影響が生じる。このため通常は軽いAlあるいは
A42合金)を用い、?おかつ、100〜150nmと
薄い膜を蒸着などにより被着している。
The material for these electrodes is preferably a metal with low electrical resistance such as Au, but metals with high density have a negative effect on in-band ripple characteristics and insertion loss characteristics due to the mass effect on surface wave vibration. For this reason, light Al or A42 alloy is usually used. Additionally, a thin film of 100 to 150 nm is deposited by vapor deposition or the like.

同図(口)の断面図に示した従来例は、圧電体基板10
0の表面に櫛型電極110および120を直接に密着形
成した最も一般的な表面波フィルタの電極構成法である
In the conventional example shown in the cross-sectional view of the figure (opening), a piezoelectric substrate 10
This is the most common electrode construction method for surface wave filters, in which comb-shaped electrodes 110 and 120 are directly and tightly formed on the surface of a surface wave filter.

一方、同図(ハ)の断面図に示した他の従来例は、圧電
体基板100の表面と櫛型電極110および120の間
に非圧電体からなる絶8!1101を介在さセた電極構
或をとっている。このような構威の例として最もよく知
られているのは、LiTaO3を圧電体基+ti 1o
 oとして用いた場合の絶縁層101として厚さ数μm
の二酸化シリコン(SiO■)膜を介在させた例で、S
iO■膜の表面波伝播速度の温度係数がLiTa03の
それとと逆符号であり、周波数温度特性の改善を行なう
ために提案された素子構戒である(たとえばIEEE+
1975 Ultrasonics Symposiu
mProceedings,pp 503−507,S
ept.,1975参照)。
On the other hand, in another conventional example shown in the cross-sectional view of FIG. It is organized. The most well-known example of such a structure is LiTaO3 with a piezoelectric base + ti 1o
When used as an insulating layer 101, the thickness is several μm.
This is an example in which a silicon dioxide (SiO■) film is interposed;
The temperature coefficient of the surface wave propagation velocity of the iO film has the opposite sign to that of LiTa03, and this is a device structure proposed to improve the frequency temperature characteristics (for example, IEEE +
1975 Ultrasonics Symposium
mProceedings, pp 503-507, S
ept. , 1975).

上記従来例では、いずれも櫛形電極は表面波伝達基板上
に密着形成されているので、軽いAlとはいえ櫛形電極
の重量が、直接あるいはSiO。膜を介して、圧電体表
面にか一っており質量効果の影響が生じてしまう。
In all of the above conventional examples, the comb-shaped electrode is formed in close contact with the surface wave transmission substrate, so even though it is made of light Al, the weight of the comb-shaped electrode is directly or SiO. Since the piezoelectric material is flush with the surface of the piezoelectric material through the film, the influence of the mass effect occurs.

そこで、最近になって圧電体基板と櫛形電極の間にエア
ギャップを設ける構或の弾性表面波素子が提案されてい
る。
Therefore, surface acoustic wave elements having a structure in which an air gap is provided between a piezoelectric substrate and a comb-shaped electrode have recently been proposed.

第6図はエアギャップ型弾性表面波素子の従来の製造方
法を説明する図で、既に本発明者らにより提案されたも
のである。
FIG. 6 is a diagram illustrating a conventional manufacturing method of an air gap type surface acoustic wave element, which has already been proposed by the present inventors.

図中、1は圧電帯基板で,たとえば、36゜Y一X L
iTa03板である。200はエアギャップ、130a
,130bはそれぞれ励振用および受信用の櫛形電極、
13L 132はそれぞれのリード導出部、140ぱ圧
電体ブリッジ、150ば圧電体ブリッジ140にあ番ノ
られた開口部である。
In the figure, 1 is a piezoelectric band substrate, for example, 36°Y-XL
It is an iTa03 board. 200 is air gap, 130a
, 130b are comb-shaped electrodes for excitation and reception, respectively;
Reference numerals 13L and 132 indicate respective lead lead-out portions, 140 and 150 openings in the piezoelectric bridge 140, respectively.

図からわかるように、リード導出部131,132は圧
電体基板1の上に直接固着されており、これに対して櫛
形電極130 a , 130bの部分は圧電体ブリソ
ジ140の裏面に懸垂されるごとくに固着され、圧電体
基板1との間にエアギャップ200を形成し?いる。
As can be seen from the figure, the lead lead-out parts 131 and 132 are directly fixed on the piezoelectric substrate 1, whereas the comb-shaped electrodes 130a and 130b are suspended on the back surface of the piezoelectric body 140. is fixed to the piezoelectric substrate 1 to form an air gap 200 between the piezoelectric substrate 1 and the piezoelectric substrate 1. There is.

この従来例におけるエアギャップ200を形成するには
、先ず、圧電体基板1の上にエアギャップ200に相当
する厚さと範囲に、図には示してないが、あとで選択エ
ソチングにより除去できるような材料、たとえば、ポリ
シリコンをスペース材としてスバソタリングあるいはC
VD法などで膜形成し、その」二に電極金属膜,たとえ
ば、厚さ2amのAuを電子ビーム蒸着法で被着する。
In order to form the air gap 200 in this conventional example, first, a layer (not shown in the figure) that can be removed later by selective etching is applied on the piezoelectric substrate 1 to a thickness and range corresponding to the air gap 200. material, for example, polysilicon as a space material or carbon
A film is formed using a VD method or the like, and an electrode metal film, for example, Au having a thickness of 2 am, is deposited on the second layer using an electron beam evaporation method.

次に、前記電極金属膜を公知のホトエンチング法,ある
いは、イオンエンチング法により、櫛形電極130a,
 130bおよびリート導出部13L 132をパター
ン形成ずる。
Next, the comb-shaped electrode 130a,
130b and the lead-out portion 13L 132 are patterned.

次いで、前記処理済基板の櫛形電極130a, 130
bの全てと、リード導出部13], 132の一部を覆
うように絶縁膜を,たとえば、前記図示してないポリシ
リコン膜の選択エソチンダ液に強いSiOz膜を約5μ
mの厚さに蒸着する。
Next, the comb-shaped electrodes 130a, 130 of the processed substrate
b, and a part of the lead lead-out portions 13] and 132, an insulating film is formed, for example, a SiOz film having a thickness of about 5 μm and is resistant to the selected polysilicon film (not shown).
Deposit to a thickness of m.

次いで、前記処理済基板の櫛形電極130aと130b
の中間のSiO■からなる絶縁膜に、電極部にか\らな
い程度の適度の大きさの開口部150を、たとえば、C
F,の中でイオンエンチングにより形成ずる。
Next, the comb-shaped electrodes 130a and 130b of the treated substrate are
For example, an opening 150 of an appropriate size that does not touch the electrode part is formed in the insulating film made of SiO2 in the middle of C.
It is formed by ion etching in F.

最後に、前記処理済基板の開口部150および両側の側
面部の、図には示してないスペース材の商出部分から、
選択工冫チング,たとえば、rillW液(エチレンシ
ア≧ン1−ピテカロール+水)または80’CのKO}
1溶液の中で、図示してないポリシリコンのスペース材
だけを選択的に溶解除去すれば、図示してないポリシリ
コンのスペース祠の部分が厚さ約50〜150nmのエ
アギャップ200として残り、櫛形電極130a,13
0bは空中に浮いた状態となって、圧電体基板1には全
く質量効果を及ぼさないエアギャップ電極型の弾性表面
波素子が形成される。
Finally, from the opening 150 and the side surfaces on both sides of the processed substrate, from the exposed portion of the space material (not shown in the figure),
Selective engineering, e.g. rillW solution (ethylene cyan≧1-pitecarol + water) or KO at 80'C}
If only the polysilicon space material (not shown) is selectively dissolved and removed in one solution, the polysilicon space material (not shown) remains as an air gap 200 with a thickness of approximately 50 to 150 nm. Comb-shaped electrodes 130a, 13
0b is in a state of floating in the air, and an air-gap electrode type surface acoustic wave element is formed on the piezoelectric substrate 1 that has no mass effect at all.

[発明が解決しようとする課題] しかし、上記従来のエアギャップ電極型の弾性表面波素
子では製造工程が多く、かつ、複雑であるので、高い歩
留りで製造することが難しく、製品が高価になるという
問題があり、その解決が必要であった。
[Problems to be solved by the invention] However, the conventional air-gap electrode type surface acoustic wave device described above has many manufacturing steps and is complicated, making it difficult to manufacture with a high yield and making the product expensive. There was a problem that needed to be solved.

〔課題を解決するための手段〕[Means to solve the problem]

」二記の課題は、圧電体基板1と、非圧電体基板4」二
に形成された櫛形電極3とがエアギャップ2を介して対
面配置されてなる弾性表面波素子の製造方法において、
非圧電体基板4上に櫛形電極3およびリート導出部30
を形成し、前記非圧電体基4Fl./Iと圧電体基仮1
の間の、前記櫛形電極3と表面波伝播部を除く複数箇所
に、前記エアギャップ2を形成するために必要な高さを
有するスペース形成部5を配設し、前記非圧電体基板4
と前記圧電体基板1とを前記スペース形成部5を挟んで
接着固定することを特徴とした弾性表面波素子の製造方
法によって解決することができる。
``2'' is a method for manufacturing a surface acoustic wave element in which a piezoelectric substrate 1 and a comb-shaped electrode 3 formed on a non-piezoelectric substrate 4 are disposed facing each other with an air gap 2 interposed therebetween.
A comb-shaped electrode 3 and a lead lead-out portion 30 are disposed on a non-piezoelectric substrate 4.
, and the non-piezoelectric substrate 4Fl. /I and piezoelectric substrate 1
Space forming portions 5 having a height necessary for forming the air gap 2 are provided at multiple locations between the comb-shaped electrode 3 and the surface wave propagation portion, and the non-piezoelectric substrate 4
This problem can be solved by a method of manufacturing a surface acoustic wave element, which is characterized in that the piezoelectric substrate 1 and the piezoelectric substrate 1 are adhesively fixed with the space forming portion 5 interposed therebetween.

〔作用〕[Effect]

本発明の製造方法によれば、圧電体基板1と櫛形電極3
との間に介在させるエアギャップ2は、非圧電体基板4
と圧電体基板1の間の所定の複数箇所に、前記エアギャ
ップ2を形成するために必要な高さを有するスペース形
成部5を配設し、前記非圧電体基板4と前記圧電体基板
lとを前記スペース形成部5を挟んで接着固定するだけ
なので、極めて簡単に形成することができる。
According to the manufacturing method of the present invention, the piezoelectric substrate 1 and the comb-shaped electrode 3
The air gap 2 interposed between the non-piezoelectric substrate 4 and
Space forming portions 5 having a height necessary for forming the air gap 2 are arranged at predetermined plural locations between the non-piezoelectric substrate 4 and the piezoelectric substrate 1. Since it is only necessary to adhesively fix the space forming portion 5 between the two, it can be formed extremely easily.

〔実施例] 第■図は本発明の第1実施例を示す図で、同図(イ)は
組立て斜視図、同図(lっ)は側面図である。
[Embodiment] Figure (2) shows a first embodiment of the present invention, where (A) is an assembled perspective view, and (1) is a side view.

図中、■は圧電体基板で,たとえば、36゜Y−X L
iTa03板である。2はエアギャップ、3a3bはそ
れぞれ励振用および受信用の櫛形電極、31.32はそ
れぞれのリード導出部、4は非圧電体基板、5はスペー
ス形成部、6は凹部である。
In the figure, ■ is a piezoelectric substrate, for example, 36°Y-X L
It is an iTa03 board. 2 is an air gap, 3a3b is a comb-shaped electrode for excitation and reception, 31 and 32 are respective lead lead-out portions, 4 is a non-piezoelectric substrate, 5 is a space forming portion, and 6 is a recessed portion.

図からわかるように、非圧電体基板4に形成されたスペ
ース形戊部5の高さから櫛形電極3の電極厚さを引いた
距離Sがエアギャップ2となる。
As can be seen from the figure, the air gap 2 is a distance S obtained by subtracting the electrode thickness of the comb-shaped electrode 3 from the height of the space-shaped hollow portion 5 formed on the non-piezoelectric substrate 4.

次に、上記製造工程の実施例を順を追って説明する。Next, an example of the above manufacturing process will be described in order.

先ず、同図(イ)において、非圧電体基板4たとえば、
厚さ0.45mmのガラス基板の一面に、櫛形電極3a
とそのリード導出部31,櫛形電極3bとそのリード導
出部32とを形成するための凹部6を平滑な底面を持つ
ように形成する。
First, in the same figure (A), a non-piezoelectric substrate 4, for example,
A comb-shaped electrode 3a is placed on one surface of a glass substrate with a thickness of 0.45 mm.
A recess 6 for forming the comb-shaped electrode 3b and its lead lead-out portion 31, and the comb-shaped electrode 3b and its lead lead-out portion 32 are formed to have a smooth bottom surface.

凹部6は,たとえば、36゜YX LiTaOs板の表
面波伝播速度を4090m/秒としで、中心周波数が1
60MHzの表面波フィルタの場合には、約2.6μm
の深さとする。すなわち、櫛形電極3aとそのリード導
出部31,櫛形電極3bとそのリード導出部32、およ
び櫛形電極3aと櫛形電極3bとの間の表面波伝播部を
除く6箇所に高さ2.6 μmのスペース形成部5が形
成されるように加工する。加工はレジストワークを行な
ったのち弗酸による化学エッチング あるいは適当なエ
ンチングガスによるイオンエソチングなどを用いて実施
すればよい。
For example, the recess 6 is formed by setting the surface wave propagation velocity of the 36° YX LiTaOs plate to 4090 m/sec, and the center frequency is 1.
In the case of a 60MHz surface wave filter, approximately 2.6μm
The depth shall be . That is, there are 2.6 μm-high grooves at six locations excluding the comb-shaped electrode 3a and its lead lead-out portion 31, the comb-shaped electrode 3b and its lead lead-out portion 32, and the surface wave propagation portion between the comb-shaped electrode 3a and the comb-shaped electrode 3b. Processing is performed so that a space forming portion 5 is formed. Processing may be carried out using chemical etching using hydrofluoric acid or ion etching using an appropriate etching gas after performing resist work.

次に、前記四部6に電極金属膜,たとえば、厚さ2μm
のAuを電子ビーム草着法で被着する。
Next, an electrode metal film is applied to the four parts 6, for example, with a thickness of 2 μm.
of Au is deposited by electron beam weeding method.

次いで、前記電極金属膜を公知のホ1・エッチング法 
あるいは、イオンエッチング法によりエッチングして、
櫛形電極3a,3h、リート導出部3132をパターン
形成ずる。
Next, the electrode metal film is etched using a known etching method.
Alternatively, etching by ion etching method,
The comb-shaped electrodes 3a, 3h and the lead-out portion 3132 are patterned.

一方、圧電体基板1として、前記非圧電体基板4よりも
大きさかや\小さく、厚さが0.35mmの表面を平滑
に研磨した36゜Y −X LiTa03板を別途用意
する。
On the other hand, as the piezoelectric substrate 1, a 36° Y-X LiTa03 plate, which is slightly smaller in size than the non-piezoelectric substrate 4 and has a thickness of 0.35 mm and whose surface has been polished smooth, is separately prepared.

次に、前記処理済みの非圧電体基板4ど前記圧電体基板
1を、櫛形電極3a,3bと圧電体基板Iの平滑面とを
対面配置させ、スペース形成部5の面に塗布した接着材
,たとえば、エボキシ樹脂接着材で接着固定する。
Next, the processed non-piezoelectric substrate 4 and the piezoelectric substrate 1 are arranged so that the comb-shaped electrodes 3a and 3b and the smooth surface of the piezoelectric substrate I face each other, and an adhesive is applied to the surface of the space forming portion 5. , For example, it is fixed with an epoxy resin adhesive.

かくして、この実施例により形成されるエアギャップ型
の弾性表面波素子のエアギャップ2の間隔Sは、2.6
 −2 =0.6μmとなり表面波の波長をλとすると
、Sぱ約λ/40となる。
Thus, the interval S of the air gap 2 of the air gap type surface acoustic wave element formed according to this embodiment is 2.6.
-2 = 0.6 μm, and if the wavelength of the surface wave is λ, then the S spacing is λ/40.

すなわち、櫛形電極3a,3bは空中に浮いた状態とな
り、圧電体基板1には全く質量効果を及ぼさない。
That is, the comb-shaped electrodes 3a, 3b are in a state of floating in the air, and do not exert any mass effect on the piezoelectric substrate 1.

最後に、リード導出部3L32からリードを引出し、必
要に応して外装を施したのち検査して完或11 12 ずる。
Finally, the leads are pulled out from the lead lead-out portion 3L32, and if necessary, they are covered and inspected to complete the test.

なお、本発明におけるエアギャップ2は、等角写像法に
よる電界分布の計算から、λ/40程度であれば、弾性
表面波の励振電力が充分に人力でき、また、同様に受信
電極から電気信号への変換が可能である。
It should be noted that if the air gap 2 in the present invention is about λ/40 from the calculation of the electric field distribution using the conformal mapping method, the excitation power of the surface acoustic wave can be sufficiently generated manually, and the electric signal from the receiving electrode can also be It is possible to convert to

第2図は本発明の第2実施例を示す図で、同図(イ)は
組立て斜視図、同図(ロ)は側面図である。
FIG. 2 shows a second embodiment of the present invention, in which (a) is an assembled perspective view and (b) is a side view.

この例では非圧電体基板4は平面をなし、その平面上に
櫛形電極3a,3b、リード導出部3L 32が第1実
施例と同様の方法でパターン形成される。
In this example, the non-piezoelectric substrate 4 has a flat surface, and the comb-shaped electrodes 3a, 3b and the lead lead-out portion 3L 32 are patterned on the flat surface in the same manner as in the first embodiment.

一方、圧電体基板1の方に凹部6が約2.6μmの深さ
になるようCこ加工する.すなわち、櫛形電極3aとそ
のリート導出部3LIi!’il形電極3bとそのリー
ド導出部32、および櫛形電極3aと櫛形電極3bとの
間の表面波伝播部を除く6箇所に高さ2.6μmのスペ
ース形成部5が形成されるように加工する。
On the other hand, the piezoelectric substrate 1 is machined so that the recess 6 has a depth of approximately 2.6 μm. That is, the comb-shaped electrode 3a and its lead-out portion 3LIi! Processed so that space forming portions 5 with a height of 2.6 μm are formed at six locations excluding the il-shaped electrode 3b and its lead lead-out portion 32, and the surface wave propagation portion between the comb-shaped electrode 3a and the comb-shaped electrode 3b. do.

以上の両者を対面させてエボキシ樹脂接着材で接着すれ
ば、第1実施例と同様にエアギャップ型の弾性表面波素
子を製造することができる。
If both of the above are made to face each other and bonded using an epoxy resin adhesive, an air gap type surface acoustic wave element can be manufactured in the same manner as in the first embodiment.

第3図は本発明の第3実施例を示す図で、同図(イ)は
組立て斜視図、同図(口)は側面図でちる。
FIG. 3 is a diagram showing a third embodiment of the present invention, where (A) is an assembled perspective view and the same figure (opening) is a side view.

本実施例では、圧電体基板1と非圧電体基仮4のいずれ
も平滑面を利用できることが特徴である。
This embodiment is characterized in that both the piezoelectric substrate 1 and the non-piezoelectric substrate 4 can have smooth surfaces.

すなわち、非圧電体基板4は平面をなし、その平面上に
櫛形電極3a,3b、リード導出部31. 32が第1
実施例と同様の方法でパターン形成される。
That is, the non-piezoelectric substrate 4 has a flat surface, and the comb-shaped electrodes 3a, 3b, lead lead-out portions 31. 32 is the first
A pattern is formed in the same manner as in the example.

そして、櫛形電極3aとそのリード導出部3L櫛形電極
3bとそのリード導出部32、および櫛形電極3aと櫛
形電極3bとの間の表面波伝播部を除く6箇所に高さ2
.6μmの,たとえば、電子ビーム蒸着によるSiO膜
からなるスペース形成部5を形成する。
The height is 2 at six locations excluding the comb-shaped electrode 3a and its lead lead-out portion 3L, the comb-shaped electrode 3b and its lead lead-out portion 32, and the surface wave propagation portion between the comb-shaped electrode 3a and the comb-shaped electrode 3b.
.. A space forming portion 5 made of, for example, a SiO film having a thickness of 6 μm is formed by electron beam evaporation.

一方、圧電体基板1としては平滑板を別途用意して、以
上の両者を対面さセてエボキシ樹脂接着材で接着すれば
、第l実施例と同様にエアギャップ型の弾性表面波素子
を製造することができる。
On the other hand, if a smooth plate is prepared separately as the piezoelectric substrate 1, and the above two are bonded together with an epoxy resin adhesive, an air gap type surface acoustic wave element can be manufactured in the same manner as in the first embodiment. can do.

第4図は本発明の第4実施例を示す図で、同図(イ)は
&Il立て斜視図、同図(口)し4側面図である。
FIG. 4 is a diagram showing a fourth embodiment of the present invention, and FIG.

本実施例でも、圧電体基仮1と非圧電体基仮4のいずれ
も平滑而を利用できることが特徴であり、しかも、非圧
電体基仮4の側に電極膜と同一の厚さ,たとえば、2.
071mのAu膜を、電極膜と同時形成して一方のスペ
ース形成部5aとし、他方、圧電体基仮1の側にはエア
ギャップ2に相当するdさ,たとえば、0.6 μmの
SiO膜からなるもう−・方のスペース形成部5bを形
成して、両者を合わせればスペース形成部5の所要高さ
2.6μmが得られる。
This embodiment is also characterized in that both the piezoelectric substrate 1 and the non-piezoelectric substrate 4 can be made smooth, and the non-piezoelectric substrate 4 has the same thickness as the electrode film, for example. , 2.
An Au film with a thickness of 0.071 m is formed simultaneously with the electrode film to form one space forming part 5a, and on the other hand, on the piezoelectric substrate 1 side, a SiO film with a thickness of d corresponding to the air gap 2, for example, 0.6 μm is formed. By forming the other space forming part 5b consisting of the above, and combining both, the required height of the space forming part 5 is 2.6 μm.

本実施例てはSiO膜の厚さを0.6 μmと低減でき
るので、第3実施例に比較して生産性が向上ずる。
In this embodiment, the thickness of the SiO film can be reduced to 0.6 μm, so productivity is improved compared to the third embodiment.

第5図は木発明の第5実施例を示す図で、同図(イ)は
組立て斜視図、同図(口)は側面図である。
FIG. 5 is a diagram showing a fifth embodiment of the wooden invention, where (A) is an assembled perspective view and the same figure (opening) is a side view.

本実施例でも、圧電体基板1と非圧電体基板4のいずれ
も平滑面を利用できることが特徴であり、しかも、上記
第4実施例乙こお(Jるスペース形成部5a,5t+を
非圧電体2S板4の土−に連続形成していくことができ
るので、さらに、住産性をliilヒさせることができ
る。
This embodiment is also characterized in that both the piezoelectric substrate 1 and the non-piezoelectric substrate 4 can have smooth surfaces. Since it can be continuously formed on the soil of the body 2S plate 4, it is possible to further improve the domestic productivity.

以」二の実施例に示した以外の+A料,あるいし4、そ
れらの組の合わせ、また、膜形成技術についても他の方
法を適宜用いて、木発明の弾性表面波素子製造方法を構
成してもよいことは勿論である。
The surface acoustic wave device manufacturing method of the present invention can be constructed by appropriately using +A materials or combinations thereof other than those shown in Examples 2 and 2, and other film forming techniques. Of course, you can do it.

また、スペース形成部5の数1大きさ,P′1さや電極
の膜厚なとは以」二の実施例に限るもので番上なく、所
望の素子性能に応して適宜設81された値を用いればよ
い。
Further, the size of the space forming portion 5, the thickness of the P'1 and the electrode are not limited to the above two embodiments, and may be set as appropriate according to the desired device performance. Just use the value.

なお、上記実施例では弾性表面波フィルタの場合を示し
たが、その他表面波共振子や遅延素子なども、本発明の
製造方法が同様に適用できることはいうまでもない。
It should be noted that although the above-mentioned embodiments show the case of a surface acoustic wave filter, it goes without saying that the manufacturing method of the present invention can be similarly applied to other surface acoustic wave resonators, delay elements, and the like.

(発明の効果] 以七詳しく述べたように、本発明の製造方法によれば、
圧電体基板1と櫛形電極3との間に介在15 16 さセるエアギャ・7プ2は、非圧電体基板4と圧電体基
仮1の間の所定の複数箇所に、前記エアギャップ2を形
成するために必要な高さを有するスペス形成部5を配設
し、前記非圧電体基板4と前記圧電体基板1とを前記ス
ペース形成部5を挾んで接着固定するだけなので、エア
ギャップ2を極めて簡単に形成することができる。した
がって、エアギャップ型の弾性表面波素子の品質安定性
生産性,歩留りの向上ならびに低価格化に寄与するとこ
ろが極めて大きい。
(Effect of the invention) As described in detail below, according to the manufacturing method of the present invention,
The air gap 7 interposed between the piezoelectric substrate 1 and the comb-shaped electrode 3 is configured to provide the air gap 2 at a plurality of predetermined locations between the non-piezoelectric substrate 4 and the piezoelectric substrate 1. Since the space forming section 5 having the height necessary for forming the space forming section 5 is disposed and the non-piezoelectric substrate 4 and the piezoelectric substrate 1 are adhesively fixed to each other by sandwiching the space forming section 5, the air gap 2 can be formed extremely easily. Therefore, it greatly contributes to improving the quality stability, productivity, and yield of air-gap type surface acoustic wave elements, as well as reducing prices.

例を示す図である。It is a figure which shows an example.

図において、 1は圧電体基板、 2はエアギャップ、 3 (3a.3b)は櫛形電極、 4は非圧電体基板、 5 (5a,5b)はスペース形成部、6は四部、 3L 32はリード導出部である。In the figure, 1 is a piezoelectric substrate; 2 is air gap, 3 (3a.3b) is a comb-shaped electrode, 4 is a non-piezoelectric substrate; 5 (5a, 5b) is the space forming part, 6 is the fourth part, 3L 32 is a lead lead-out section.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は木発明の第1実施例を示す図、第2図は本発明
の第2実施例を示す図、第3図は本発明の第3実施例を
示す図、第4図は本発明の第4実施例を示す図、第5図
は本発明の第5実施例を示す図、第6図はエアギャンプ
型弾性表面波素子の従来の製造方法を説明する図、 第7図は従来の弾性表面波素子の構成の2つのMi−1 代一 喚
Fig. 1 shows the first embodiment of the invention, Fig. 2 shows the second embodiment of the invention, Fig. 3 shows the third embodiment of the invention, and Fig. 4 shows the invention. A diagram showing a fourth embodiment of the invention, FIG. 5 a diagram showing a fifth embodiment of the invention, FIG. 6 a diagram explaining a conventional manufacturing method of an air gap type surface acoustic wave device, and FIG. 7 a diagram showing a conventional manufacturing method. Two Mi-1 configurations of surface acoustic wave elements:

Claims (1)

【特許請求の範囲】[Claims]  圧電体基板(1)と、非圧電体基板(4)上に形成さ
れた櫛形電極(3)とがエアギャップ(2)を介して対
面配置されてなる弾性表面波素子の製造方法において、
非圧電体基板(4)上に櫛形電極(3)およびリード導
出部(30)を形成し、前記非圧電体基板(4)と圧電
体基板(1)の間の、前記櫛形電極(3)と表面波伝播
部を除く複数箇所に、前記エアギャップ(2)を形成す
るために必要な高さを有するスペース形成部(5)を配
設し、前記非圧電体基板(4)と前記圧電体基板(1)
とを前記スペース形成部(5)を挟んで接着固定するこ
とを特徴とした弾性表面波素子の製造方法。
In a method of manufacturing a surface acoustic wave element, a piezoelectric substrate (1) and a comb-shaped electrode (3) formed on a non-piezoelectric substrate (4) are arranged facing each other with an air gap (2) interposed therebetween,
A comb-shaped electrode (3) and a lead lead-out portion (30) are formed on a non-piezoelectric substrate (4), and the comb-shaped electrode (3) is located between the non-piezoelectric substrate (4) and the piezoelectric substrate (1). Space forming portions (5) having a height necessary to form the air gap (2) are provided at multiple locations excluding the surface wave propagation portion, and the non-piezoelectric substrate (4) and the piezoelectric Body board (1)
A method for manufacturing a surface acoustic wave device, comprising: adhesively fixing the space-forming portion (5) between the two.
JP15611289A 1989-06-19 1989-06-19 Manufacture of surface acoustic element Pending JPH0321112A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP15611289A JPH0321112A (en) 1989-06-19 1989-06-19 Manufacture of surface acoustic element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP15611289A JPH0321112A (en) 1989-06-19 1989-06-19 Manufacture of surface acoustic element

Publications (1)

Publication Number Publication Date
JPH0321112A true JPH0321112A (en) 1991-01-29

Family

ID=15620574

Family Applications (1)

Application Number Title Priority Date Filing Date
JP15611289A Pending JPH0321112A (en) 1989-06-19 1989-06-19 Manufacture of surface acoustic element

Country Status (1)

Country Link
JP (1) JPH0321112A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8883936B2 (en) 2010-11-24 2014-11-11 Kaneka Corporation Curable composition

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8883936B2 (en) 2010-11-24 2014-11-11 Kaneka Corporation Curable composition

Similar Documents

Publication Publication Date Title
TWI762832B (en) Surface acoustic wave device
US5446330A (en) Surface acoustic wave device having a lamination structure
US4456850A (en) Piezoelectric composite thin film resonator
US5448126A (en) Surface acoustic wave-semiconductor composite device
JP2018506930A (en) Plate wave device having wave confinement structure and fabrication method
JP2018506930A5 (en)
US20080292127A1 (en) Electroacoustic Component
KR20060129514A (en) Boundary acoustic wave device manufacturing method and boundary acoustic wave device
JP3514224B2 (en) Piezoelectric resonator, filter and electronic device
WO2017094520A1 (en) Piezoelectric element, piezoelectric microphone, piezoelectric resonator and method for manufacturing piezoelectric element
JP6025850B2 (en) Electro-acoustic transducer with periodic ferroelectric polarization formed on a micromachined vertical structure
JP3514222B2 (en) Piezoelectric resonator, electronic components and electronic equipment
WO2021102640A1 (en) Acoustic wave device and fabrication method therefor
JP2019021997A (en) Acoustic wave element, splitter, and communication device
EP0483358B1 (en) Ultra thin quartz crystal filter element of multiple mode
KR100902802B1 (en) Device with interface sound waves made of lithium tantalate
JPH07263998A (en) End face reflecting surface wave resonator
US4076987A (en) Multiple resonator or filter vibrating in a coupled mode
JPH036912A (en) Surface acoustic wave element
JPH02295211A (en) Energy shut-up type surface acoustic wave element
JPH08204493A (en) Surface acoustic wave device
JPH0211043B2 (en)
JPH0321112A (en) Manufacture of surface acoustic element
JPH0640611B2 (en) Piezoelectric thin film resonator
JPS6281807A (en) Piezoelectric thin film resonator