JPH03209150A - Infrared type gas sensor - Google Patents

Infrared type gas sensor

Info

Publication number
JPH03209150A
JPH03209150A JP2003969A JP396990A JPH03209150A JP H03209150 A JPH03209150 A JP H03209150A JP 2003969 A JP2003969 A JP 2003969A JP 396990 A JP396990 A JP 396990A JP H03209150 A JPH03209150 A JP H03209150A
Authority
JP
Japan
Prior art keywords
gas
light source
infrared
source block
detector
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2003969A
Other languages
Japanese (ja)
Inventor
Yuichi Tamaoki
裕一 玉置
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanyo Electric Co Ltd
Original Assignee
Sanyo Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanyo Electric Co Ltd filed Critical Sanyo Electric Co Ltd
Priority to JP2003969A priority Critical patent/JPH03209150A/en
Publication of JPH03209150A publication Critical patent/JPH03209150A/en
Pending legal-status Critical Current

Links

Landscapes

  • Investigating Or Analysing Materials By Optical Means (AREA)

Abstract

PURPOSE:To miniaturize the gas sensor by housing an IR light source into a light source block and fixing the light source to a gas cell and a supporting member of an IR detecting part. CONSTITUTION:A gas to be measured enters a gas inlet 16 and after dust is removed by an air filter, the gas flows in the gas cell 12 and is emitted from a gas outlet 17. The light source 20 causes the front end of an electric heater to generate heat and to radiate IR rays. The IR rays are absorbed in the process when the gas to be measured passes and are attenuated. The remaining IR rays arrive at an IR detector 1. A chopper C of the IR detector 1 opens and closes a slit member 4 by a piezoelectric vibrator 3 and intermits the incident IR rays from a through-hole 5. The IR detecting part s housed in a sealing box 2 generates an AC signal and detects the gas concn. by the change thereof. The detector 1 is mounted to a printed circuit board 8 and is hermetically supported in a supporting member 9. The detector is fixed by the gas cell 12 together with a light source block 18, by which the entire part is miniaturized.

Description

【発明の詳細な説明】 (イ)産業上の利用分野 本発明は光源から放射された赤外線がガスにより吸収さ
れ減衰する性質を利用してガスの濃度を測定する赤外線
式ガスセンサーに関する。
DETAILED DESCRIPTION OF THE INVENTION (a) Industrial Application Field The present invention relates to an infrared gas sensor that measures the concentration of gas by utilizing the property that infrared rays emitted from a light source are absorbed and attenuated by gas.

(ロ)従来の技術 赤外線式ガスセンサーは被測定ガスに吸収されずに到達
する赤外線の量を検出することにより非接触でガス濃度
を測定するガス濃度計等に用いられており、赤外線の検
出に用いられる素子は一般的に微分入力形で、焦電業子
はその代表的なものである。
(b) Conventional technology Infrared gas sensors are used in gas concentration meters, etc. that measure gas concentration without contact by detecting the amount of infrared rays that reach the gas to be measured without being absorbed. The elements used for this are generally differential input type, and the pyroelectric element is a typical example.

従来の赤外線式ガスセンサー100を第9図に示す。セ
ンサー100は焦電素子から成る赤外線検出部S、切欠
部101を有しモータ102によって回転される金属円
板103から成るチョツバ104、金属円板103の位
置検出器105とから構戊されており、赤外線量に応じ
た出力を、金属円板103が入射赤外線Uを断続するの
と同じ周波数の交流信号として発生するものである。
A conventional infrared gas sensor 100 is shown in FIG. The sensor 100 is composed of an infrared detection section S made of a pyroelectric element, a chotsuba 104 made of a metal disk 103 having a notch 101 and rotated by a motor 102, and a position detector 105 of the metal disk 103. , an output corresponding to the amount of infrared rays is generated as an alternating current signal of the same frequency as that at which the metal disk 103 interrupts the incident infrared rays U.

(ハ)発明が解決しようとする課題 係る構戊によると、モータ102や金属円板l03を有
しているため装置全体が大型化してしまい非常に大なる
設置容積が必要となって、センサーが取り付けられる装
置全体の設計上の制約が大きくなる問題があった。
(c) Problems to be Solved by the Invention According to the above structure, since the motor 102 and the metal disc l03 are included, the entire device becomes large and a very large installation volume is required. There is a problem in that the design of the entire device to which it is attached is severely restricted.

そこで近年では圧電バイモルフ振動子を用いた所謂モジ
ュレーションタイプの焦電形赤外線検出器が開発されて
おり、これによればセンサー全体の寸法は縮小されるも
のの、光源と赤外線検出部との距離が接近するので光源
からの熱によって赤外線検出部が損傷する問題があった
Therefore, in recent years, a so-called modulation type pyroelectric infrared detector using a piezoelectric bimorph oscillator has been developed. Although this reduces the overall size of the sensor, it reduces the distance between the light source and the infrared detection part. Therefore, there was a problem that the infrared detection section was damaged by the heat from the light source.

本発明は、係る課題を解決することを目的とする。The present invention aims to solve this problem.

(二)課題を解決するための手段 本発明は、被測定ガスを通過した赤外線を赤外線検出部
に照射して出力を得る赤外線式ガスセンサーに於で、赤
外線発生用の光源を収納しこの光源からの赤外線が通過
する赤外線通過部を有した熱良導性材料にて戒る光源ブ
ロックと、赤外線透過部を有してその内部を被測定ガス
が流通するガスセルと、内部に赤外線検出部が取り付け
られ薄肉熱良導性材料にて戒る箱状の支持部材とを準備
し、ガスセルは光源ブロックの赤外線通過部側の一面に
固定され、支持部材は赤外線検出部を密閉した状態でガ
スセルの光源ブロックとは反対側に位置して固定される
と共に、前記光源ブロックの他面には取付孔を形戊した
ものである。
(2) Means for Solving the Problems The present invention provides an infrared gas sensor that obtains an output by irradiating infrared rays that have passed through a gas to be measured onto an infrared detecting section, and in which a light source for generating infrared rays is housed. A light source block made of a thermally conductive material has an infrared light passing section through which infrared light from The gas cell is fixed to one surface of the light source block on the infrared passing section side, and the supporting member is attached to the gas cell with the infrared detection section sealed. The light source block is located and fixed on the opposite side of the light source block, and a mounting hole is formed on the other surface of the light source block.

(ホ)作用 本発明によれば赤外線式ガスセンサー全体の寸法を極め
て小型化でき、光源、ガスセル、赤外線検出部の位置決
めも容易に行える。一方、光源から発生する熱は支持部
材を伝導する過程で放散される。更に光源ブロックの熱
は取付孔に取り付けられる部材を伝導して放散される。
(E) Function According to the present invention, the overall size of the infrared gas sensor can be extremely miniaturized, and the positioning of the light source, gas cell, and infrared detection section can be easily performed. Meanwhile, heat generated from the light source is dissipated during the process of being conducted through the support member. Furthermore, the heat of the light source block is conducted through the member attached to the attachment hole and dissipated.

(へ)実施例 次に本発明の実施例を図面において説明する。(f) Example Next, embodiments of the present invention will be described with reference to the drawings.

第1図は本発明の赤外線式ガスセンサーAの分解斜視図
、第2図は同組立て状態の斜視図、第3図はそのガス人
口16及び出口l7を通る面での縦断面図、第4図は第
3図に直行する面での縦断面図、第5図は同底面図を示
す。更に第7図は支持板9内に収納されることになる所
謂モジュレーションタイプの焦電形赤外線検出器1の分
解斜視図を示している。
FIG. 1 is an exploded perspective view of an infrared gas sensor A of the present invention, FIG. 2 is a perspective view of the assembled state, FIG. The figure shows a longitudinal cross-sectional view in a plane perpendicular to FIG. 3, and FIG. 5 shows a bottom view of the same. Further, FIG. 7 shows an exploded perspective view of a so-called modulation type pyroelectric infrared detector 1 to be housed within the support plate 9. As shown in FIG.

検出51はシールドボックス2内に前述の赤外線検出部
Sを収納し、シールドボックス2に形成した図示しない
透孔に対応する位置に圧電バイモルフ振動子3によって
駆動されるスリット部材4から戒るチョッパCを設け、
更にそれに対応する位置に透孔5を形或したケース6に
て全体をカバーして構威されている。スリット部材4は
第8図に示す如くスリットを形戊した2枚の板を重合関
係に取り付けてWt戒され、チョッパCに入力される駆
動電圧の周波数と同じ周波数で圧電バイモルフ振動子3
が振動することによりスリットを開閉し、透孔5より入
射して赤外線検出部Sに到達する赤外線Uを断続して、
赤外線量に応じた出力をチョッパCの入力周波数と同じ
周波数の交流信号として発生する。
The detection 51 houses the above-mentioned infrared detection unit S in the shield box 2, and a chopper C is inserted into the shield box 2 from a slit member 4 driven by a piezoelectric bimorph vibrator 3 at a position corresponding to a through hole (not shown) formed in the shield box 2. established,
Further, the entire body is covered with a case 6 having a through hole 5 formed at a corresponding position. The slit member 4 is made by attaching two plates each having a slit in an overlapping relationship as shown in FIG.
The slit is opened and closed by the vibration, and the infrared ray U that enters through the through hole 5 and reaches the infrared detection part S is interrupted.
An output corresponding to the amount of infrared rays is generated as an AC signal of the same frequency as the input frequency of chopper C.

この様な構威によって赤外線検出器1は非常に小型にな
り、プリント回路基板に実装できる様になっている。赤
外線検出器1からの信号は整流及びA/D変換された後
、図示しないマイクロコンピュータに入力されてガス濃
度の制御や表示をするためのデータとして演算処理に供
されることになる。
With this structure, the infrared detector 1 can be made very small and can be mounted on a printed circuit board. After the signal from the infrared detector 1 is rectified and A/D converted, it is input to a microcomputer (not shown) and is subjected to arithmetic processing as data for controlling and displaying the gas concentration.

赤外線式ガスセンサーAは、例えば二酸化炭素ガス濃度
の測定に用いられるもので、透孔5には赤外線を透過す
るサファイヤガラス窓7が取り付けられている。
The infrared gas sensor A is used, for example, to measure carbon dioxide gas concentration, and has a through hole 5 fitted with a sapphire glass window 7 that transmits infrared rays.

次に第1図及び第2図において、8は赤外線検出器1を
取り付けるためのプリント回路基板、9は基板8を支持
するための支持板である。支持板9はTo,8程度の薄
肉ステンレス板にて箱状に形戊されており、下方に開放
し、且つ、上面に挿通孔10が穿設されている。また、
基板8には赤外線検出器1が電気的に接続される他の電
子部品11も取り付けられる。
Next, in FIGS. 1 and 2, 8 is a printed circuit board for mounting the infrared detector 1, and 9 is a support plate for supporting the board 8. The support plate 9 is made of a thin stainless steel plate having a diameter of about 8 and is shaped like a box, and is open downward and has an insertion hole 10 formed in its upper surface. Also,
Other electronic components 11 to which the infrared detector 1 is electrically connected are also attached to the substrate 8.

l2は真鍮成るいはアルミニウムの削り出し等にて矩形
状に戊形したガスセルであり、内部に被測定ガスである
二酸化炭素ガスが流通するための通路l3が左右に形威
され、更に、この通路13を貫通して上下に赤外線透過
部としての透孔l4が穿設され、透明ガラス15、15
にて上下を封止せられている。また16、17はガスを
導入及び排出する為のガス入口及び出口である。
12 is a gas cell formed into a rectangular shape by cutting out brass or aluminum, inside which passages 13 are formed on the left and right sides through which carbon dioxide gas, which is the gas to be measured, flows; A through hole l4 as an infrared transmitting portion is formed above and below through the passage 13, and transparent glass 15, 15
The top and bottom are sealed. Further, 16 and 17 are gas inlets and outlets for introducing and discharging gas.

18はやはり真鍮成るいはアルミニウムの削り出し等に
て矩形状に戊形した光源ブロックであり内部は中空とな
っており、更にこの中空部と上面を連通ずる赤外線通過
部としての透孔19が形威されている。
Reference numeral 18 is a light source block made of brass or machined aluminum and shaped into a rectangular shape, and the inside is hollow, and furthermore, there is a through hole 19 as an infrared passage part that communicates the hollow part with the upper surface. It is well-formed.

20は赤外線を発する電気ヒータから成る光源であり、
先端部が約600℃に発熱することにより赤外線を放射
する。
20 is a light source consisting of an electric heater that emits infrared rays;
The tip generates heat of approximately 600°C and emits infrared rays.

次に各部の組立て手順を第1図を参照しつつ説明する。Next, the assembly procedure of each part will be explained with reference to FIG.

光源20は光源ブロック18内部に収納し、先端部を透
孔19に対応させて閉塞板2lにて位置決めして遮蔽す
る。次に図中実線矢印の如くガスセル12を光源ブロッ
ク18上に載せ、透明ガラスl5を透孔l9に対応させ
た状態でガスセルl2の上面よりそれに貫通形威したネ
ジ孔22a、22aを通してネジ孔22b、22bにネ
ジ22、22にてガスセル12を光源ブロックl8に固
定する。更に、ガスセル12の上から図中破線矢印の如
く支持板9を被せ、支持板9及びガスセルl2の側面に
形威したネジ孔23a.23a、23b、23bにてネ
ジ23、23により支持板9をガスセル12に固定する
。この時、支持板9はガスセルl2を内包し、その切欠
部25からガス人口16及び出口17のみが外部に臨ん
でいる。切欠部25の深さはその最深部がガス入口l6
成るいは出口17に当接した状態でネジ孔23aと23
bが合致する関係として置くことにより位置決めが非常
に容易となる。
The light source 20 is housed inside the light source block 18, and its tip portion is positioned in correspondence with the through hole 19 and is shielded by a closing plate 2l. Next, the gas cell 12 is placed on the light source block 18 as shown by the solid line arrow in the figure, and with the transparent glass l5 corresponding to the through hole l9, the screw hole 22b is passed through the screw hole 22a formed through the gas cell l2 from the upper surface of the gas cell l2. , 22b and screws 22, 22 to fix the gas cell 12 to the light source block l8. Furthermore, a support plate 9 is placed over the gas cell 12 as indicated by the broken line arrow in the figure, and screw holes 23a formed in the side surfaces of the support plate 9 and the gas cell l2 are inserted. The support plate 9 is fixed to the gas cell 12 with screws 23, 23 at 23a, 23b, 23b. At this time, the support plate 9 contains the gas cell 12, and only the gas port 16 and the outlet 17 are exposed to the outside from the notch 25 thereof. The depth of the notch 25 is such that the deepest part thereof is the gas inlet l6.
Alternatively, the screw holes 23a and 23 are in contact with the outlet 17.
Positioning becomes very easy by placing them in a relationship where b coincides with each other.

赤外線検出51は予め基板8に半田付けしておく。而し
て基板8は検出器1を挿通孔10から支持板9内に挿入
した状態で支持板9にネジ26、26にて固定する。こ
の時双方のネジ孔26a、26a、26b、26bは赤
外線検出器1の透孔5が透明ガラス15に対応する様な
位置関係で形威しておく。また、基板8は挿通孔10を
閉塞する。一方光源ブロック18の下面にはネジ孔28
a、28aが形威されている。
The infrared detection 51 is soldered to the board 8 in advance. The substrate 8 is then fixed to the support plate 9 with screws 26, with the detector 1 inserted into the support plate 9 through the insertion hole 10. At this time, both screw holes 26a, 26a, 26b, and 26b are set in such a positional relationship that the through hole 5 of the infrared detector 1 corresponds to the transparent glass 15. Further, the substrate 8 closes the insertion hole 10. On the other hand, a screw hole 28 is provided on the bottom surface of the light source block 18.
a, 28a is clearly visible.

この様にして光源ブロックl8と赤外線検出器1間にガ
スセル12を介在せしめた状態で光源ブロック18とガ
スセル12及び支持板9を一体に組み立てることにより
、赤外線式ガスセンサーA全体の小型化が図れると共に
、光源20、透孔15、15及び赤外線検出器lを極め
て容易に一直線上に位置させることができる。これによ
って光源20と赤外線検出器1は近接することになり、
光源20からの熱による赤外線検出部Sのストレスが懸
念されるが、支持板9は放熱性の良好な薄肉板にて構戊
されているため、光源20から発せられる熱は支持板9
を伝導する過程で放散せられるので赤外線検出部Sが熱
によって劣化するのを防止できる。更に、支持板9及び
基板8は赤外線検出器1周囲を密閉する形となり、これ
によって外部からの塵埃及び光の進入を防ぎ、赤外線検
出部Sへの赤外線の入射量が変化しない様にして赤外線
検出が良好な状態で行われる様にしている。
By assembling the light source block 18, gas cell 12, and support plate 9 together with the gas cell 12 interposed between the light source block l8 and the infrared detector 1 in this manner, the entire infrared gas sensor A can be miniaturized. At the same time, the light source 20, the through holes 15, 15, and the infrared detector 1 can be positioned in a straight line very easily. As a result, the light source 20 and the infrared detector 1 come close to each other,
There is a concern that the infrared detection section S will be stressed by the heat from the light source 20, but since the support plate 9 is made of a thin plate with good heat dissipation, the heat emitted from the light source 20 will be transferred to the support plate 9.
Since the infrared rays are dissipated in the process of being conducted, it is possible to prevent the infrared detection section S from deteriorating due to heat. Furthermore, the support plate 9 and the substrate 8 are shaped to seal the area around the infrared detector 1, thereby preventing dust and light from entering from the outside, and preventing changes in the amount of infrared rays incident on the infrared detector S. We ensure that detection is performed in good conditions.

次に第6図は赤外線式ガスセンサーAを機器に取り付け
た状態を示している。赤外線式ガスセンサーAは光源ブ
ロック18下面のネジ孔28a、28aにて機器の外装
板29等にネジ28、28により取り付け固定する。こ
れによって光源20から発生した熱は光源ブロック18
から外装板29に伝導してそこから放散されるので赤外
線検出部Sの熱による劣化は更に良好に防止される。ま
た、各ネジ26、23、22は第6図の如き状態で取り
外せるので、機器に取り付けたまま部品の交換ができ、
メンテナンス作業が容易になる。
Next, FIG. 6 shows the state in which the infrared gas sensor A is attached to the equipment. The infrared gas sensor A is attached and fixed to the exterior plate 29 of the device using screws 28, 28 through the screw holes 28a, 28a on the lower surface of the light source block 18. As a result, the heat generated from the light source 20 is transferred to the light source block 18.
Since the infrared rays are conducted from the infrared rays to the exterior plate 29 and radiated from there, deterioration of the infrared detecting section S due to heat is even better prevented. In addition, each screw 26, 23, 22 can be removed as shown in Figure 6, so parts can be replaced while still attached to the device.
Maintenance work becomes easier.

ガス人口l6にはエアフィルター31を介在させた被測
定ガス導入用のチューブ32を接続すると共にガス出口
17にはガス排出用のチューブ33を接続し、全体はカ
バー34にて被覆する。
A tube 32 for introducing a gas to be measured with an air filter 31 interposed therebetween is connected to the gas port 16, and a tube 33 for discharging gas is connected to the gas outlet 17, and the entire body is covered with a cover 34.

光源20から発射された赤外線は、チューブ16を通り
、エアフィルター31にて塵埃を除去されてガス入口1
6からガス出口17に向かってガスセル12の通路13
内を流通する被測定ガス内を通過する過程で吸収されて
減衰し、残りが検出器1の赤外線検出部Sに到達する。
The infrared rays emitted from the light source 20 pass through the tube 16, remove dust from the air filter 31, and enter the gas inlet 1.
6 towards the gas outlet 17 of the gas cell 12 passage 13
It is absorbed and attenuated during the process of passing through the gas to be measured, and the remainder reaches the infrared detection section S of the detector 1.

このガスに吸収される赤外線の量はガスの濃度によって
変化する、即ち、濃度が高ければ到達する赤外線量が少
なくなり、低ければ多くなるので、前述の交流信号の出
力の変化として、ガス濃度を捕らえ、表示や濃度制御の
情報として使用することができる。
The amount of infrared rays absorbed by this gas changes depending on the concentration of the gas. In other words, the higher the concentration, the less the amount of infrared rays that reaches the gas, and the lower the concentration, the more. It can be captured and used as information for display and concentration control.

尚、実施例では二酸化炭素ガスの検出に本発明のセンサ
ーを適用したが、それに限られず、他の種類のガスにも
適用できる。その場合は窓7の材質をガスの種類に合わ
せて変更する。
In addition, although the sensor of the present invention was applied to detect carbon dioxide gas in the embodiment, the sensor is not limited thereto and can be applied to other types of gas. In that case, the material of the window 7 should be changed depending on the type of gas.

(ト)発明の効果 本発明によれば赤外線式ガスセンサー全体の寸法を極め
て小型化できるので、特に小型の機器において設計上の
制約が解消される。また、光源と被測定ガス及び赤外線
検出部の位置が極めて接近するので三者の位置決めが容
易となり、位置ズレによる不良を解消できるが、接近す
ることによって生ずる光源の熱による赤外線検出部の劣
化は支持板からの放熱及び取り付けられる機器からの放
熱によって防止される。更に、本発明の赤外線式ガスセ
ンサーは機器に取り付けたままの状態で分解できるので
、メンテナンス作業が極めて容易となる等の効果を奏す
る。
(g) Effects of the Invention According to the present invention, the overall size of the infrared gas sensor can be extremely reduced, so that design constraints are eliminated, especially in small-sized devices. In addition, since the light source, the gas to be measured, and the infrared detector are located very close to each other, it is easy to position the three, and defects caused by misalignment can be eliminated. This is prevented by heat radiation from the support plate and the equipment to which it is attached. Furthermore, since the infrared gas sensor of the present invention can be disassembled while still attached to the device, maintenance work is extremely easy.

【図面の簡単な説明】[Brief explanation of drawings]

第1図から第8図は本発明の実施例を示し、第1図は赤
外線式ガスセンサーの分解斜視図、第2図は同組立て状
態の斜視図、第3図はガス入口及び出目を通る面での赤
外線式ガスセンサーの縦断面図、第4図は第3図に直行
する面での赤外線式ガスセンサーの縦断面図、第5図は
赤外線式ガスセンサーの底面図、第6図は赤外線式ガス
センサーを機器に取り付けた状態を示す図、第7図はモ
ジュレーションタイプの焦電形赤外線検出器の分解斜視
図及び第8図はスリット部材の斜視図であり、第9図は
従来の赤外線検出器の斜視図である。 1・・・赤外線検出器、8・・・プリント回路基板、9
・・・支持板、l2・・・ガスセル、l4・・・透孔(
赤外線透過部)、16・・・ガス入口、17・・・ガス
出口、l8・・・光源ブロック、19・・・透孔(赤外
線通過部)、20・・・光源、28a・・・ネジ孔、A
・・・赤外線式ガスセンサー S・・・赤外線検出部。
1 to 8 show embodiments of the present invention. FIG. 1 is an exploded perspective view of an infrared gas sensor, FIG. 2 is a perspective view of the same assembled state, and FIG. 3 shows a gas inlet and an outlet. FIG. 4 is a vertical cross-sectional view of the infrared gas sensor in a plane perpendicular to FIG. 3, FIG. 5 is a bottom view of the infrared gas sensor, and FIG. 7 is an exploded perspective view of a modulation type pyroelectric infrared detector, FIG. 8 is a perspective view of a slit member, and FIG. 9 is a conventional one. FIG. 2 is a perspective view of an infrared detector. 1... Infrared detector, 8... Printed circuit board, 9
...Support plate, l2...Gas cell, l4...Through hole (
Infrared transmitting section), 16... Gas inlet, 17... Gas outlet, l8... Light source block, 19... Through hole (infrared passing section), 20... Light source, 28a... Screw hole ,A
...Infrared gas sensor S...Infrared detection section.

Claims (1)

【特許請求の範囲】[Claims] 1)被測定ガスを通過した赤外線を赤外線検出部に照射
して出力を得るものに於て、前記赤外線発生用の光源を
収納し該光源からの赤外線が通過する赤外線通過部を有
した熱良導性材料にて成る光源ブロックと、赤外線透過
部を有してその内部を前記被測定ガスが流通するガスセ
ルと、内部に前記赤外線検出部が取り付けられ薄肉熱良
導性材料にて成る箱状の支持部材とから成り、前記ガス
セルは前記光源ブロックの前記赤外線通過部側の一面に
固定され、前記支持部材は前記赤外線検出部を密閉した
状態で前記ガスセルの光源ブロックとは反対側に位置し
て固定されると共に、前記光源ブロックの他面には取付
孔が形成されていることを特徴とする赤外線式ガスセン
サー。
1) In a device that obtains an output by irradiating an infrared detection section with infrared rays that have passed through the gas to be measured, a thermal detector that houses the light source for generating infrared rays and has an infrared passing section through which the infrared rays from the light source passes. a light source block made of a conductive material; a gas cell having an infrared transmitting section through which the gas to be measured flows; and a box-shaped box made of a thin thermally conductive material, with the infrared detecting section attached therein. The gas cell is fixed to one surface of the light source block on the infrared passing section side, and the support member is located on the opposite side of the gas cell from the light source block while sealing the infrared detection section. An infrared gas sensor, characterized in that the light source block is fixed to the light source block, and a mounting hole is formed on the other surface of the light source block.
JP2003969A 1990-01-11 1990-01-11 Infrared type gas sensor Pending JPH03209150A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003969A JPH03209150A (en) 1990-01-11 1990-01-11 Infrared type gas sensor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003969A JPH03209150A (en) 1990-01-11 1990-01-11 Infrared type gas sensor

Publications (1)

Publication Number Publication Date
JPH03209150A true JPH03209150A (en) 1991-09-12

Family

ID=11571904

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003969A Pending JPH03209150A (en) 1990-01-11 1990-01-11 Infrared type gas sensor

Country Status (1)

Country Link
JP (1) JPH03209150A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1038794A (en) * 1996-07-29 1998-02-13 Japan Radio Co Ltd Optical absorption cell
KR100713042B1 (en) * 2002-10-11 2007-05-02 샤프 가부시키가이샤 Cellular phone

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1038794A (en) * 1996-07-29 1998-02-13 Japan Radio Co Ltd Optical absorption cell
KR100713042B1 (en) * 2002-10-11 2007-05-02 샤프 가부시키가이샤 Cellular phone

Similar Documents

Publication Publication Date Title
JPH11132857A (en) Infrared detector
US5092342A (en) Sensor arrangement for optically measuring gas components
EP0123458B1 (en) An infrared absorption gas detector
US3877817A (en) Temperature stabilized photometer for kinetic analysis
US6410918B1 (en) Diffusion-type NDIR gas analyzer with improved response time due to convection flow
EP4230998A1 (en) Ndir sensor, sampling method and system for breath analysis
WO2012132316A1 (en) Infrared sensor
US6255653B1 (en) Diffusion-type NDIR gas analyzer with improved response time due to convection flow
US5731583A (en) Folded optical path gas analyzer with cylindrical chopper
JPH03209150A (en) Infrared type gas sensor
JP2000019108A (en) Infrared gas analyzer
JPH03197846A (en) Infrared gas sensor
US4082459A (en) Analytical cell assembly for an analyzer
US20220214272A1 (en) Device for emitting and controlling infrared light and gas sensor using such a device
JPH03211448A (en) Infrared gas sensor
EP2105725A1 (en) Microchip testing device
JP3376634B2 (en) Temperature detector
JP2004151038A (en) Stoving type infrared moisture meter
JP7477287B2 (en) Manufacturing method of gas concentration calculation device, gas concentration calculation device
JPH11271221A (en) Infrared gas analyzer
JPS6138448A (en) Photometer for analyzing gas or liquid
JP2013185996A (en) Nondispersive infrared analyzer type gas detector
JPH0652192B2 (en) Flame detector
JP2000097855A (en) Detector for infrared gas analyzer
JPH0336804Y2 (en)