JPH032104B2 - - Google Patents

Info

Publication number
JPH032104B2
JPH032104B2 JP7383885A JP7383885A JPH032104B2 JP H032104 B2 JPH032104 B2 JP H032104B2 JP 7383885 A JP7383885 A JP 7383885A JP 7383885 A JP7383885 A JP 7383885A JP H032104 B2 JPH032104 B2 JP H032104B2
Authority
JP
Japan
Prior art keywords
wheel
hydraulic pressure
rear wheel
wheels
control
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP7383885A
Other languages
Japanese (ja)
Other versions
JPS61232955A (en
Inventor
Yoshiki Yasuno
Naohiko Inoe
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nissan Motor Co Ltd
Original Assignee
Nissan Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nissan Motor Co Ltd filed Critical Nissan Motor Co Ltd
Priority to JP7383885A priority Critical patent/JPS61232955A/en
Publication of JPS61232955A publication Critical patent/JPS61232955A/en
Publication of JPH032104B2 publication Critical patent/JPH032104B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Regulating Braking Force (AREA)

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は4輪駆動車のアンチスキツド制御装置
に関するものである。
DETAILED DESCRIPTION OF THE INVENTION (Field of Industrial Application) The present invention relates to an anti-skid control device for a four-wheel drive vehicle.

(従来の技術) 4輪駆動車にはパートタイム4輪駆動車とフル
タイム4輪駆動車とがあり、前者はトランスフア
の手動操作により内部ドツグクラツチを作動させ
て通常は非駆動輪である車輪(FR車なら前輪、
FF車なら後輪)にもエンジン動力を伝達し、こ
れにより通宜4輪駆動可能としたものであり、後
者はセンターデイフアレンシヤルギヤ(以下セン
ターデフと言う)を介してエンジン動力を前輪用
デイフアレンシヤルギヤ(以下フロントデフと言
う)及び後輪用デイフアレンシヤルギヤ(以下リ
ヤデフと言う)に入力し、これらにより常時4輪
駆動可能としたものである。なお、フルタイム4
輪駆動車にあつては、前輪又は後輪の一方のみの
スリツプにより走行不能になるのを防止するた
め、センターデフにデフロツク機構を設け、該デ
フロツク機構の作動時、フロントデフ及びリヤデ
フに同じ回転が入力されるようにも構成される。
(Prior Art) There are two types of four-wheel drive vehicles: part-time four-wheel drive vehicles and full-time four-wheel drive vehicles. (For FR cars, the front wheels,
Engine power is also transmitted to the front wheels (for front-wheel drive vehicles), thereby enabling four-wheel drive, and the latter transfers engine power to the front wheels via a center differential gear (hereinafter referred to as center differential). This input is input to a differential gear for the rear wheels (hereinafter referred to as the front differential) and a differential gear for the rear wheels (hereinafter referred to as the rear differential), thereby enabling constant four-wheel drive. In addition, full-time 4
In the case of a wheel drive vehicle, in order to prevent the vehicle from being unable to drive due to slippage of only one of the front wheels or rear wheels, a differential lock mechanism is provided in the center differential, and when the differential lock mechanism is activated, the front differential and rear differential rotate at the same time. It is also configured so that it is input.

一方、アンチスキツド装置は前輪制動液圧及び
後輪制動液圧を個々に制御し、車輪のロツクを防
止するが、この制御に当つては制動距離をできる
だけ短かくする必要があることから、車輪の路面
摩擦係数が最大となる理想スリツプ率を保つべく
前後輪制御液圧の制御を行なうため、前後輪で制
動液圧、つまり制動トルクが異なることがあり、
アンチスキツド制御装置付4輪駆動車においては
以下の問題を生じていた。
On the other hand, anti-skid devices individually control the front wheel brake hydraulic pressure and the rear wheel brake hydraulic pressure to prevent the wheels from locking. The front and rear wheel control hydraulic pressures are controlled to maintain the ideal slip ratio that maximizes the coefficient of road friction, so the braking hydraulic pressure, or braking torque, may differ between the front and rear wheels.
Four-wheel drive vehicles with anti-skid control devices have had the following problems.

(発明が解決しようとする問題点) 即ち、4輪駆動車において前記ドツグクラツチ
又はデフロツク(以下直結手段という)を作動さ
せ、フロントデフ及びリヤデフに同じ回転を入力
させている状態では、前後輪駆動系が直結手段を
介し相互に結合されている。この状態で上記のよ
うに前後輪制御トルクが異なると、その差に起因
して前後輪間の動力伝達系に捩りトルクが加わ
り、前後輪制動トルク差が大きい場合該動力伝達
系の構成部品に少なからぬ耐久上の悪影響が及
ぶ。
(Problem to be Solved by the Invention) In other words, in a four-wheel drive vehicle, when the dog clutch or differential lock (hereinafter referred to as direct coupling means) is operated and the same rotation is input to the front differential and rear differential, the front and rear wheel drive systems are connected to each other via direct connection means. If the front and rear wheel control torques differ as described above in this state, torsional torque will be applied to the power transmission system between the front and rear wheels due to the difference, and if the difference in front and rear wheel braking torque is large, the component parts of the power transmission system will This will have a considerable negative impact on durability.

(問題点を解決するための手段) 本発明は上述の問題に鑑み、直接手段の作動中
は前後輪制動トルク差が所定以上にならないよう
にするもので、具体的には第1図に概念を示す如
く、 前輪制動液圧PF及び後側制動液圧PRを個々に
制御して車輪1のロツクを防止するアンチスキツ
ド装置2を具え、直結手段3の適宜作動で前輪用
デイフアレンシヤルギヤ4及び後輪用デイフアレ
ンシヤルギヤ5に同じ回転を入力するようにした
4輪駆動車6において、 前記直結手段3の作動を検出する直結検出手段
7と、 該直結手段3の作動中、前後輪制動液圧PF
PRを夫々制御する制御信号SF、SRの一方を他方
に対し、前後輪制動トルクの差が所定値以下とな
るよう変更する制御信号変更手段8とを設けた構
成に特徴づけられる。
(Means for Solving the Problems) In view of the above-mentioned problems, the present invention prevents the front and rear wheel braking torque difference from exceeding a predetermined value while the direct means is in operation. As shown, the anti-skid device 2 prevents the wheels 1 from locking by individually controlling the front wheel brake fluid pressure P F and the rear brake fluid pressure P R , and the front wheel differential is controlled by the appropriate operation of the direct coupling means 3. A four-wheel drive vehicle 6 in which the same rotation is input to the gear 4 and the rear wheel differential gear 5 includes a direct coupling detection means 7 for detecting operation of the direct coupling means 3; and a direct coupling detection means 7 for detecting operation of the direct coupling means 3; , front and rear wheel brake fluid pressure P F ,
It is characterized by a configuration in which a control signal changing means 8 is provided for changing one of the control signals S F and S R that respectively control PR with respect to the other so that the difference between the front and rear wheel braking torques becomes equal to or less than a predetermined value.

(作用) 4輪駆動車6が直結手段3を作動され、両デイ
フアレンシヤルギヤ4,5間の動力伝達系を相互
に結合された状態で、手段8は直結検出手段7か
らの信号を受けて、前後輪制動液圧PF、PRを制
御するアンチスキツド装置2内の制御信号SF,SR
の一方を他方に対し、前後輪制動トルクの差が所
定値以下となるよう変更する。
(Function) When the direct coupling means 3 of the four-wheel drive vehicle 6 is activated and the power transmission systems between the differential gears 4 and 5 are interconnected, the means 8 receives the signal from the direct coupling detection means 7. In response, control signals S F , S R in the anti-skid device 2 which control the front and rear wheel brake hydraulic pressures P F , P R
One of them is changed with respect to the other so that the difference between the front and rear wheel braking torques is equal to or less than a predetermined value.

従つて、直結手段3が作動された状態で、前後
輪制動トルク差がアンチスキツド装置2の作動中
と雖も大きくなることはなく、直結手段3により
結合されたデイフアレンシヤルギヤ4,5間の動
力伝達系に大きな捩りトルクが加わるのを防止で
き、該動力伝達系の構成部品が耐久性を損なわれ
ることはない。
Therefore, when the direct coupling means 3 is in operation, the difference in braking torque between the front and rear wheels is not the same as when the anti-skid device 2 is in operation, and the difference between the differential gears 4 and 5 connected by the direct coupling means 3 is not the same. It is possible to prevent large torsional torque from being applied to the power transmission system, and the durability of the components of the power transmission system is not impaired.

(実施例) 以下、本発明の実施例を図面に基づき詳細に説
明する。
(Example) Hereinafter, an example of the present invention will be described in detail based on the drawings.

第2図は本発明の一実施例で、図中10は左前
輪、11は右前輪、12は左後輪、13は右後輪
を夫々示す。左右前輪10,11は前輪用デイフ
アレンシヤルギヤ(フロントデフ)14を介して
プロペラシヤフト15に結合し、左右後輪12,
13は後輪用デイフアレンシヤルギヤ(リヤデ
フ)16を介してプロペラシヤフト17に結合す
る。
FIG. 2 shows an embodiment of the present invention, in which 10 indicates a left front wheel, 11 a right front wheel, 12 a left rear wheel, and 13 a right rear wheel. The left and right front wheels 10 and 11 are connected to a propeller shaft 15 via a front wheel differential gear (front differential) 14, and the left and right rear wheels 12,
13 is connected to a propeller shaft 17 via a rear wheel differential gear (rear differential) 16.

両プロペラシヤフト15,17は、パートタイ
ム4輪駆動車の場合トランスフア及び変速機を介
してエンジンに結合し、フルタイム4輪駆動車の
場合センターデイフアレンシヤルギヤ(センター
デフ)及び変速機を介してエンジンに結合する。
パートタイム4輪駆動車では、トランスフアの2
輪駆動位置で前2輪又は後2輪のみにエンジン動
力が伝わり、トランスフアを4輪駆動位置にして
内部ドツククラツチを作動させることによりプロ
ペラシヤフト15,17を直結すると、残りの2
輪にもエンジン動力が伝わる。フルタイム4輪駆
動車では常時4輪駆動状態であるが、センタデフ
のデフロツクを作動させることにより適宜プロペ
ラシヤフト15,17を直結することができる。
Both propeller shafts 15, 17 are connected to the engine via a transfer and a transmission in the case of a part-time four-wheel drive vehicle, and a center differential gear (center differential) and a transmission in the case of a full-time four-wheel drive vehicle. Connects to the engine via.
For part-time 4-wheel drive vehicles, transfer 2
In the wheel drive position, engine power is transmitted only to the front two wheels or the rear two wheels, and when the transfer shaft is placed in the four-wheel drive position and the internal dock clutch is actuated to directly connect the propeller shafts 15 and 17, the remaining two wheels are
Engine power is also transmitted to the wheels. In a full-time four-wheel drive vehicle, the vehicle is always in four-wheel drive mode, but the propeller shafts 15 and 17 can be directly connected as needed by operating the center differential differential lock.

上記駆動系を持つ4輪駆動車のブレーキシステ
ムを以下の構成とする。即ち、18はブレーキペ
ダル、19は倍力装置、20はマスターシリンダ
で、ブレーキペダル18の踏込力に応じたマスタ
ーシリンダ20からのマスターシリンダ液圧Pn
は、コントロールユニツト21と共にアンチスキ
ツド制御装置を構成するアクチユエータ22に供
給する。アクチユエータ22はコントロールユニ
ツト21による制御下でマスターシリンダ液圧
Pnの一方の後輪12,13がロツクしないよう
調圧しつつ夫々のホールシリンダ23,24に共
通の後輪制動液圧PRとして供給し、マスターシ
リンダ液圧Pnの他方を前輪10,11がロツク
しないよう個々に調圧しつつ夫々のホイールシリ
ンダ25,26に個々の前輪制動液圧PFL、PFR
して供給する。なお、後輪制動液圧PRの供給系
には当然周知のプロポーシヨニングバルブ(Pバ
ルブ)27を挿入する。
The brake system of a four-wheel drive vehicle having the above drive system has the following configuration. That is, 18 is a brake pedal, 19 is a booster, 20 is a master cylinder, and master cylinder hydraulic pressure P n from the master cylinder 20 according to the depression force of the brake pedal 18.
is supplied to an actuator 22 which together with a control unit 21 constitutes an anti-skid control device. The actuator 22 controls the master cylinder hydraulic pressure under the control of the control unit 21.
The pressure is regulated so that one of the rear wheels 12, 13 of P n does not lock up, and the pressure is supplied to each Hall cylinder 23, 24 as a common rear wheel braking hydraulic pressure P R , and the other of the master cylinder hydraulic pressure P n is applied to the front wheels 10, 13. The front wheel brake fluid pressures P FL and P FR are supplied to the respective wheel cylinders 25 and 26 while adjusting the pressure individually so that the front brake fluid pressures P FL and P FR do not lock. Incidentally, a well-known proportioning valve (P valve) 27 is naturally inserted into the supply system for rear wheel braking hydraulic pressure P R.

アクチユエータ22はコントロールユニツト2
1からの制動液圧制御信号S、つまり後輪制動液
圧制御信号SR、左前輪制動液圧制御信号SFL、右
前輪制動液圧制御信号SFRに応じ制動動液圧PR
PFL、PFRを個々に制御し、各信号が−1の時対応
液圧を減圧し、各信号が0の時対応液圧を保持
し、各信号が+1の時対応液圧を元圧であるマス
ターシリンダ液圧Pnに向け増圧するものとする。
Actuator 22 is control unit 2
According to the brake hydraulic pressure control signal S from 1, that is, the rear wheel brake hydraulic pressure control signal S R , the left front wheel brake hydraulic pressure control signal S FL , the right front wheel brake hydraulic pressure control signal S FR , the brake hydraulic pressure P R ,
Control P FL and P FR individually, reduce the corresponding hydraulic pressure when each signal is -1, maintain the corresponding hydraulic pressure when each signal is 0, and change the corresponding hydraulic pressure to the original pressure when each signal is +1. Assume that the pressure is increased toward the master cylinder hydraulic pressure P n .

これがため、コントロールユニツト21には、
後2輪12,13の平均回転数であるプロペラシ
ヤフト17の回転数を検出する後輪回転センサ2
8からの回転数(パルス)信号RR、左前輪10
の回転数を検出する左前輪回転センサ29からの
回転数(パルス)信号RFL、及び右前輪11の回
転数を検出する右前輪回転センサ30からの回転
数(パルス)信号RFRを入力すると共に、前記し
たドツグクラツチ又はデフロツク(直結手段)の
作動、つまりプロペラシヤフト15,17が結合
された直結4輪駆動状態(直結4駆状態)を検出
する直結手段作動検出スイツチ31からの信号D
を入力する。コントロールユニツト27はこれら
入力情報を基に第3図及び第4図の制御プログラ
ムを実行して制御信号S(SR,SFL,SFR)を決定
し、これをアクチユエータ22に出力することに
より通常のアンチスキツド制御及び本発明が目的
とするアンチスキツド制御を行なうマイクロコン
ピユータとする。
For this reason, the control unit 21 has
A rear wheel rotation sensor 2 that detects the rotation speed of the propeller shaft 17, which is the average rotation speed of the two rear wheels 12 and 13.
RPM (pulse) signal R R from 8, left front wheel 10
The rotation speed (pulse) signal R FL from the left front wheel rotation sensor 29 that detects the rotation speed of the front right wheel 11 and the rotation speed (pulse) signal R FR from the right front wheel rotation sensor 30 that detects the rotation speed of the right front wheel 11 are input. At the same time, a signal D from the direct coupling means operation detection switch 31 that detects the operation of the dog clutch or the differential lock (direct coupling means) described above, that is, the direct coupled four-wheel drive state in which the propeller shafts 15 and 17 are coupled (directly coupled four-wheel drive state).
Enter. The control unit 27 executes the control programs shown in FIGS. 3 and 4 based on this input information, determines the control signals S (S R , S FL , S FR ), and outputs them to the actuator 22 . The present invention is a microcomputer that performs normal anti-skid control and the anti-skid control that is the object of the present invention.

第3図は前輪用の制御プログラム(左右前輪用
共同じなのでここでは左前輪用制御プログラムの
みにつき説明する)で、先ずステツプ40において
信号Dから直結4駆状態か否かを判別し、そうで
なければステツプ41、42、43の実行により通常の
制御を行なう。即ち、信号RFLから左前輪10の
車輪速、車輪加速度、疑似車速及びスリツプ率を
算出する。次のステツプ42ではこれら算出結果を
基に詳しくは周知のため省略するが、第5図に示
す制御パターンに従つて左前輪制動液圧制御信号
SFLを決定し、この信号をステツプ43でアクチユ
エータ22に出力することによりアクチユエータ
22は左前輪ホイールシリンダ25への制動液圧
PFLを左前輪10がロツクする直前のできるだけ
高い値に保つことができる。
FIG. 3 shows a control program for the front wheels (both the left and right front wheels are the same, so only the left front wheel control program will be explained here). First, in step 40, it is determined from signal D whether or not the direct 4WD state is in place, and if so. If not, normal control is performed by executing steps 41, 42, and 43. That is, the wheel speed, wheel acceleration, pseudo vehicle speed, and slip rate of the left front wheel 10 are calculated from the signal R FL . In the next step 42, based on these calculation results, the left front wheel brake hydraulic pressure control signal is sent in accordance with the control pattern shown in FIG.
By determining S FL and outputting this signal to the actuator 22 in step 43, the actuator 22 controls the braking fluid pressure to the left front wheel cylinder 25.
P FL can be maintained at the highest possible value just before the left front wheel 10 locks up.

ところで、ステツプ40において直結4駆状態と
判別する場合は、ステツプ41、42と同様なステツ
プ44、45を実行した後、ステツプ46で後輪制動液
圧制御信号SRを読込み、次のスステツプ47ではSR
=−1か否か、つまり後輪制動液圧PRが減圧中
か否かを判別し、減圧中でなければステツプ48で
左前輪制動液圧制御信号SFLをステツプ45におい
て決定した値のままとして変更せず、減圧中であ
ればステツプ49において左前輪制動液圧制御信号
SFLを後輪制動液圧制御信号SRと同じ−1にする。
ステツプ48又は49で定めた制御信号SFLは次のス
テツプ43においてアクチユエータ22に供給さ
れ、左前輪液圧PFLを制御するが、ステツプ48で
定めた制御信号TSFLを用いる場合、これがステ
ツプ42と同様なステツプ45で決定された値であ
ることにより、制動液圧PFLを左前輪10がロツ
クする直前のできるだけ高い値にすることがで
き、ステツプ49で定めた制御信号SFLを用いる場
合、これが−1であることによつて制動液圧PFL
を減圧することとなり、後輪制動液圧PRが減圧
されていても、直結状態のプロペラシヤフト1
5,17に捩りトルクが加わるのを以下の理由に
よつて防止することができる。
By the way, if it is determined in step 40 that the vehicle is in the direct 4WD state, after executing steps 44 and 45 similar to steps 41 and 42, the rear wheel braking hydraulic pressure control signal S R is read in step 46, and the next step 47 is executed. So S R
= -1, that is, whether the rear wheel brake fluid pressure P If the brake pressure is not changed and the pressure is being reduced, the left front wheel brake fluid pressure control signal is changed in step 49.
Set S FL to -1, the same as the rear wheel brake fluid pressure control signal S R.
The control signal S FL determined in step 48 or 49 is supplied to the actuator 22 in the next step 43 to control the left front wheel hydraulic pressure P FL , but when the control signal TS FL determined in step 48 is used, this is supplied to the actuator 22 in step 43. By using the value determined in step 45, which is similar to the above, the brake fluid pressure P FL can be made as high as possible just before the left front wheel 10 locks, and when using the control signal S FL determined in step 49, , this is -1, so the brake fluid pressure P FL
Even if the rear wheel braking fluid pressure P R is reduced, the propeller shaft 1 in the directly connected state
It is possible to prevent twisting torque from being applied to 5 and 17 for the following reason.

即ち、直結4駆状態でプロペラシヤフト15,
17間に加わる捩りトルクTSは、クラツチの釈
放によりエンジン出力が伝達されない状態におい
て次式の如くに表わされる。
That is, in the direct 4WD state, the propeller shaft 15,
The torsional torque T S applied between 17 and 17 is expressed by the following equation when the clutch is released and no engine output is transmitted.

TS=1/2(MF・WF−MR・WR)R −(TQBF−TQBR) 但し MF:前輪の路面摩擦係数 MR:後輪の路面摩擦係数 WF:前2輪の合計支持荷重 WR:後2輪の合計支持荷重 R:車輪回転半径 TQBF:前2輪の合計制動トルク TQBR:後2輪の合計制動トルク 一定減速度での走行中WF・WRは一定であり、
従つて上式より捩りトルクTSは路面摩擦係数
MF、MR及び前後制動トルク差TQBF−TQBR
より変化する。ところで制動時は、WF>FRとな
るも、後輪制動液圧PRの上昇をPバルブ27等
により制限するためTQBF>TQBRとなり、アン
チスキツド制御を行なわなければプロペラシヤフ
ト15,17間に加わる捩りトルク|TS|が大
きくなることはなく、本発明が解決しようとする
問題を生じない。
T S = 1/2 (M F・W F −M R・W R ) R − (TQB F −TQB R ) where M F : Road surface friction coefficient of front wheels M R : Road surface friction coefficient of rear wheels W F : Front Total supported load of two wheels W R : Total supported load of two rear wheels R: Wheel rotation radius TQB F : Total braking torque of two front wheels TQB R : Total braking torque of two rear wheels While driving at a constant deceleration W F・W R is constant,
Therefore, from the above formula, the torsional torque T S is the coefficient of road friction.
It changes depending on M F , M R and the front and rear braking torque difference TQB F - TQB R. By the way, during braking, W F > F R , but since the increase in rear wheel brake fluid pressure P R is limited by the P valve 27, etc., TQB F > TQB R , and unless anti-skid control is performed, propeller shafts 15, 17 The torsional torque |T S | applied between the two does not become large, and does not cause the problem that the present invention aims to solve.

しかし、アンチスキツド制御中は、前後輪間で
路面状態が異なり、理想スリツプ率(路面摩擦係
数が最大となる路面状態毎のスリツプ率)が違う
場合、後輪制御液圧を減圧している間(SR=−
1)の間に、前輪制動液圧を増圧する(SFL=+
1又はSFR=+1にする)という制御を行なつた
り、逆に前輪ブレーキ液圧を減圧している間
(SFL=−1又はSFR=−1の間)に後輪ブレーキ
液圧を増圧する(SR=+1にする)という制御を
行なうことがあり、この時前記の式から明らかな
ように捩りトルク|TS|が増大し、プロペラシ
ヤフト15,17及び関連部品の耐久性を大きく
損なう。この問題は、前輪制動液圧の減圧中、後
輪制動液圧も減圧させ、後輪制動液圧の液圧中前
輪制動液圧も減圧させることで解決し得ることが
判る。
However, during anti-skid control, if the road surface conditions are different between the front and rear wheels and the ideal slip ratio (slip ratio for each road surface condition where the road surface friction coefficient is maximum) is different, while the rear wheel control fluid pressure is being reduced ( S R =-
During 1), increase the front wheel brake fluid pressure (S FL = +
1 or S FR = +1), or conversely, while reducing the front wheel brake fluid pressure (between S FL = -1 or S FR = -1), the rear wheel brake fluid pressure is Control is sometimes performed to increase the pressure (S R = +1), and at this time, as is clear from the above equation, the torsional torque |T S | increases, which reduces the durability of the propeller shafts 15, 17 and related parts. Greatly damaged. It can be seen that this problem can be solved by reducing the rear wheel brake hydraulic pressure while the front wheel brake hydraulic pressure is being reduced, and by also reducing the front wheel brake hydraulic pressure during the rear wheel brake hydraulic pressure.

従つて、第3図中ステツプ47でSR=−1と判別
した場合、ステツプ49でSFLをも−1とすること
により、プロペラシヤフト15,17の捩りトル
クを小さくし得ることとなる。又、このSFL=−
1は前輪制動液圧が直結状態のプロペラシヤフト
15,17を介して後輪を強制的に制動すること
がなく、SR=−1により制動トルクを減ずるよう
アンチスキツド制御されている後輪のロツク防止
を確実に遂行させることができ、車両挙動が不安
定になるのを防止し得る。
Therefore, when it is determined in step 47 in FIG. 3 that S R =-1, by setting S FL to -1 in step 49, the torsional torque of the propeller shafts 15 and 17 can be reduced. Also, this S FL =−
1 is a rear wheel locking system in which the front wheel brake hydraulic pressure is not forcibly braked through the propeller shafts 15 and 17, which are directly connected, and anti-skid control is performed so that the braking torque is reduced by S R = -1. Prevention can be carried out reliably, and vehicle behavior can be prevented from becoming unstable.

第4図は後輪用の制御プログラムで、ステツプ
50において直結4駆状態でないと判別した場合、
ステツプ51〜53において第3図中のステツプ41〜
43と同様な後2輪用の通常のアンチスキツド制御
を行なう。ステツプ50において直結4駆状態と判
別する場合、ステツプ51、52と同様なステツプ
54、55を実行して後輪制動液圧制御信号SRを決定
し、その後ステツプ56で前輪制動液圧制御信号
SFL、SFRを読込む。ステツプ57、58でSFL、SFR
共に−1でないと判別する場合、ステツプ59にお
いて制御信号SRをステツプ55で決めた値とし、通
常のアンチスキツド制御を継続する。しかし、ス
テツプ57でSFL=−1又はステツプ58でSFR=−1
と判別する場合、つまり前輪制動液圧PFL又はPFR
が減圧中である場合、ステツプ60において後輪制
動液圧制御信号SRを無条件に−1にして後輪制動
液圧PRも減圧させ、これによりプロペラシヤフ
ト15,17に大きな捩りトルクが加わらないよ
うにすると共に、前輪のアンチスキツド制御が妨
げられて車両挙動が不安定になるのを防止する。
Figure 4 shows the control program for the rear wheels.
50, if it is determined that it is not in a direct 4WD state,
In steps 51 to 53, steps 41 to 53 in FIG.
It performs normal anti-skid control for the rear two wheels, similar to the 43. If it is determined in step 50 that the vehicle is in a direct 4WD state, the same steps as steps 51 and 52 are performed.
Steps 54 and 55 are executed to determine the rear wheel brake hydraulic pressure control signal S R , and then in step 56 the front wheel brake hydraulic pressure control signal is determined.
Read S FL and S FR . If it is determined in steps 57 and 58 that both S FL and S FR are not -1, in step 59 the control signal S R is set to the value determined in step 55, and normal anti-skid control is continued. However, in step 57 S FL = -1 or in step 58 S FR = -1
In other words, the front wheel brake fluid pressure P FL or P FR
If the pressure is being reduced, the rear wheel brake hydraulic pressure control signal S R is unconditionally set to -1 in step 60, and the rear wheel brake hydraulic pressure P R is also reduced, thereby causing a large torsional torque to be applied to the propeller shafts 15 and 17. This prevents the vehicle from becoming unstable due to interference with anti-skid control of the front wheels.

(発明の効果) かくして本発明装置は上述の如く、直結4駆状
態で前後輪制動液圧制御信号の一方を他方との比
較において、前後輪制動トルクの差が大きくなら
ないよう変更する構成としたから、フロントデフ
14及びリヤデフ16間の相互に直結された動力
伝達系(プロペラシヤフト15,17を含む系)
に大きな捩りトルクが加わるのを防止できると共
に、上記他方の制御信号に係わる車輪のアンチス
キツド制御が上記一方の制御信号に係わる車輪に
より妨げられて車両挙動が不安定になるのを防止
することができる。
(Effects of the Invention) Thus, as described above, the device of the present invention is configured to change one of the front and rear wheel braking hydraulic pressure control signals in a direct 4WD state so that the difference in front and rear wheel braking torque does not become large when compared with the other. , a power transmission system directly connected to each other between the front differential 14 and the rear differential 16 (system including propeller shafts 15 and 17)
It is possible to prevent a large torsional torque from being applied to the wheel, and to prevent the vehicle behavior from becoming unstable due to the anti-skid control of the wheel associated with the other control signal being obstructed by the wheel associated with the one control signal. .

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明アンチスキツド制御装置の概念
図、第2図は本発明の一実施例を示すシステム
図、第3図及び第4図は同例におけるコントロー
ルユニツトの制御プログラムを示すフローチヤー
ト、第5図はアンチスキツド装置による制動液圧
及び制動液圧制御信号の制御態様を示すパターン
図である。 1……車輪、2……アンチスキツド装置、3…
…直結手段、4……前輪用デイフアレンシヤルギ
ヤ、5……後輪用デイフアレンシヤルギヤ、6…
…4輪駆動車、7……直結検出手段、8……制御
信号変更手段、10,11……前輪、12,13
……後輪、14……前輪用デイフアレンシヤルギ
ヤ、15,17……プロペラシヤフト、16……
後輪用デイフアレンシヤルギヤ、18……ブレー
キペダル、19……倍力装置、20……マスター
シリンダ、21……コントロールユニツト、22
……アクチユエータ、23〜26……ホイールシ
リンダ、27……プロポーシヨニンバルブ、28
……後輪回転センサ、29,30……前輪回転セ
ンサ、31……直結手段作動検出スイツチ。
Fig. 1 is a conceptual diagram of the anti-skid control device of the present invention, Fig. 2 is a system diagram showing an embodiment of the invention, Figs. 3 and 4 are flowcharts showing the control program of the control unit in the same embodiment, FIG. 5 is a pattern diagram showing how the anti-skid device controls the brake fluid pressure and the brake fluid pressure control signal. 1...Wheel, 2...Anti-skid device, 3...
...Direct connection means, 4... Differential gear for front wheels, 5... Differential gear for rear wheels, 6...
...4-wheel drive vehicle, 7... Direct connection detection means, 8... Control signal changing means, 10, 11... Front wheels, 12, 13
...Rear wheel, 14... Front wheel differential gear, 15, 17... Propeller shaft, 16...
Rear wheel differential gear, 18...brake pedal, 19...boost device, 20...master cylinder, 21...control unit, 22
... Actuator, 23-26 ... Wheel cylinder, 27 ... Proportion valve, 28
... Rear wheel rotation sensor, 29, 30 ... Front wheel rotation sensor, 31 ... Direct connection means operation detection switch.

Claims (1)

【特許請求の範囲】 1 前輪制動液圧及び後輪制動液圧を個々に制御
して車輪のロツクを防止するアンチスキツド装置
を具え、直結手段の適宜作動で前輪用デイフアレ
ンシヤルギヤ及び後輪用デイフアレンシヤルギヤ
に同じ回転を入力するようにした4輪駆動車にお
いて、 前記直結手段の作動を検出する直結検出手段
と、該直結手段の作動中、前後輪制動液圧を夫々
制御する制御信号の一方を他方に対し、前後輪制
動トルクの差が所定値以下となるように変更する
制御信号変更手段とを設けてなることを特徴とす
る4輪駆動車のアンチスキツド制御装置。
[Scope of Claims] 1. An anti-skid device that prevents the wheels from locking by individually controlling the front wheel brake hydraulic pressure and the rear wheel brake hydraulic pressure; In a four-wheel drive vehicle in which the same rotation is input to differential gears for use in the vehicle, the direct coupling detection means detects the operation of the direct coupling means, and the front and rear wheel braking hydraulic pressures are respectively controlled during the operation of the direct coupling means. An anti-skid control device for a four-wheel drive vehicle, comprising control signal changing means for changing one control signal with respect to the other so that the difference between front and rear wheel braking torques is equal to or less than a predetermined value.
JP7383885A 1985-04-08 1985-04-08 Antiskid controller for four-wheel drive vehicle Granted JPS61232955A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7383885A JPS61232955A (en) 1985-04-08 1985-04-08 Antiskid controller for four-wheel drive vehicle

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7383885A JPS61232955A (en) 1985-04-08 1985-04-08 Antiskid controller for four-wheel drive vehicle

Publications (2)

Publication Number Publication Date
JPS61232955A JPS61232955A (en) 1986-10-17
JPH032104B2 true JPH032104B2 (en) 1991-01-14

Family

ID=13529676

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7383885A Granted JPS61232955A (en) 1985-04-08 1985-04-08 Antiskid controller for four-wheel drive vehicle

Country Status (1)

Country Link
JP (1) JPS61232955A (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2757256B2 (en) * 1986-12-15 1998-05-25 富士重工業株式会社 Brake hydraulic pressure control method for hydraulic brake system for automobile
JP2707806B2 (en) * 1990-06-15 1998-02-04 三菱自動車工業株式会社 Anti-skid brake control method for four-wheel drive

Also Published As

Publication number Publication date
JPS61232955A (en) 1986-10-17

Similar Documents

Publication Publication Date Title
US4766988A (en) Circuit arrangement for controlling the engagement and disengagement of a clutch
EP1270305B1 (en) Driving force controlling apparatus and method for four-wheel drive vehicle
US4986388A (en) Driving force distribution control system for 4wd vehicle
US6575261B2 (en) Drive-force distribution controller
JPH0729558B2 (en) Drive force distribution controller for four-wheel drive vehicle
JPH0127896B2 (en)
JPH0472731B2 (en)
JP2002234355A (en) Control device for four-wheel drive vehicle
US6145614A (en) Four-wheel drive vehicle having differential-limiting control
JPS6137541A (en) Slip control brake system for total wheel driving type car
JP2583910B2 (en) Driving force distribution control method for front and rear wheel drive vehicles
US7322436B2 (en) Automatic axle traction control
JPH0572291B2 (en)
JPH032104B2 (en)
JPH04129837A (en) Driving force control device
WO2020240953A1 (en) Control system for vehicle
JP3451695B2 (en) Driving force distribution control system for front and rear wheels and left and right wheels
JP3325345B2 (en) Driving force control device for four-wheel drive vehicle
JP2929314B2 (en) Vehicle braking control device
JPH04151333A (en) Driving force controller
JP2688775B2 (en) Torque split type four-wheel drive vehicle
JPH0425410Y2 (en)
JP3397844B2 (en) Vehicle differential limiting control device
JPH044925Y2 (en)
EP1371514A1 (en) Automatic axle engagement system

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees