JPH03209582A - Method for estimating type of welding defect - Google Patents

Method for estimating type of welding defect

Info

Publication number
JPH03209582A
JPH03209582A JP2003508A JP350890A JPH03209582A JP H03209582 A JPH03209582 A JP H03209582A JP 2003508 A JP2003508 A JP 2003508A JP 350890 A JP350890 A JP 350890A JP H03209582 A JPH03209582 A JP H03209582A
Authority
JP
Japan
Prior art keywords
defect
welding
data
type
estimating
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2003508A
Other languages
Japanese (ja)
Other versions
JPH07119714B2 (en
Inventor
Shigetomo Matsui
繁朋 松井
Kosuke Itoga
糸賀 興右
Tetsuzo Harada
原田 鉄造
Koji Dojo
康二 道場
Koji Sugimoto
幸治 杉本
Sadao Inai
井内 貞夫
Katsuhiro Onda
恩田 勝弘
Takaaki Okumura
奥村 孝章
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Chubu Electric Power Co Inc
Kawasaki Heavy Industries Ltd
Original Assignee
Chubu Electric Power Co Inc
Kawasaki Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Chubu Electric Power Co Inc, Kawasaki Heavy Industries Ltd filed Critical Chubu Electric Power Co Inc
Priority to JP2003508A priority Critical patent/JPH07119714B2/en
Priority to US07/639,872 priority patent/US5182775A/en
Priority to DK91100359T priority patent/DK0437280T3/en
Priority to DE69129275T priority patent/DE69129275T2/en
Priority to EP91100359A priority patent/EP0437280B1/en
Priority to EP96112286A priority patent/EP0742433A3/en
Publication of JPH03209582A publication Critical patent/JPH03209582A/en
Publication of JPH07119714B2 publication Critical patent/JPH07119714B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Analysing Materials By The Use Of Radiation (AREA)

Abstract

PURPOSE:To make correspondence to estimation for the type or cause of a defective part by a skillful inspector by processing the data of a defect feature amount concerning welding defect, collating the data with respective defect estimation rules, applying the degree of conviction corresponding to the processing data to satisfy the defect estimation rules and estimating the type of the welding defect according to this degree of conviction in the manner of probability. CONSTITUTION:An experiences and skillful inspector 2, etc., equipped with the type rules based on a knowledge base according to the quantitative data concerning the welding defect feature amount, etc., or quantitatively uncertain information based on user input information applies the degree of conviction such as a weight coefficient and therefore, the respective rules, which can be expressed by the semantic network of the knowledge rule, are made parallel. Then, the data are collated with the rules by using the defect feature amount of a picture and the expert system of user input to a welding defect part 6. The degree of conviction is applied according to the contents of one satisfactory rule at least. Thus, the skillful inspector 2 can make correspondence to the estimation for the type or cause of the defective part.

Description

【発明の詳細な説明】 〈産業上の利用分野〉 開示技術は、発電所設備等の溶接構造物の溶接継手等の
溶接部分の溶接欠陥に対処するに、その欠陥のブローホ
ールや融合不良等の種類をX線等の放射線検査によるフ
ィルム画像やイメージインテンシッフイヤの画像からコ
ンピュータ等を介して推定する技術分野に属する。
[Detailed Description of the Invention] <Industrial Application Field> The disclosed technology is used to deal with welding defects in welded parts such as welded joints of welded structures such as power plant equipment, and to eliminate defects such as blowholes and poor fusion. It belongs to the technical field of estimating the type of image using a computer or the like from film images obtained by radiological examinations such as X-rays or images from image intensifiers.

〈要旨の概要〉 而して、この出願の発明は発電所設備の配管等の溶接継
手部分等の溶接部位にX線等の放射線を照射して該溶接
部分の透過像を得て、該透過像に現われる溶接欠陥を所
定の計器により計測し、その大きさや位置、傾き等の欠
陥特徴量を数量的なデータとし、該データを所定に処理
してブローホールや融合不良等の溶接欠陥の種類をフィ
ルム画像から推定する方法に関する発明であり、特に、
該欠陥特徴量相互の関係を溶接欠陥の種類ごとにデータ
の知識ベースとして構築し、所定数複数のルールを作成
し、溶接欠陥を検出する溶接部位のフィルム画像からの
欠陥特徴量を所定にデータ処理し、欠陥推定ルールとし
照合し選択的な照合の結果、所定の欠陥推定ルールを満
足する処理データに対しては直接的に確信度を付与し、
或いは、溶接者や検査者が当該溶接に関して保有してい
るユーザインプット情報と併せて綜合的に設定された推
定ルールと照合し、確信度を相互的に判断して最終的な
確信度を付与し、当該溶接欠陥の種類を推定する方法に
係る発明でおる。
<Summary of the gist> The invention of this application irradiates a welded part such as a welded joint part of piping of power plant equipment with radiation such as X-rays, obtains a transmitted image of the welded part, and obtains a transmitted image of the welded part. The welding defects that appear in the image are measured with a specified instrument, and the defect characteristics such as size, position, and inclination are converted into quantitative data, and the data is processed in a specified manner to determine the type of welding defect such as blowholes and poor fusion. This invention relates to a method for estimating from film images, and in particular,
The relationship between the defect features is constructed as a knowledge base of data for each type of welding defect, a predetermined number of rules are created, and the defect features from the film image of the welding site where welding defects are to be detected are set as data. Processed data is processed and compared as a defect estimation rule, and as a result of selective matching, a confidence level is directly assigned to the processed data that satisfies the predetermined defect estimation rule.
Alternatively, the welder or inspector compares the user input information they have regarding the welding with comprehensively set estimation rules, mutually determines the confidence level, and assigns the final confidence level. This invention relates to a method for estimating the type of welding defect.

〈従来技術〉 周知の如く、機械装置やプラント設備等は複雑な機構部
から成り立っており、機械的な組付部分は勿論のこと、
多くの溶接接合部分から成り立っているものが極めて多
い。
<Prior Art> As is well known, mechanical devices and plant equipment are made up of complex mechanical parts, and of course mechanical assembly parts,
Quite often they consist of many welded joints.

而して、かかる機械装置やプラント設備等の機能維持を
図るばかりでなく、プラント自身、及び、周辺に対する
安全性等を確保する点からもこれらの複雑な部分の結合
部分や接合部分の保守、点検整備等の管理が極めて重要
であることは当然のことである。
Therefore, not only to maintain the functions of such machinery and plant equipment, but also to ensure the safety of the plant itself and its surroundings, maintenance of the joints and joints of these complex parts, It goes without saying that management of inspection and maintenance is extremely important.

特に、発電設備等の大規模な設備であって、公共性が強
く、而も、その社会的存在価値が極めて重要な設備に於
いては定期、不定期を問わず、建設、保守、点検整備等
の管理が極めて重要であり、したがって、電気事業法や
規則等による適用の基に建設やメンテナンス時における
検査管理、特に、肉眼や単なる検査装置では内部の欠陥
部分が確認し得ないところから法令やJIS規格等によ
り非破壊検査法によるX線等の放射線透過試験等が規定
されており、又、かかる放射線透過試験によって得られ
るX線フィルム等によって摂られた溶接欠陥部分に対す
る検査、判定基準も厳しく定められている。
In particular, for large-scale facilities such as power generation facilities, which have a strong public nature and whose social existence value is extremely important, construction, maintenance, inspection and servicing, whether regular or irregular, are required. Therefore, inspection management at the time of construction and maintenance is required based on the Electricity Business Law and regulations, especially in areas where internal defects cannot be confirmed with the naked eye or with simple inspection equipment. Radiographic tests such as X-rays using non-destructive inspection methods are prescribed by JIS and JIS standards, and there are also inspection and judgment standards for welding defects detected by X-ray films etc. obtained by such radiographic tests. It is strictly defined.

しかしながら、かかるXIフィルムに写しだされた溶接
欠陥像を検査員が経験に基づいて肉眼により判定を行う
ことは、極めて高度の熟練を要し、而も、その結果が極
めて重要視されることから誤認が少なく、確からしい判
定結果が得られないという不興台があった。
However, it requires an extremely high level of skill for inspectors to visually judge the welding defect image shown on such XI film based on their experience, and the results are extremely important. There were complaints that there were few misidentifications and that reliable judgment results could not be obtained.

而も、熟練者による視覚的な検査、判定にはその判断基
準が微妙に異なり、而も、頻度や経時的な要素からその
疲労等が重なる場合があって、安定した定量的な客観的
判定が出来難い難点があった。
However, the criteria for visual inspection and judgment by experts are slightly different, and due to factors such as frequency and time, fatigue may overlap, making it difficult to make stable, quantitative, and objective judgments. The problem was that it was difficult to do so.

特に、溶接欠陥に於いてはその種類が非破壊的に予め判
定の結果確定されないと、具体的な対処手段を講するこ
とも出来ず、設備の運転や機能維持に重大な影響を及ぼ
し、又、安全上も疑問視されかね得ない不都合さがあっ
た。
In particular, unless the type of welding defect is determined in advance through non-destructive judgment, it is impossible to take specific countermeasures, which can seriously affect the operation and maintenance of equipment, and However, there were some inconveniences that could raise questions about safety.

したがって、X線フィルム等による溶接欠陥の種類を推
定的に判定することは発電事業等にとっては極めて重大
な問題であった。
Therefore, estimating the type of welding defect using X-ray film or the like is an extremely important problem for power generation projects and the like.

かかる点に対処するに、X線フィルムの画像処理のコン
ピュータシステムを介しての自動化と熟練検査員による
所謂エキスパートシステム化があり、例えば、中京大学
の輿水氏ら、又、大阪大学の井上氏らによる3ayes
則利用の検査システムが開発提案されてはいる。
To deal with this point, there is automation of image processing of X-ray film through computer systems and so-called expert systemization by skilled inspectors. For example, Mr. Koshimizu et al. of Chukyo University and Mr. Inoue et al. by 3ayes
Inspection systems using the rules have been developed and proposed.

〈発明が解決しようとする課題〉 しかしながら、これまで開発されてきた輿水氏や井上氏
らの検査判定システムは次のような問題があった。
<Problems to be Solved by the Invention> However, the inspection and determination systems developed by Mr. Koshimizu and Mr. Inoue have had the following problems.

即ち、前者の輿水氏らにより検査システムは論理フロー
による決定論的な手法で、所謂アルゴリズム処理方式で
あり、判断基準となる新たなルールの追加や論理の負荷
が極めて不便であるという難点があり、当該溶接欠陥部
分の寸法や複雑さ等の図形的なデータや欠陥近傍部分の
濃度や位置を使用する手段としているために、論理的な
フロー処理や計量的データ処理の利点はあるものの、経
験豊かな検査員の豊かな知識等をエキスパートシステム
として使用出来ない、或いは、付加出来ないという不都
合さがあった。
In other words, the inspection system proposed by Mr. Koshimizu et al. is a deterministic method based on a logical flow, a so-called algorithmic processing method, which has the disadvantage that it is extremely inconvenient to add new rules to serve as judgment criteria and is burdened with logic. Because the method uses graphical data such as the size and complexity of the welding defect and the concentration and position of the area near the defect, it has the advantage of logical flow processing and quantitative data processing, but it requires experience. There is an inconvenience that the rich knowledge of experienced inspectors cannot be used as an expert system or cannot be added to it.

そして、後者の井上氏らのシステムにおいては3aye
s則を用いるために、収集データが完全に整備されてお
らねばならず、例えば、9つの欠陥特徴量を必要とし、
上述同様エキスパートシステムとの融合が図られたり、
付加されたりする余地のないマイナス点があった。
In the latter system of Mr. Inoue et al., 3 aye
In order to use the s-law, the collected data must be completely organized, for example, nine defect features are required,
As mentioned above, integration with expert systems is being attempted,
There were negative points that could not be added.

〈発明の目的〉 この出願の発明の目的は上述従来技術に基づく溶接欠陥
に対する推論方式の問題点を解決すべき技術的課題とし
、予め構築された知識ベースに対し、放射線フィルムの
画像やイメージインチファイヤの画像から得られる溶接
欠陥特徴量とエキスパートシステムからの知識情報との
融合を効率的に図ることが出来、決定論的な手法による
誤りを避け、ファジー論的な確率論的確からしさを与え
、而も、新たなルールの追加や更新が容易で、収集デー
タの不十分さも許容出来、エキスパートシステムも加味
することも出来るようにして機械装置、設備プラント産
業における管理技術利用分野に益する優れた溶接欠陥の
種類推定方法を提供せんとするものである。
<Object of the invention> The object of the invention of this application is to solve the problems of the inference method for welding defects based on the above-mentioned prior art, and to solve the problems of the inference method for welding defects based on the above-mentioned prior art. It is possible to efficiently combine welding defect features obtained from fire images with knowledge information from an expert system, avoid errors caused by deterministic methods, and provide fuzzy probabilistic certainty. Moreover, it is easy to add and update new rules, can tolerate insufficient collected data, and can also take into account expert systems, making it an excellent product that benefits the field of use of management technology in the machinery equipment and equipment plant industries. The purpose of this paper is to provide a method for estimating the types of welding defects.

〈課題を解決するための手段・作用〉 上述目的に沿い先述特許請求の範囲を要旨とするこの出
願の発明の構成は前述課題を解決するために、発電設備
等の溶接構造物等に生ずる溶接欠陥に対処するべく、そ
の欠陥種類を推定するに際し、現場にてX線等の放射線
検査によりフィルムに溶接部分の画像を取り込んだり、
イメージインチファイヤから得られる画像を所定の計測
装置によりその欠陥画像を計測して欠陥データを特定数
量化してデータとし、データ処理した欠陥特徴量相互の
関係を種類ごとに見出して欠陥種類のための知識ベース
を構築し、種類によるルールを所定数複数並列化し、上
記当該溶接欠陥のフィルム画像から得られる欠陥特徴量
及び溶接技術者、及び、検査員の保有するユーザインプ
ット情報を併せてルールに照合し、所定のルールを満足
するデータの結果については所定の確信度を付与し、経
験豊かな検査員の処理手順や判定結果に可及的に近い欠
陥欠陥種類の推定をすることが出来るようにし、推定の
論理の変更や追加が容易でおり、而も、収集データの量
が必ずしも統計的に充分である必要がなく又、扱うデー
タが無次元化された相対的数量である必要もなく、ファ
ジー論的に信頼性の高い溶接欠陥種類を「確からしさ」
によって推定することが出来るようにした技術的手段を
講じたものである。
<Means/effects for solving the problem> In order to solve the above-mentioned problem, the structure of the invention of this application, which is summarized in the above-mentioned claims, is to solve the above-mentioned problem. In order to estimate the type of defect in order to deal with defects, we use on-site radiation inspection such as X-rays to capture images of welded parts on film.
The image obtained from Image Inch Fire is measured by a specified measuring device, the defect data is quantified into data, and the relationship between the data processed defect feature values is found for each type of defect. Build a knowledge base, parallelize a predetermined number of rules by type, and match the defect features obtained from the film image of the welding defect and user input information held by welding engineers and inspectors to the rules. Then, a predetermined degree of certainty is given to the results of data that satisfy predetermined rules, so that the defect type can be estimated as closely as possible to the processing procedures and judgment results of experienced inspectors. , it is easy to change or add to the estimation logic, and the amount of collected data does not necessarily have to be statistically sufficient, and the data to be handled does not have to be a dimensionless relative quantity. "Certainty" refers to types of welding defects that are highly reliable based on fuzzy theory.
This is a technical measure that allows estimation to be made based on the following.

〈発明の原理〉 次に、この出願の発明の原理を略説すると、従来の検査
員や判定者が現場にてX線検査装置等により摂り入れら
れたフィルム現像画像に対する肉眼的な観察による溶接
欠陥の判定からその種類や原因を推定したり、フィルム
画像を計測して数量的にその種類を推定することなく、
得られたフィルム画像やイメージインチファイヤからの
画像の特徴間を数量的にデータ化して知識ベースとする
と共に、検査員や判定者の経験的な豊富な知識ベースを
それらの両者の確信度とし知識ベースとし、これらの全
ての知識ベースを所定のルールとし、当該溶接物の画像
を照合し設定されたルールに選択的に照合して確信度を
累積することにより、最終的な当該溶接の欠陥の種類を
1〜ならば〜」の種類であると「確がらしさ」に6いて
推定するようにするものである。
<Principle of the Invention> Next, to briefly explain the principle of the invention of this application, conventional inspectors and judges can detect welding defects by macroscopic observation of developed film images taken by X-ray inspection equipment etc. on-site. There is no need to estimate the type or cause based on the determination of
In addition to converting the characteristics of the obtained film images and image images from the image inching fire into data quantitatively and creating a knowledge base, we also use the rich experiential knowledge base of inspectors and judges as their confidence level. By using all of these knowledge bases as predetermined rules, comparing the image of the welded object and selectively matching it with the set rules and accumulating the confidence level, the final defect in the welding can be determined. If the type is 1, then it is estimated that it is a type with a ``likelihood'' of 6.

〈実施例〉 次に、この出願の発明の実施例を図面に基づいて説明す
れば以下の通りである。
<Example> Next, an example of the invention of this application will be described below based on the drawings.

第7図に示す様に、この出願の発明の溶接欠陥の種類推
定方法は次に詳述する如く、当該溶接部分に対する放射
線検査装置によるフィルム上の画像から得られる測定デ
ータ、データから得られる溶接欠陥の特徴間に基づく知
識ベースのルール(イ)、(ロ)、(ハ)の確信度、及
び、溶接者や検査員の少なくともいずれか一方のみが経
験的に知り得るユーザインプット情報(ニ)、(ホ)に
よるルールとの照合の融合結果により総合的な確信度を
経て、例えば、当該溶接欠陥が融合不良であるとか、ス
ラグ巻き込み等の欠陥の「確からしさ」11を推定する
ことが出来るようにするものであり、上記ユーザインプ
ット情報に)、(ホ)については、例えば、溶接者のみ
が知り得る溶接条件、例えば、上向き溶接、下向き等の
溶接姿勢や溶接使用電流の大小、溶接ビードのスラグ、
スケールの状態、開先状態溶接の種類等を当該溶接者の
経験に基づく確信度によって付与して知識ベスとして所
定のルールを作成しておくようにするものであり、当該
第7図に示す様に、次述放射線による溶接欠陥部の画像
計測による欠陥特徴量の確信度くべ)、及び、上記ユー
ザインプット情報との比較データ(ト)との総合的な照
合による各ルールの並列的な対比検討による総合的な確
信度を経ることによって得られるものである。
As shown in FIG. 7, the method for estimating the type of welding defect according to the invention of this application is as follows. Confidence of knowledge-based rules (a), (b), and (c) based on defect characteristics, and user input information (d) that only at least one of the welder and inspector can know empirically , (e). Through the comprehensive certainty, it is possible to estimate the "certainty" 11 of defects such as poor fusion or slag entrainment of the welding defect. Regarding the above user input information) and (e), for example, welding conditions that only the welder can know, such as welding positions such as upward welding and downward welding, the magnitude of the welding current used, and the weld bead. slag,
The scale condition, groove condition, type of welding, etc. are assigned according to the degree of certainty based on the experience of the welder concerned, and predetermined rules are created as a knowledge base, as shown in Fig. 7. In addition, we conducted a parallel comparative study of each rule based on comprehensive comparison with the confidence level of the defect feature quantity based on the image measurement of the welding defect part by radiation described below) and the comparison data with the above user input information (g). This can be obtained by calculating the overall confidence level based on .

而して、一方の溶接特徴量については複雑な手順を経る
ものではあるが、ある意味では特定化し易い計測等の手
段によるデータ処理が可能であるものでもあり、そのル
ール化の具体的な手順は次の通りである。
On the other hand, although the welding feature quantity requires a complicated procedure, in a sense it is possible to process the data by means such as measurements that are easy to specify, and the specific procedure for creating rules is necessary. is as follows.

即ち、第1図に示す様に、発電所の配管設備等の現場1
において、検査員2が所定のX線等の放射線検査装置3
により当該配管等の溶接部分の溶接欠陥の放射線検査フ
ィルムを摂り、第2図に示す様に、画像フィルム4を経
て所定に現像し、当該画像フィルム4のビード5部分に
於ける画像に現われている溶接欠陥部(欠陥候補群を含
む)6の母材7,7間に於ける存在を確認し、所定の計
測装置により当該画像゛フィルム4に於ける溶接欠陥部
6を直接的に計測し、次に示す第1表のような欠陥特徴
量に関する入力情報を得る。
In other words, as shown in Figure 1, the site 1 of the power plant piping equipment, etc.
, the inspector 2 uses a predetermined radiographic inspection device 3 such as X-ray
A radiographic inspection film for welding defects in the welded part of the piping, etc. is taken by the operator, and as shown in FIG. The presence of the welding defect 6 (including a group of defect candidates) between the base metals 7 and 7 is confirmed, and the welding defect 6 in the image film 4 is directly measured using a predetermined measuring device. , obtain input information regarding defect features as shown in Table 1 below.

(以下余白) 第1表 尚、上記第1表のデータについては1番から5番までの
ものについては、先述従来技術の井上氏らによる溶接欠
陥性微量等において既に定義付けられているものでおり
、6番の平均濃度から10番の非直線性のデータについ
てはこの出願の発明において新規に付与することが出来
たものである。
(Leaving space below) Table 1 Furthermore, regarding the data in Table 1 above, items numbered 1 to 5 have already been defined in the previously mentioned conventional technology by Mr. Inoue et al. The nonlinearity data from No. 6 average density to No. 10 were newly provided in the invention of this application.

そして、このようなデータについては第4図に示す様に
、当該画像フィルム4から母材7,7間のビード5につ
いて溶接中心線8、及び、欠陥像6、及び、これらの傾
きφ等をモデルサンプル的な図形データとして補正して
おいてもよく、これらの第3.4図に示す様なフィルム
画像からの実測データに基づく溶接欠陥性微量のデータ
9を第5図に示す様な上記第1表の如く作成しておく。
Regarding such data, as shown in FIG. 4, the welding center line 8, defect image 6, and their inclination φ, etc. for the bead 5 between the base materials 7 and 7 can be obtained from the image film 4. The welding defect trace data 9 based on actual measurement data from film images as shown in Fig. 3.4 may be corrected as model sample graphic data. Create it as shown in Table 1.

したがって、当該第5図は上記第1表のデータの溶接欠
陥性微量を示しているものである。
Therefore, FIG. 5 shows the trace amounts of welding defects in the data in Table 1 above.

而して、当該第1表に示す様なフィルム画像から直接的
に計測器により実測されたデータに基づく溶接欠陥特!
!I!量については経験的にも明らかな如く、所定の溶
接欠陥性微量の間に特定の関係が見られるものであり、
例えば、第6図に示す様に、横軸に欠陥長(LLT)#
、又、縦軸に平坦性(FLT)をとると、 FLT =1/3 LLTの線形関係があって、その上
下に○印の融合不良部分と口中のスラグ巻き込みが分布
する特定の分布関係が得られ、したがって、該欠陥長(
1F旬と平坦性(FLT)との間の関係をデータの上記
第1表のデータの整理により一種の知識ベースの識別ル
ールが作成されることになり、当該第6図に示す実施例
においては、 1/311丁−0,2<FLT <1/8 LLT +
 0.3であり、且つ、[[1〈12であるデータ関係
であれば、識別ルールにより溶接欠陥が融合不良である
か、又は、スラグ巻き込みである確信度が0.95で必
る「確からしさ」との推定が得られるものとするように
決めておく。
Welding defect characteristics based on data directly measured by measuring instruments from film images as shown in Table 1 above!
! I! Regarding the amount, as is clear from experience, a specific relationship is observed between the predetermined welding defective trace amounts,
For example, as shown in Figure 6, the horizontal axis represents the defect length (LLT)
Also, if we take the flatness (FLT) on the vertical axis, there is a linear relationship of FLT = 1/3 LLT, and above and below there is a specific distribution relationship where the fused areas marked with ○ and the slag entrapment in the mouth are distributed. obtained, therefore the defect length (
A kind of knowledge-based identification rule is created by organizing the data in Table 1 regarding the relationship between 1F seasonality and flatness (FLT), and in the example shown in FIG. , 1/311-0,2<FLT <1/8 LLT +
If the data relationship is 0.3 and [[1<12, then the identification rule indicates that the confidence level that the welding defect is due to poor fusion or slag entrainment is necessarily 0.95. It is determined that an estimate of ``similarity'' can be obtained.

その場合の確信度の付与の方法としては、全データの数
に対する該当確率を用いてもよい。
In this case, as a method of assigning the certainty factor, a corresponding probability for the total number of data may be used.

勿論、上述実施例は溶接欠陥部6部分に対する溶接欠陥
特徴量の知識ベースとしての識別ルールの一例であり、
他の溶接欠陥特徴量の所定の関係においても、かかる知
識ベースの識別ルールが得られてこれらのルールが所定
数並列にセットされ得るものでおる。
Of course, the above-mentioned embodiment is an example of the identification rule as a knowledge base of the welding defect feature amount for the six welding defect parts,
Such knowledge-based identification rules can also be obtained for other predetermined relationships of welding defect features, and a predetermined number of these rules can be set in parallel.

このように得られた知識ベースとしての識別ルールくべ
)と上記溶接欠陥特徴量10、及び、前記ユーザインプ
ット情報(ト)とユーザインプット情報(ニ)、(ホ)
とが第7図に示す様に、総合的に各ルールについて照合
され、これらの各々の確信度が検討されて特定の確信度
が優先的に採用され得る場合には、当該確信度をもって
当該溶接欠陥部の種類や原因が所定に1確からしさ」と
して推定されることになり、或いは、これらを所定の確
信度計算法に基づいて総合的な確信度を得て、当該溶接
欠陥部の種類や原因や[確からしさ]を複合的な確信度
としての下すようにする。
Identification rules as a knowledge base obtained in this way), the above-mentioned welding defect feature quantity 10, and the above-mentioned user input information (g), user input information (d), (e)
As shown in Fig. 7, if the respective rules are checked comprehensively and each of these degrees of confidence is considered and a particular degree of certainty can be adopted preferentially, then the welding The type and cause of the welding defect can be estimated with a certain probability of 1, or the type and cause of the welding defect can be estimated based on a predetermined certainty calculation method to obtain a comprehensive confidence level. Causes and [certainty] should be determined as composite degrees of certainty.

又、溶接欠陥部に対する放射線検査装置による画像フィ
ルムによる当該欠陥部についての欠陥性微量のデータ処
理による知識ベースの識別ルールによる確信度付与の態
様としては、上述実施例の他に第8図乃至第10図に示
す様なデータ処理によるルール化がおり、第8図に示す
様に、当該フィルム画像4の欠陥部6について前記第1
表に示す様な各欠陥性微量を求めておぎ、これに対し第
9図に示す様な予め各種のデータに得られている各欠陥
特徴世についてのヒストグラムのデータベースをデータ
ベースとの照合により標準偏差1σ、2σ、3σのいず
れの範囲に入るかを求めて、例えば、ブローホールの場
合、その溶接欠陥について第9図に示す様に、alとC
2との間に標準偏差1σがある場合で濃度がblとb2
の間にあり、欠陥長がC2より小さい場合には各々次の
第2表に示す様に、 重み係数1.0.0.6.0.1とし、結果的に平坦性
の重み係数を1.0.1度についてのそれを0.6溶接
長についてのそれを0.1とし、各重み係数については
これを確信度とする。(したがって、検査員等の経験の
多少により重み係数や確信度が異なることから平均的に
経験年数、熟練度の豊かな検査員による重み係数、確信
度の付与が望ましい)する。
In addition to the above-mentioned embodiments, in addition to the above-mentioned embodiments, the reliability is given by the knowledge-based identification rule based on the processing of a small amount of defective data about the defective part using an image film taken by a radiographic inspection device for the welding defective part. Rules are created by data processing as shown in FIG. 10, and as shown in FIG.
Determine the trace amount of each defect as shown in the table, and compare it with the database of histograms for each defect feature obtained in advance from various data as shown in Figure 9 to find the standard deviation. For example, in the case of a blowhole, the welding defect is determined by determining whether it falls within the range of 1σ, 2σ, or 3σ.
If there is a standard deviation of 1σ between bl and b2, the concentration is bl and b2.
If the defect length is between C2 and the defect length is smaller than C2, the weighting coefficient is set to 1.0.0.6.0.1 as shown in Table 2 below, and as a result, the weighting coefficient of flatness is set to 1. .0.1 degree is 0.6, weld length is 0.1, and each weighting coefficient is set as the confidence level. (Therefore, since the weighting coefficients and confidence levels differ depending on the level of experience of the inspector, etc., it is desirable that the weighting coefficients and confidence levels be assigned by inspectors with an average of years of experience and skill.)

そして、欠陥性微量ごとに重み係数による確信度の計算
を行い、ユーザインプット情報の確信度との融合により
前述同様に最終的な確信度を決定する。
Then, a confidence level is calculated for each defective trace amount using a weighting coefficient, and the final confidence level is determined in the same manner as described above by combining the confidence level with the user input information.

尚、知識ベースの構築様式についてtよ上)ホ2実施例
の他にもあるものであることは勿論のことである。
Regarding the construction style of the knowledge base, it goes without saying that there are other methods in addition to the embodiments described above.

又、ユーザインプット情報については、溶接実施者や溶
接検査員とのインタビュー等により、予め確信度を得て
おく等の手順をとることも勿論のことでおる。
Regarding user input information, it is of course possible to take steps such as obtaining confidence in advance through interviews with welding personnel and welding inspectors.

かかる知識ベースの識別ルールの並列セットに対する照
合を介し、最終的な確信度により例えば、「もし〜なら
ば〜である。そして、その場合の確信度は〜である。」
のルール方式で当該溶接欠陥の種類や原因や表現し、決
定論的な種類や原因の確定を避けてファジー論的な「確
からしさ」の推定付与を行う。
Through matching against a parallel set of identification rules in such a knowledge base, the final confidence can be e.g. "If... then... then the confidence is...".
The type and cause of the welding defect are expressed using the rule method, and a fuzzy "certainty" estimate is given, avoiding deterministic determination of the type and cause.

勿論、先述した如く、複数の識別ルールに対する照合の
結果、複数の確信度が得られた場合には上述の如く、所
定の確信度計算法に基づいて最終的な総合確信度を付与
するようにする。
Of course, as mentioned above, if multiple confidence levels are obtained as a result of matching against multiple identification rules, a final overall confidence level is assigned based on a predetermined confidence level calculation method as described above. do.

この手順については第10,11.12図示すとおりで
ある。
This procedure is as shown in Figures 10, 11 and 12.

尚この出願の発明の実施例は溶接部の放射線透過像がフ
ィルムに敵影するだけのものには限らず、例えば、イメ
ージインデフ1イヤを介して直接デジタル画像として取
り込んでもCRT上に表示する等してもよいことは言う
までもない。
Note that the embodiment of the invention of this application is not limited to a case in which a radiographic image of a welded part is merely an image on a film; for example, it may be directly captured as a digital image through an image inverter and displayed on a CRT. It goes without saying that they may be equal.

〈発明の効果〉 以上、この出願の発明によれば、溶接欠陥特徴量等の定
量化されたデータによる知識ベースに基づく識別ルール
やユーザインプット情報に基づく定量的に不確定な情報
の経験豊かな、且つ、熟練した検査員等の重み係数等の
確信度付与による知識ベースの意味ネットワークで表現
可能なそれぞれのルールを並列化させ、それに当該溶接
欠陥部に対する画像の当該欠陥特徴量、及び、ユーザイ
ンプットによるエキスパートシステムを用いて照合を行
い、満足した少なくとも1つのルールの内容によって確
信度を付与することが出来るようにしたことにより、先
述した如く決定的な欠陥部の種類や原因の結論ではなく
、従来の統計的手法によらない「確からしさ」の推定を
行い、決定論的な手法による誤りを避けることが出来、
極めて熟練した検査員による現実的な欠陥部の種類や原
因の推定に対応することが著るしく近い確信度を付与す
ることが出来る効果があり、従来の輿水氏や井上氏らの
理論アルゴリズムや3ayes則に基づく新たなルール
の追加や論理の追加更新が困難であるというマイナス点
を除去し、新しいルールの追加や更新が著るしく容易で
あり、収集データの完全な補充が必要ではなく、収集可
能なデータによる推定が可能である利点がある効果もあ
る。
<Effects of the Invention> As described above, according to the invention of this application, identification rules based on a knowledge base based on quantified data such as welding defect feature values and quantitatively uncertain information based on user input information can be , and parallelize each rule that can be expressed in a knowledge-based semantic network by adding confidence levels such as weighting coefficients by a skilled inspector, and then calculate the defect features of the image for the welding defect and the user. By making it possible to perform verification using an input-based expert system and assigning confidence based on the content of at least one rule that is satisfied, it is not possible to draw a definitive conclusion on the type or cause of the defect as described above. , it is possible to estimate "likelihood" without using conventional statistical methods, and avoid errors caused by deterministic methods.
It has the effect of being able to provide a level of certainty that is extremely close to the estimation of realistic defect types and causes by highly skilled inspectors, and compared to the conventional theoretical algorithms of Mr. Koshimizu and Mr. Inoue, etc. It eliminates the negative point that it is difficult to add new rules or update logic based on the 3ayes rule, it is extremely easy to add new rules or update, and it does not require complete replenishment of collected data. Some effects have the advantage of being able to be estimated based on the data that can be collected.

而して、図形的な欠陥特徴量の寸法や複雑さ、そしてそ
の近傍の濃度や位置等の他に画像情報から得られる前記
第1表の如く、10種類の欠陥特徴量と熟練した検査員
等からのユーザインプット情報とを加味することにより
、従来性われていた人的推定即ち、経験豊かな検査員等
による推定に極めて近似した推定が行われるという効果
があり、現実に得られるだけのデータにより特徴量の統
計処理や偏差値に基づいて確信度を代えることが出来る
という柔軟性もある。
In addition to the size and complexity of graphical defect features, density and position in their vicinity, as shown in Table 1 above, which can be obtained from image information, 10 types of defect features and skilled inspectors can be found. By taking into account user input information such as There is also the flexibility of being able to change the confidence level based on statistical processing of feature amounts and deviation values depending on the data.

更に、場合によっては欠陥特徴量に関する情報以外の情
報をも組み込むことが出来るという柔軟性もある。
Furthermore, depending on the case, there is flexibility in that information other than information on defect feature quantities can also be incorporated.

【図面の簡単な説明】[Brief explanation of drawings]

図面はこの出願の発明の詳細な説明図であり、第1乃至
7図は1実施例のフロー図であり、第1図は現場におけ
る溶接欠陥部の欠陥部撮影の模式図、第2図は収集され
る画像フィルムの斜視図、第3図は画像フィルムの模式
平面図、第4図は同モデル化された画像フィルムの平面
図、第5図は欠陥特徴量データの表の斜視図、第6図は
所定の欠陥特徴量の識別ルールの相関図、第7図は欠陥
特徴量等の画像処理データとユーザインプット情報によ
る照合を介しての確信度付与の模式図、第8乃至第12
図はその実施例による確信度付与の模式フロー図であり
、第8図は画像フィルムの模式図、第9図は標準偏差と
ヒストグラムのグラフ図、第10図は標準偏差に対する
欠陥特wi量の重み係数及び確信度の累積の模式図、第
11図は確信度の照合を介しての融合模式図、第12図
は総合的確信度付与の模式図である。 4・・・画像フィルム 6・・・溶接部位
The drawings are detailed explanatory drawings of the invention of this application, and Figs. 1 to 7 are flowcharts of one embodiment. Fig. 1 is a schematic diagram of photographing a defective part of a welding defect in the field, and Fig. 2 is a flowchart of one embodiment. FIG. 3 is a schematic plan view of the image film; FIG. 4 is a plan view of the modeled image film; FIG. 5 is a perspective view of a table of defect feature data; Figure 6 is a correlation diagram of identification rules for predetermined defect feature quantities, Figure 7 is a schematic diagram of confidence imparting through comparison between image processing data such as defect feature quantities and user input information, and Figures 8 to 12.
The figure is a schematic flowchart of reliability imparting according to the embodiment, Fig. 8 is a schematic diagram of an image film, Fig. 9 is a graph of standard deviation and histogram, and Fig. 10 is a graph of defect characteristic wi amount with respect to standard deviation. FIG. 11 is a schematic diagram of the accumulation of weighting coefficients and confidence degrees, FIG. 11 is a schematic diagram of fusion through verification of confidence degrees, and FIG. 12 is a schematic diagram of giving comprehensive confidence degrees. 4...Image film 6...Welding area

Claims (4)

【特許請求の範囲】[Claims] (1)溶接部位に対する放射線照射によって得られる画
像に現われる溶接欠陥の計測による複数の欠陥特徴量を
データとし該データの処理を介して溶接欠陥の種類を推
定する方法において、該溶接欠陥の種類ごとに知識ベー
スとして所定数の欠陥推定ルールを作成しておき、当該
溶接欠陥の欠陥特徴量のデータを処理して各欠陥推定ル
ールと照合し、欠陥推定ルールを満足する処理データに
対応する確信度を付与し、該確信度により当該溶接欠陥
の種類を確率的に推定することを特徴とする溶接欠陥の
推定方法。
(1) In a method of estimating the type of welding defect by processing the data using multiple defect feature values obtained by measuring the welding defect appearing in an image obtained by irradiating the welding site with radiation, A predetermined number of defect estimation rules are created as a knowledge base in advance, and the defect feature data of the welding defect is processed and compared with each defect estimation rule, and the confidence level corresponding to the processed data that satisfies the defect estimation rules is calculated. A method for estimating a welding defect, characterized in that the type of the welding defect is probabilistically estimated based on the certainty factor.
(2)上記欠陥特徴量相互の関係を定量的にルール化し
ておくようにすることを特徴とする特許請求の範囲第1
項記載の溶接欠陥の推定方法。
(2) Claim 1 characterized in that the relationship between the defect feature quantities is quantitatively established as a rule.
Method for estimating welding defects described in section.
(3)上記欠陥特徴量を既知のデータに基づく欠陥種類
ごとの頻度分布データベースと対比してその偏差範囲を
求めて確信度を付与するようにしたことを特徴とする特
許請求の範囲第1項記載の溶接欠陥の推定方法。
(3) Claim 1, characterized in that the defect feature amount is compared with a frequency distribution database for each defect type based on known data, and a deviation range is determined and a confidence level is given. Described method for estimating welding defects.
(4)溶接部位に対する放射線照射によつて得られる画
像に現われる溶接欠陥の計測による複数の欠陥特徴量を
データとし該データの処理を介して溶接欠陥の種類ごと
に知識ベースとして所定数の欠陥推定ルールを作成して
おき、当該溶接欠陥の欠陥特徴量のデータを処理すると
共に溶接者と検査員の少なくともいずれか一方のみが有
する当該溶接に関するユーザーインプット情報と併せて
上記欠陥推定ルールと照合し、欠陥推定ルールを満足す
る処理データに対応する確信度を付与し、該確信度によ
り当該溶接欠陥の種類を確率的に推定することを特徴と
する溶接欠陥の推定方法。
(4) Estimating a predetermined number of defects as a knowledge base for each type of welding defect by using multiple defect feature quantities as data by measuring welding defects that appear in images obtained by irradiating the welding site with radiation, and processing the data. A rule is created in advance, and the defect feature data of the welding defect is processed and compared with the defect estimation rule along with user input information regarding the welding that only at least one of the welder and the inspector has. A method for estimating a welding defect, comprising: assigning a degree of certainty corresponding to processed data that satisfies a defect estimation rule, and probabilistically estimating the type of the welding defect based on the degree of certainty.
JP2003508A 1990-01-12 1990-01-12 Weld defect type estimation method Expired - Fee Related JPH07119714B2 (en)

Priority Applications (6)

Application Number Priority Date Filing Date Title
JP2003508A JPH07119714B2 (en) 1990-01-12 1990-01-12 Weld defect type estimation method
US07/639,872 US5182775A (en) 1990-01-12 1991-01-11 Method of processing radiographic image data for detecting a welding defect
DK91100359T DK0437280T3 (en) 1990-01-12 1991-01-14 Method for processing radiographic image data for detection of a weld defect
DE69129275T DE69129275T2 (en) 1990-01-12 1991-01-14 Process for processing x-ray image data to determine welding defects
EP91100359A EP0437280B1 (en) 1990-01-12 1991-01-14 A method of processing radiographic image data for detecting a defect of welding
EP96112286A EP0742433A3 (en) 1990-01-12 1991-01-14 A method of processing radiographic image data for detecting a defect of welding

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003508A JPH07119714B2 (en) 1990-01-12 1990-01-12 Weld defect type estimation method

Publications (2)

Publication Number Publication Date
JPH03209582A true JPH03209582A (en) 1991-09-12
JPH07119714B2 JPH07119714B2 (en) 1995-12-20

Family

ID=11559298

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003508A Expired - Fee Related JPH07119714B2 (en) 1990-01-12 1990-01-12 Weld defect type estimation method

Country Status (1)

Country Link
JP (1) JPH07119714B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2962568A1 (en) * 2010-07-09 2012-01-13 Renault Sa PROCESS FOR CONTROLLING THE QUALITY OF A WELD
JP2023043814A (en) * 2021-09-16 2023-03-29 ライトブラザーズ・カンパニー・リミテッド Apparatus, method, computer-readable storage medium for non-destructive inspection of bicycle based on analyzing amount of scale value change

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114270181A (en) * 2020-07-16 2022-04-01 日挥环球株式会社 Inspection system, determination processing device, and inspection method

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2962568A1 (en) * 2010-07-09 2012-01-13 Renault Sa PROCESS FOR CONTROLLING THE QUALITY OF A WELD
WO2012004491A3 (en) * 2010-07-09 2012-03-29 Renault S.A.S. Method for inspecting the quality of a solder joint
CN102985211A (en) * 2010-07-09 2013-03-20 雷诺股份公司 Method for inspecting the quality of a solder joint
JP2013538687A (en) * 2010-07-09 2013-10-17 ルノー エス.ア.エス. Quality inspection method for solder joints
JP2023043814A (en) * 2021-09-16 2023-03-29 ライトブラザーズ・カンパニー・リミテッド Apparatus, method, computer-readable storage medium for non-destructive inspection of bicycle based on analyzing amount of scale value change

Also Published As

Publication number Publication date
JPH07119714B2 (en) 1995-12-20

Similar Documents

Publication Publication Date Title
Gros NDT data fusion
Golabchi et al. Automated building information modeling for fault detection and diagnostics in commercial HVAC systems
Faqih et al. Defect-based building condition assessment
CN114862745A (en) Weld defect identification method, and training method and device of weld defect identification model
Egorova et al. Synthesis of an adaptive system for diagnosing the quality of automated welding products
KR20230013206A (en) Welding area inspection system and method thereof for assessing the risk based on artificial intelligence
JPH03209582A (en) Method for estimating type of welding defect
Alverbro et al. Methods for risk analysis
Lardner et al. Automated sizing and classification of defects in CANDU pressure tubes
Xu et al. Intelligent corrosion detection and rating based on faster region-based convolutional neural network
Meeker RB Thompson's contributions to model assisted probability of detection
Stazić et al. Testing of the evaluation methodology for Ship’s Planned Maintenance System Database
Lardner et al. An expert-systems approach to automatically determining flaw depth within candu pressure tubes
WO2022209169A1 (en) Information processing device, determination method, and determination program
Parker et al. A Survey of NASA Standard Nondestructive Evaluation (NDE)
Lau Reducing measurement error in magnetic particle inspection through the optimization of process parameters and artificially intelligent solutions
Voelker Quantitative surface inspection methods for metal castings
de Souza Oliveira et al. Application of Framework for Risk Assessment in Ultrasonic Testing (UT) of Critical Parts–A Case Study
Verma et al. Risk-informed decision making in nuclear power plants
Siddig Probabilistic Graphical Model for Sizing Assessment in Ultrasonic Testing in Dissimilar Metal Weld
Lin et al. Bridge Inspection with Aerial Robots and Computer Vision: A Japanese National Initiative
Lee et al. Damage Detection and Damage Quantification of Temporary works Equipment based on Explainable Artificial Intelligence (XAI).
KR20240064956A (en) Pipe wall-thinning condition diagonosis system using ai vision technology and diagonosis method using this
CN117994191A (en) Method for identifying defects of welding ray film
Alidrisi et al. Weqaa: An Intelligent Mobile Application for Real-Time Inspection of Fire Safety Equipment

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees