JPH0321002Y2 - - Google Patents

Info

Publication number
JPH0321002Y2
JPH0321002Y2 JP18408184U JP18408184U JPH0321002Y2 JP H0321002 Y2 JPH0321002 Y2 JP H0321002Y2 JP 18408184 U JP18408184 U JP 18408184U JP 18408184 U JP18408184 U JP 18408184U JP H0321002 Y2 JPH0321002 Y2 JP H0321002Y2
Authority
JP
Japan
Prior art keywords
sample
amplifier
current
electrons
signal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP18408184U
Other languages
Japanese (ja)
Other versions
JPS6199356U (en
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed filed Critical
Priority to JP18408184U priority Critical patent/JPH0321002Y2/ja
Publication of JPS6199356U publication Critical patent/JPS6199356U/ja
Application granted granted Critical
Publication of JPH0321002Y2 publication Critical patent/JPH0321002Y2/ja
Expired legal-status Critical Current

Links

Landscapes

  • Analysing Materials By The Use Of Radiation (AREA)

Description

【考案の詳細な説明】 イ 産業上の利用分野 X線マイクロアナライザによつて試料面から放
射される二次電子を検出して試料面の拡大映像を
形成することは一般に行われている。二次電子は
主として試料面の形状の情報を与えるものであ
る。所でX線マイクロアナライザを用いて、試料
の化学的な組成の分布状況の高倍率を得る方法が
望まれており、本考案はこのような方法に対応す
るものである。
[Detailed description of the invention] A. Field of industrial application It is common practice to detect secondary electrons emitted from a sample surface using an X-ray microanalyzer to form an enlarged image of the sample surface. Secondary electrons mainly provide information about the shape of the sample surface. There is a need for a method of obtaining a high magnification of the distribution of the chemical composition of a sample using an X-ray microanalyzer, and the present invention corresponds to such a method.

ロ 従来の技術 試料を加速した電子ビームで照射するとき、試
料からは二次電子と反射電子とが放射される。二
次電子と反射電子の違いは運動エネルギーの違い
で、二次電子は低エネルギーであり、反射電子は
試料から放出される電子のうちの高エネルギーを
有する成分である。試料に入射した電子は試料内
部(と云つてもきわめて浅い領域である)におい
て試料を構成している原子により散乱されて一部
が試料表面から脱出する。この場合原子番号の大
きい原子程電子が良く散乱され、そのときのエネ
ルギー損失が少いから、反射電子の量が多くな
る。従つて反射電子の量は試料表面近傍の元素分
布の情報を含んでおり、元素分布の映像を得るこ
とができる。元素分析の目的からは試料から放射
されるX線を分光する方法も用いられるが、測定
に時間がかゝるので、比較的短時間で元素分布の
映像が得られる反射電子法は魅力のある方法であ
る。しかし反射電子は方向性を有し、電子ビーム
の試料照射点における試料面と電子ビームとの傾
きにより反射電子の強く検出される方向が異るの
で、試料面の形状効果を相殺するためには試料の
周囲に複数の電流増幅作用をもつた、光電子増倍
管や半導体素子による反射電子検出手段を配置し
て、各検出器の出力を平均すると云つた演算が必
要であり、装置が複雑高価となる。
B. Prior Art When a sample is irradiated with an accelerated electron beam, secondary electrons and reflected electrons are emitted from the sample. The difference between secondary electrons and backscattered electrons is the difference in kinetic energy; secondary electrons have low energy, and backscattered electrons are high-energy components of the electrons emitted from the sample. The electrons incident on the sample are scattered by atoms constituting the sample inside the sample (although this is an extremely shallow region), and a portion of the electrons escapes from the sample surface. In this case, atoms with larger atomic numbers scatter electrons better and the energy loss at that time is smaller, so the amount of reflected electrons increases. Therefore, the amount of backscattered electrons contains information about the elemental distribution near the sample surface, and an image of the elemental distribution can be obtained. For the purpose of elemental analysis, a method of spectroscopy of X-rays emitted from a sample is also used, but the measurement takes time, so the backscattered electron method is attractive because it can obtain images of elemental distribution in a relatively short time. It's a method. However, backscattered electrons have directionality, and the direction in which backscattered electrons are strongly detected differs depending on the inclination of the sample surface at the sample irradiation point of the electron beam and the electron beam. It is necessary to arrange multiple backscattered electron detection means using photomultiplier tubes and semiconductor elements with current amplification functions around the sample, and to perform calculations such as averaging the output of each detector, making the equipment complex and expensive. becomes.

試料を電子ビームで照射したときの電荷の収支
を考えると、入射電子線電流から二次電子と反射
電子による電流を引算したものが試料電流として
試料からアース(装置本体)に流れていることに
なる。こゝで量的には二次電子より反射電子のほ
うが多く、殊に二次電子は原子番号に関係なく略
一定なので(第3図参照)、入射電子線電流が一
定の場合、反射電子と試料電流とは相反の関係に
あつて、試料電流も亦、試料の元素組成の情報を
含んだものとなつている。従つて試料電流を用い
て試料の元素組成像を形成することが可能であ
り、この場合、複数の反射電子検出手段を用いる
と云つた必要性がなく、装置構成が簡単安価とな
る利点があるが、実際問題としては反射電子の場
合のように電流増幅作用を持つた検出器が使え
ず、直接電流信号を扱うので信号レベルが低く、
このため高倍率像を得ようとすると応答速度が低
く、またS/N比が低下して、高倍率像は得られ
なかつた。
Considering the balance of charges when a sample is irradiated with an electron beam, the current obtained by subtracting the current due to secondary electrons and reflected electrons from the incident electron beam current flows from the sample to the ground (the device body) as the sample current. become. Quantitatively, there are more reflected electrons than secondary electrons, and in particular, secondary electrons are almost constant regardless of atomic number (see Figure 3), so if the incident electron beam current is constant, reflected electrons and In a reciprocal relationship with the sample current, the sample current also includes information on the elemental composition of the sample. Therefore, it is possible to form an image of the elemental composition of the sample using the sample current, and in this case, there is no need to use multiple backscattered electron detection means, and there is an advantage that the device configuration is simple and inexpensive. However, as a practical matter, a detector with a current amplification effect cannot be used as in the case of backscattered electrons, and the signal level is low because the current signal is directly handled.
For this reason, when attempting to obtain a high magnification image, the response speed was low and the S/N ratio was reduced, making it impossible to obtain a high magnification image.

ハ 考案が解決しようとする問題点 本考案は安価な装置構成で比較的迅速に試料の
組成分布の高倍率像が得られるようにしようとす
るものである。
C. Problems to be Solved by the Invention The present invention attempts to obtain a high-magnification image of the composition distribution of a sample relatively quickly with an inexpensive device configuration.

ニ 問題点解決のための手段 本考案は上述したような背景状況に鑑み、試料
電流を情報源とすることで安価な装置構造を可能
とし、信号レベルが低いことによる外部雑音の影
響を減らすことでS/N比の改善を行い、信号レベ
ルが低いため回路の各部の容量の影響を受けて応
答速度が低いのを試料電流アンプの入力容量を減
らすことで改善するもので、具体的には試料ホル
ダに試料電流アンプを組込み、信号ラインが延長
することによるアンプの入力容量の増加をなくし
て応答速度を高め、出力ラインのインピーダンス
をアースラインと同程度に低くして次段に差動ア
ンプを用いて外来雑音を相殺することでS/N比
を改善したものである。
D. Means for solving the problems In view of the above-mentioned background situation, the present invention aims to enable an inexpensive device structure by using the sample current as an information source, and to reduce the influence of external noise due to low signal levels. By improving the S/N ratio and reducing the input capacitance of the sample current amplifier, the response speed is low due to the low signal level and is affected by the capacitance of each part of the circuit. A sample current amplifier is built into the sample holder, eliminating the increase in input capacitance of the amplifier due to the extension of the signal line, increasing response speed, and lowering the impedance of the output line to the same level as the ground line, allowing a differential amplifier to be used in the next stage. The S/N ratio is improved by canceling out external noise.

ホ 実施例 第1図に本考案の一実施例を示す。1が試料
で、2は試料ホルダの本体である。試料1は試料
ホルダ2に適合嵌合して固定された絶縁材料の容
器3に収納されるようになつている。この容器3
の内面には導電皮膜が形成してある。試料ホルダ
本体2の底面には試料電流を電圧信号に変換する
試料電流アンプの基板4が、絶縁スペーサ6を介
して固設してある。7は容器3を試料ホルダ2に
固定するためのねじであり、容器3の底面を貫通
しているねじ5が試料電流アンプの基板4をスペ
ーサ6に押圧して、同基板を固定すると共に、容
器3の内面の導電皮膜と試料電流アンプの入力端
子とを電気的に接続している。8は試料1を容器
3に固定するねじである。Sは試料電流アンプの
電源ラインであり、Pは同アンプの信号出力ライ
ン、Eは同じくアースラインである。
E. Embodiment FIG. 1 shows an embodiment of the present invention. 1 is the sample, and 2 is the main body of the sample holder. The sample 1 is adapted to be housed in a container 3 of insulating material which is fitted and secured to the sample holder 2. This container 3
A conductive film is formed on the inner surface. A substrate 4 of a sample current amplifier for converting a sample current into a voltage signal is fixedly mounted on the bottom surface of the sample holder main body 2 via an insulating spacer 6. 7 is a screw for fixing the container 3 to the sample holder 2, and the screw 5 passing through the bottom of the container 3 presses the substrate 4 of the sample current amplifier against the spacer 6 to fix the same substrate, The conductive film on the inner surface of the container 3 and the input terminal of the sample current amplifier are electrically connected. 8 is a screw for fixing the sample 1 to the container 3. S is the power supply line of the sample current amplifier, P is the signal output line of the same amplifier, and E is also the ground line.

第2図は試料電流アンプの一例を示す。Aは高
利得のアンプで市販のFET入力の演算増幅器を
用いており、非反転端子は試料ホルダ本体に接続
されるアースである。試料電流はアンプAの反転
端子に入力される。試料電流はアンプAの負帰還
抵抗Rfを流れ、Rfにおける試料電流による電圧
降下が信号出力となる。抵抗Rfとしては1MΩ程
度の値が用いられ、試料電流1pAが1μVに変換さ
れ、試料電流は照射電子線の加速電圧30KV、照
射電子線電流400pA程度で0から400pAの間で変
化し、平均200pA程度であるから、アンプAの出
力電圧は平均0.2mV程度となり、以後の信号増幅
は容易である。出力信号ラインPとアースライン
Eが次段の差動アンプの二入力端子に接続される
が、アンプAは次段アンプから見て定電圧型電源
で出力信号ラインPはアースラインと同程度の低
いインピーダンスとなり、両ラインに同相で侵入
する雑音はこの二段目の差動アンプで相殺され
る。
FIG. 2 shows an example of a sample current amplifier. A is a high gain amplifier using a commercially available FET input operational amplifier, and the non-inverting terminal is the ground connected to the sample holder body. The sample current is input to the inverting terminal of amplifier A. The sample current flows through the negative feedback resistor Rf of amplifier A, and the voltage drop due to the sample current at Rf becomes a signal output. A value of about 1 MΩ is used as the resistance Rf, and the sample current of 1 pA is converted to 1 μV, and the sample current changes between 0 and 400 pA at an acceleration voltage of the irradiated electron beam of 30 KV and an irradiated electron beam current of about 400 pA, with an average of 200 pA. Therefore, the average output voltage of amplifier A is about 0.2 mV, and subsequent signal amplification is easy. Output signal line P and ground line E are connected to the two input terminals of the next-stage differential amplifier, but amplifier A is a constant-voltage power supply when viewed from the next-stage amplifier, and output signal line P is of the same level as the ground line. The impedance is low, and noise that enters both lines in the same mode is canceled out by this second stage differential amplifier.

ヘ 効果 本考案に係る試料ホルダを用いると、試料ホル
ダ内にインピーダンス変換用の試料電流アンプが
組込まれているので、試料電流をアンプ迄導くリ
ード線がなく、試料から同アンプに至る間の静電
容量がきわめて小さく、このため信号レベルが低
いにもかゝわらず応答速度が低下せず高倍率が得
易くなる。これはアンプの入力静電容量が小さく
なることによりアンプの応答速度が負帰還抵抗
Rfの浮遊容量だけで制限されることによるから
である。
F. Effect When using the sample holder of the present invention, since the sample current amplifier for impedance conversion is built into the sample holder, there is no lead wire to lead the sample current to the amplifier, and there is no static electricity between the sample and the amplifier. The capacitance is extremely small, so even though the signal level is low, the response speed does not decrease, making it easy to obtain high magnification. This is because the input capacitance of the amplifier becomes smaller, and the response speed of the amplifier decreases due to the negative feedback resistance.
This is because it is limited only by the stray capacitance of Rf.

また試料ホルダ内にインピーダンス変換用のア
ンプを組込んで、それから映像信号増幅回路に試
料電流信号を出力しているので、低インピーダン
スの信号ラインをアースラインとに混入する外来
の同相雑音成分は映像信号増幅回路を差動増幅器
とすることにより相殺され、もとの試料電流の信
号レベルが低いにもかゝわらず映像信号はS/N
比良く増幅できるのである。
Additionally, since an amplifier for impedance conversion is built into the sample holder and outputs the sample current signal to the video signal amplification circuit, external common-mode noise components that mix between the low-impedance signal line and the ground line are eliminated from the By using a differential amplifier as the signal amplification circuit, it is canceled out, and the video signal has a low S/N despite the low signal level of the original sample current.
It can be amplified relatively well.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本考案の一実施例の試料ホルダの縦断
側面図、第2図は同実施例における試料電流アン
プの回路図、第3図は反射電子、二次電子、試料
電流の相互関係を示すグラフである。
Fig. 1 is a longitudinal side view of a sample holder according to an embodiment of the present invention, Fig. 2 is a circuit diagram of a sample current amplifier in the same embodiment, and Fig. 3 shows the interrelationships among reflected electrons, secondary electrons, and sample current. This is a graph showing.

Claims (1)

【実用新案登録請求の範囲】[Scope of utility model registration request] 試料ホルダ本体に、試料と同ホルダ本体間を絶
縁し、試料と接する面に試料電流を導く導電面を
有する試料容器を固定し、上記試料ホルダ本体に
試料電流アンプを取付け、同アンプの信号入力端
子と上記試料容器の導電面とを接続した電子ビー
ムによる分析装置の試料ホルダ。
A sample container having a conductive surface that insulates the sample and the holder body and conducts the sample current on the surface in contact with the sample is fixed to the sample holder body, a sample current amplifier is attached to the sample holder body, and a signal input to the amplifier is performed. A sample holder for an electron beam analysis device in which a terminal and a conductive surface of the sample container are connected.
JP18408184U 1984-12-04 1984-12-04 Expired JPH0321002Y2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP18408184U JPH0321002Y2 (en) 1984-12-04 1984-12-04

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP18408184U JPH0321002Y2 (en) 1984-12-04 1984-12-04

Publications (2)

Publication Number Publication Date
JPS6199356U JPS6199356U (en) 1986-06-25
JPH0321002Y2 true JPH0321002Y2 (en) 1991-05-08

Family

ID=30741569

Family Applications (1)

Application Number Title Priority Date Filing Date
JP18408184U Expired JPH0321002Y2 (en) 1984-12-04 1984-12-04

Country Status (1)

Country Link
JP (1) JPH0321002Y2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4424950B2 (en) * 2003-09-10 2010-03-03 浜松ホトニクス株式会社 Electron beam detector and electron tube

Also Published As

Publication number Publication date
JPS6199356U (en) 1986-06-25

Similar Documents

Publication Publication Date Title
US4882486A (en) Electron detection with energy discrimination
GB2071403A (en) Secondary electron detector system for scanning electron microscope
JP3431228B2 (en) Charged particle detection device and charged particle irradiation device
JP3170680B2 (en) Electric field magnetic lens device and charged particle beam device
EP0397229B1 (en) X-ray measurement apparatus
JPH0321002Y2 (en)
US5059802A (en) Collimator for measuring radioactive radiation
CA1048163A (en) Process and apparatus for the elementary and chemical analysis of a sample by spectrum analysis of the energy of the secondary electrons
Chase et al. Amplifiers for use with pn junction radiation detectors
JPS61233958A (en) Ion detector
Russell et al. Microchannel plate detector for low voltage scanning electron microscopes
EP1162645A3 (en) Specimen inspection instrument
US3381132A (en) Electron detector for selectively detecting secondary electrons and high-energy reflected electrons
US3230372A (en) Nuclear radiation detector with control grid
CN106353785B (en) Sensor and detector based on avalanche photodiode
Slówko Directional detection of secondary electrons for electron beam profilography
Brewe et al. Silicon photodiode detector for a glancing‐emergence‐angle EXAFS technique
US3025404A (en) Radiation detector probes
JPS6233246Y2 (en)
US3351764A (en) Circuit for balancing out noise current in a photodiode using a d-c zero average waveform
JPS6014737A (en) Reflected electron detection apparatus
Radeka Semiconductor detectors and readout electronics: present directions and outstanding problems
JPS59219844A (en) Sample current detection device for electronic beam irradiation type analyzer
JP3345256B2 (en) Charged particle detector
SU1275586A1 (en) Scanning electron microscope