JPH03209438A - Electrooptical device - Google Patents

Electrooptical device

Info

Publication number
JPH03209438A
JPH03209438A JP2005250A JP525090A JPH03209438A JP H03209438 A JPH03209438 A JP H03209438A JP 2005250 A JP2005250 A JP 2005250A JP 525090 A JP525090 A JP 525090A JP H03209438 A JPH03209438 A JP H03209438A
Authority
JP
Japan
Prior art keywords
electro
electrode
optical device
wiring electrode
composition ratio
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2005250A
Other languages
Japanese (ja)
Inventor
Yoshiki Kuroda
吉己 黒田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Seiko Instruments Inc
Original Assignee
Seiko Instruments Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Seiko Instruments Inc filed Critical Seiko Instruments Inc
Priority to JP2005250A priority Critical patent/JPH03209438A/en
Publication of JPH03209438A publication Critical patent/JPH03209438A/en
Pending legal-status Critical Current

Links

Landscapes

  • Liquid Crystal (AREA)

Abstract

PURPOSE:To obtain uniform picture display by changing the composition ratio of a base material corresponding to a resistance value from the terminal part of a wiring electrode. CONSTITUTION:A transparent electrode 32 is defined as a scanning electrode and a wiring electrode 31 is defined as a data electrode and driven by time division drive. A transparent substrate 21 is made of normal glass such as soda glass, etc., and for a transparent picture element electrode 22, an indium tin oxide film (ITO) is deposited to the whole surface of the transparent substrate 21 by a means such as magnetron sputtering and deposition, etc., and next patterned to a prescribed shape by photoetching. Corresponding to the resistance from the terminal part of the wiring electrode 31, the composition ratio of an a-Si base material is changed. Thus, the uniform picture display can be obtained and gradation display and full color can be easily realized.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、パーソナルコンピュータ用デイスプレー ハ
ンドベルトコンピュータ用ディスプレー各種計測機のデ
イスプレーテレビ、プリンタ用シャッターなどに使用さ
れる多数の画素を有する電気光学装置に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to an electrical device having a large number of pixels used in displays for personal computers, displays for hand belt computers, displays for various measuring instruments, televisions, shutters for printers, etc. Related to optical devices.

〔発明の概要〕[Summary of the invention]

本発明はa−3iをベース材料とする非線形抵抗素子や
TPTなどのスイッチング素子を有する電気光学装置に
おいて、配線材料の端子部からの抵抗値に応じてa−3
iベース材料の組成比を変えてやることにより、均一な
画面表示が可能となりかつ、階調表示、フルカラー化が
容易になることにより高画質の電気光学装置を提供でき
るようにしたものである。
The present invention provides an electro-optical device having a switching element such as a nonlinear resistance element or TPT using a-3i as a base material, in which the a-3
By changing the composition ratio of the i-base material, uniform screen display is possible, and gradation display and full-color display are facilitated, thereby making it possible to provide an electro-optical device with high image quality.

〔従来の技術〕[Conventional technology]

我々は、非線形抵抗素子としてシリコン窒化膜シリコン
酸化膜、シリコン窒化酸化膜あるいはシリコン炭化膜を
用いた電気光学装置用非線形抵抗素子又はa−SiTF
Tを開発してきた。
We are developing a nonlinear resistance element for electro-optical devices using a silicon nitride film, silicon oxide film, silicon nitride oxide film, or silicon carbide film as a nonlinear resistance element, or a-SiTF.
We have developed T.

これらのa−3iベース膜は、プラズマCVD装置やス
パッタリング装置を用いて、同一基板上面に出来るたけ
均一な組成で成膜してきた。
These a-3i base films have been formed with as uniform a composition as possible on the upper surface of the same substrate using a plasma CVD device or a sputtering device.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

近年液晶を用いた電気光学装置の大容量化、高画質化に
伴い、配線電極の長距離化、微細化が必須となっている
。配線電極の抵抗は、端子部からの距離に比例して高く
なるが、電極の幅が細くかつ長くなるにつれて、その値
は大きくなる。そのことによる走査波形、データー波形
のなまりにより電圧降下が生じ、−画面内で表示ムラが
発生することになる。
In recent years, as electro-optical devices using liquid crystals have become larger in capacity and have higher image quality, it has become essential to lengthen and miniaturize wiring electrodes. The resistance of a wiring electrode increases in proportion to the distance from the terminal portion, and its value increases as the width of the electrode becomes narrower and longer. This causes a voltage drop due to the rounding of the scanning waveform and data waveform, which causes display unevenness within the screen.

本発明は、a−3iをベース材料とするスイッチング素
子を有する電気光学装置において、配線電極の端子部か
らの抵抗値に応じてa−3iベス材料の組成比を変える
ことにより、均一な画面表示を得られるようにしたもの
である。
The present invention provides a uniform screen display by changing the composition ratio of the a-3i base material in accordance with the resistance value from the terminal part of the wiring electrode in an electro-optical device having a switching element using a-3i as the base material. It is designed so that you can obtain

〔課題を解決するための手段〕[Means to solve the problem]

本発明の電気光学装置は上記問題点を解決するものてあ
り、a−8iをベース材料とするスイッチング素子を用
いた電気光学装置において、配線電極の端子部からの抵
抗値に応じてa−3iベス材料の組成比を変えたもので
ある。
The electro-optical device of the present invention solves the above problems, and in an electro-optical device using a switching element using a-8i as a base material, the a-3i The composition ratio of the base material is changed.

〔作用〕[Effect]

上記のようにa−Siをベース材料とするスイッチング
素子を用いた電気光学装置において、配線電極の端子部
からの抵抗に応じてa−3iベース材料の組成比を変え
ることにより、均一な画面表示を得られると共に、階調
表示、フルカラー化が容易になることにより高画質の電
気光学装置となる。
As mentioned above, in an electro-optical device using a switching element using a-Si as a base material, uniform screen display can be achieved by changing the composition ratio of the a-3i base material depending on the resistance from the terminal part of the wiring electrode. At the same time, gradation display and full-color display become easy, resulting in an electro-optical device with high image quality.

〔実施例〕〔Example〕

以下に、この発明の実施例を図面に基づいて説明する。 Embodiments of the present invention will be described below based on the drawings.

第1図(A)は、この発明を適用した実施例の画素電極
構造の平面図であり、第1図(B)は、゛非線形抵抗素
子の断面図である。
FIG. 1(A) is a plan view of a pixel electrode structure of an embodiment to which the present invention is applied, and FIG. 1(B) is a sectional view of a nonlinear resistance element.

第2図(A)は、本発明による液晶表示装置の非線形抵
抗素子を形成した基板の一実施例を示す斜視図であり、
一画素のみを拡大して示すもので、液晶層、液晶を封入
するための対抗側基板、偏向板等は説明を簡単にするた
めに省略した。第2図(B)は、本発明による液晶表示
装置の縦断面構造の一画素について明示した図である。
FIG. 2(A) is a perspective view showing an embodiment of a substrate on which a nonlinear resistance element of a liquid crystal display device according to the present invention is formed;
Only one pixel is shown in an enlarged manner, and the liquid crystal layer, the opposing substrate for sealing the liquid crystal, the deflection plate, etc. are omitted for the sake of simplicity. FIG. 2(B) is a diagram clearly showing one pixel of the vertical cross-sectional structure of the liquid crystal display device according to the present invention.

第3図は、本発明の非線形抵抗素子を用いた液晶表示装
置の回路図を示している。第3図において、透明電極3
2は本実施例では480本の走査電極、また31配線電
極は640本のデルタ−電極とし、480分割の時分割
駆動で駆動させた。
FIG. 3 shows a circuit diagram of a liquid crystal display device using the nonlinear resistance element of the present invention. In FIG. 3, transparent electrode 3
In this example, 2 is 480 scanning electrodes, and 31 wiring electrodes are 640 delta electrodes, and they are driven by time-division driving of 480 divisions.

第2図(A)において、21は透明基板であり、ソーダ
ガラスなどの通常のガラスで作られている。
In FIG. 2(A), 21 is a transparent substrate, which is made of ordinary glass such as soda glass.

22は透明画素電極であり、インジウムスズ酸化HCI
TO)をマグネトロンスパッタリング、蒸着等の手段に
よって透明基板21の全面に約100から500Aデポ
ジシヨンし、次にフォトエツチングによって所定形状に
バターニングしたものである。24はシリコンを主成分
とするるアモルファス材料であり、シリコン単結晶もし
くはシリコン多結晶のターゲットを用いて、チッソガス
約5〜15%含んだアルゴンガスを使用し、縦型通過式
マグネトロンスパッタリング装置によって反応性スパッ
タリング法で約500〜1500Aの水素をほとんど含
まないシリコン窒化膜を堆積した。また本実施例では図
4に示したように基板の進行方向は配線電極のラインに
対して直角方向とし、チッソのガス吹き出し口の穴の径
を端子部に近い程大きく、または穴のピッチを端子部に
近い程小さくすることにより、チッソの吹き出る量を端
子部に近い程多くするようにしてシリコン窒化膜を形成
した。このことによりシリコン窒化膜の組成は、端子部
から遠い程シリコンリッチとなった。13は配線電極で
行列電極の一方を構成する。
22 is a transparent pixel electrode, made of indium tin oxide HCI
TO) is deposited at about 100 to 500 A over the entire surface of the transparent substrate 21 by means such as magnetron sputtering or vapor deposition, and then patterned into a predetermined shape by photoetching. 24 is an amorphous material whose main component is silicon, and it is reacted by a vertical pass-through magnetron sputtering device using a silicon single crystal or silicon polycrystal target and argon gas containing about 5 to 15% nitrogen gas. A silicon nitride film containing almost no hydrogen was deposited with a thickness of about 500 to 1500 A using a chemical sputtering method. In addition, in this example, as shown in FIG. 4, the direction of board movement is perpendicular to the line of the wiring electrodes, and the diameter of the Nisso gas outlet hole is made larger as it approaches the terminal, or the pitch of the holes is adjusted. The silicon nitride film was formed by reducing the amount of nitrogen closer to the terminal portion so that the amount of nitrogen blown out increased closer to the terminal portion. As a result, the composition of the silicon nitride film became richer in silicon as the distance from the terminal portion increased. A wiring electrode 13 constitutes one of the matrix electrodes.

本実施例においてはアルミニウムシリコンもしくはクロ
ム金属を非線形抵抗薄膜14上に同一チャンバー内もし
くは別のチャンバー内で、連続してマグネトロンスパッ
タリング法によって約1000から8000Aデポジシ
ヨンした。次にフォトエツチングによって金属配線電極
13が所定形状にパターニングされる。その後、非線形
抵抗薄膜14がフォトエツチングによって所定形状にパ
タニングされた。
In this example, aluminum silicon or chromium metal was deposited on the nonlinear resistive thin film 14 at approximately 1000 to 8000 A by continuous magnetron sputtering in the same chamber or in a separate chamber. Next, the metal wiring electrode 13 is patterned into a predetermined shape by photoetching. Thereafter, the nonlinear resistance thin film 14 was patterned into a predetermined shape by photoetching.

第2図(B)は本発明による液晶表示装置の縦断面図で
ある。26は液晶層であり、厚さは5〜7μmでありツ
イストネマチック材料を使用した。
FIG. 2(B) is a longitudinal sectional view of a liquid crystal display device according to the present invention. Reference numeral 26 denotes a liquid crystal layer, which has a thickness of 5 to 7 μm and is made of twisted nematic material.

25は配向膜であり誘電率、抵抗を考慮したポリイミド
材料を使用し、27は透明導電膜(ITO)であり行列
電極の一方の電極群を構成している。
Reference numeral 25 is an alignment film made of polyimide material with consideration of dielectric constant and resistance, and reference numeral 27 is a transparent conductive film (ITO) constituting one electrode group of the matrix electrodes.

また、28は偏向板である。Further, 28 is a deflection plate.

本発明による液晶表示装置と従来の液晶表示装置を比較
すると画面表示に顕著な差があり、従来の液晶表示装置
つまりシリコン酸化膜もしくはシリコン窒化膜を均一に
堆積させたものでは、配線電極のラインに沿って抵抗に
よる電圧降下現象が表われており、駆動電圧を0ボルト
から徐々に上げていくと端子部から表示し始めるという
現象になる。特に配線電極としてクロムを用いたもので
は、端子部と端子部から最も遠い画素とでは、表示し始
めの電圧レベルが1〜2vの差があった。
When comparing the liquid crystal display device according to the present invention and the conventional liquid crystal display device, there is a noticeable difference in screen display. A voltage drop phenomenon due to resistance appears along the line, and as the drive voltage is gradually increased from 0 volts, the display starts to appear from the terminal area. In particular, in the case where chromium was used as the wiring electrode, there was a difference of 1 to 2 V in voltage level at the beginning of display between the terminal portion and the pixel farthest from the terminal portion.

しかし、本発明による液晶表示装置では、配線電極の抵
抗で電圧降下したとしても、非線形抵抗薄膜の組成比を
変え、非線形抵抗素子のしきい値特性を低くすることに
よって電圧降下分を補っているので、駆動電圧をOvか
ら徐々に上げていった場合、画面は全体的に均一に表示
し始めた。
However, in the liquid crystal display device according to the present invention, even if the voltage drops due to the resistance of the wiring electrodes, the voltage drop is compensated for by changing the composition ratio of the nonlinear resistive thin film and lowering the threshold characteristics of the nonlinear resistive element. Therefore, when the driving voltage was gradually increased from Ov, the screen began to display uniformly throughout.

〔発明の効果〕〔Effect of the invention〕

以上説明したように、本発明による電気光学装置では、
配線電極の端子部からの抵抗値に応じてa−3iベース
材料の組成比を変えて、非線形抵抗素子のしきい値特性
を変えことにより、均一な画面表示が得られると共に、
階調表示・フルカラー化が容易になることにより高画質
の電気光学装置が得られる。
As explained above, in the electro-optical device according to the present invention,
By changing the composition ratio of the a-3i base material according to the resistance value from the terminal part of the wiring electrode and changing the threshold characteristics of the nonlinear resistance element, a uniform screen display can be obtained.
By facilitating gradation display and full-color display, an electro-optical device with high image quality can be obtained.

【図面の簡単な説明】[Brief explanation of drawings]

第1図(A)は本発明の実施例を示す画素電極の平面図
、第1図は(B)非線形抵抗素子の断面図、第2図(A
)、(B)はそれぞれ基板の電極構成斜視図と液晶表示
装置の縦断面図、第3図は非線形抵抗素子を用いた液晶
表示装置の回路図、第4図は本発明の実施例を示す通過
式スパッタリング装置のガス吹き出し口を示す図である
。 11.21.41・・・透明基板 12.22・・・・・・透明画素電極 13.24.31・・・配線電極 14.23・・・非線形抵抗膜 15.34・・・非線形抵抗素子 25・・・・・・配向膜 26.33・・・液晶 27.32・・・透明電極 28・・・・・・偏向板
FIG. 1(A) is a plan view of a pixel electrode showing an embodiment of the present invention, FIG. 1(B) is a cross-sectional view of a nonlinear resistance element, and FIG.
) and (B) are respectively a perspective view of the electrode structure of the substrate and a vertical cross-sectional view of the liquid crystal display device, FIG. 3 is a circuit diagram of a liquid crystal display device using a nonlinear resistance element, and FIG. 4 shows an embodiment of the present invention. FIG. 3 is a diagram showing a gas outlet of a pass-through sputtering device. 11.21.41...Transparent substrate 12.22...Transparent pixel electrode 13.24.31...Wiring electrode 14.23...Nonlinear resistance film 15.34...Nonlinear resistance element 25... Alignment film 26. 33... Liquid crystal 27. 32... Transparent electrode 28... Deflection plate

Claims (6)

【特許請求の範囲】[Claims] (1)a−Siをベース材料とするスイッチング素子を
用いた電気光学装置において、配線電極の端部からの抵
抗値に応じてa−Siベース材料の組成比を変えたこと
を特徴とする電気光学装置。
(1) An electro-optical device using a switching element using a-Si as a base material, characterized in that the composition ratio of the a-Si base material is changed depending on the resistance value from the end of the wiring electrode. optical equipment.
(2)少なくとも一方の基板の内面は、配線電極と画素
電極および非線形抵抗素子とからなり、前記非線形抵抗
素子は前記配線電極からなる第1の導体、および前記画
素電極からなる第2の導体、さらに第1の導体と第2の
導体の間に形成した非線形抵抗膜とからなる電気光学装
置において、前記非線形抵抗膜がa−Siベース材料か
らなるとともに、配線電極の端子部からの抵抗値に応じ
て非線形抵抗膜の組成比を変えたことを特徴とする請求
項(1)記載の電気光学装置。
(2) The inner surface of at least one of the substrates is made up of a wiring electrode, a pixel electrode, and a nonlinear resistance element, and the nonlinear resistance element has a first conductor made of the wiring electrode, and a second conductor made of the pixel electrode, Furthermore, in an electro-optical device comprising a nonlinear resistance film formed between a first conductor and a second conductor, the nonlinear resistance film is made of an a-Si base material, and the resistance value from the terminal portion of the wiring electrode is 2. The electro-optical device according to claim 1, wherein the composition ratio of the nonlinear resistive film is changed accordingly.
(3)前記非線形抵抗膜が実質的にSiNxからなる電
気光学装置において、配線電極の端子部からの抵抗値に
比例してSi組成比を大きくしたことを特徴とする請求
項(2)記載の電気光学装置。
(3) In the electro-optical device in which the nonlinear resistance film is substantially made of SiNx, the Si composition ratio is increased in proportion to the resistance value from the terminal portion of the wiring electrode. Electro-optical device.
(4)前記非線形抵抗膜が実質的にSiOyからなる電
気光学装置において、配線電極の端子部からの抵抗値に
比例してSi組成比を大きくしたことを特徴とする請求
項(2)記載の電気光学装置。
(4) The electro-optical device in which the nonlinear resistance film is substantially made of SiOy, wherein the Si composition ratio is increased in proportion to the resistance value from the terminal portion of the wiring electrode. Electro-optical device.
(5)前記非線形抵抗膜が実質的にSiNxOyからな
る電気光学装置において、配線電極の端子部からの抵抗
値に比例してSi組成比を大きくしたことを特徴とする
請求項(2)記載の電気光学装置。
(5) The electro-optical device in which the nonlinear resistance film is substantially made of SiNxOy, wherein the Si composition ratio is increased in proportion to the resistance value from the terminal portion of the wiring electrode. Electro-optical device.
(6)前記非線形抵抗膜が実質的にSiCzからなる電
気光学装置において、配線電極の端子部からの抵抗値に
比例してSi組成比を大きくしたことを特徴とする請求
項(2)記載の電気光学装置。
(6) The electro-optical device according to claim (2), wherein the nonlinear resistance film is substantially made of SiCz, and the Si composition ratio is increased in proportion to the resistance value from the terminal portion of the wiring electrode. Electro-optical device.
JP2005250A 1990-01-12 1990-01-12 Electrooptical device Pending JPH03209438A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005250A JPH03209438A (en) 1990-01-12 1990-01-12 Electrooptical device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005250A JPH03209438A (en) 1990-01-12 1990-01-12 Electrooptical device

Publications (1)

Publication Number Publication Date
JPH03209438A true JPH03209438A (en) 1991-09-12

Family

ID=11605967

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005250A Pending JPH03209438A (en) 1990-01-12 1990-01-12 Electrooptical device

Country Status (1)

Country Link
JP (1) JPH03209438A (en)

Similar Documents

Publication Publication Date Title
US8072473B2 (en) Gray scale voltage generator, method of generating gray scale voltage and transmissive and reflective type liquid crystal display device using the same
EP0560272B1 (en) Liquid crystal color display
US7671931B2 (en) Liquid crystal display device and method of fabricating the same
KR100313726B1 (en) Active matrix type liquid crystal display device
US8797252B2 (en) Liquid crystal display apparatus and method for generating a driver signal based on resistance ratios
JP2816549B2 (en) Electro-optical device
JP3251401B2 (en) Semiconductor device
EP0182484B1 (en) Liquid crystal display device
JPH03209438A (en) Electrooptical device
JP2755683B2 (en) Active matrix liquid crystal display
JP2580603B2 (en) Liquid crystal display
KR100381053B1 (en) Liquid Crystal Display Device
US5048930A (en) Electro-optical device
JPH0545636A (en) Liquid crystal display element
JP2884359B2 (en) Manufacturing method of electro-optical device
KR0146292B1 (en) Electro-optical device
US8059221B2 (en) Liquid crystal display and manufacturing method of the same
US5739878A (en) Liquid crystal display having common electrode with portions removed at thin film transistors
US20050168675A1 (en) Liquid crystal display
JP2926340B2 (en) Electro-optical device
JP2704212B2 (en) Manufacturing method of electro-optical device
GB2332770A (en) Liquid crystal display and driving method
JP2942996B2 (en) Manufacturing method of electro-optical device
JPH04335324A (en) Production of electrooptical device
JPH03280022A (en) Electrooptical device