JPH03208610A - Molding method of hollow product - Google Patents

Molding method of hollow product

Info

Publication number
JPH03208610A
JPH03208610A JP2004368A JP436890A JPH03208610A JP H03208610 A JPH03208610 A JP H03208610A JP 2004368 A JP2004368 A JP 2004368A JP 436890 A JP436890 A JP 436890A JP H03208610 A JPH03208610 A JP H03208610A
Authority
JP
Japan
Prior art keywords
resin
shape
core material
core
mold
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2004368A
Other languages
Japanese (ja)
Inventor
Hiroshi Kishikawa
浩史 岸川
Masakazu Okita
大北 雅一
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Sumitomo Metal Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Industries Ltd filed Critical Sumitomo Metal Industries Ltd
Priority to JP2004368A priority Critical patent/JPH03208610A/en
Publication of JPH03208610A publication Critical patent/JPH03208610A/en
Pending legal-status Critical Current

Links

Landscapes

  • Moulds For Moulding Plastics Or The Like (AREA)
  • Moulding By Coating Moulds (AREA)

Abstract

PURPOSE:To mold easily the hollow product which has complicated shape and is made of resin or FRP by using a shape storing behavior of a shape-memory resin which constitutes a core and the quickly lowering of modulus of elasticity at high temperature. CONSTITUTION:As a core, the branched tube 2 which is made of shape memory resin in inserted into the mold 1 of the branched tube which is devided into half, and the mold 1 is closed. While the branched tube 2 which is made of the shape-storing resin is warmed in the mold 1, inner pressure is applied to the branched tube 2 with suitable fluid, whereby the branched tube 2 is expanded until the tube 2 is brought in close contact with the mold 1. The core-branched tube 2 is cooled in the state where said expanded state is kept by holding said inner pressure, whereby the expanded shape of the core-branched tube 2 is fixed. Then, the expanded and fixed core 2 is taken out from the mold 1, and is coated with covering resin 3. After the covering resin has been cured with a suitable means, the core is restored to the original shape by heating it again, and the reduced core is drawn out and removed, whereby the molded object 3 with the shape of desired branched tube may be obtained.

Description

【発明の詳細な説明】 [産業上の利用分野コ 本発明は、特に複雑形状の中空製品の製造に適した、樹
脂または繊維強化樹脂(FRP)からなる中空製品の戒
形方法に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a method for shaping hollow products made of resin or fiber-reinforced resin (FRP), which is particularly suitable for manufacturing hollow products with complex shapes.

[従来の技術] 従来、樹脂製の中空製品は、押出成形、射出成形、注型
成形等により、またFRP製中空製品はハンドレイアッ
プ法やフィラメントワインディング法(以下、FW法と
いう)等により製造されている。
[Conventional technology] Conventionally, resin hollow products have been manufactured by extrusion molding, injection molding, cast molding, etc., and FRP hollow products have been manufactured by hand lay-up method, filament winding method (hereinafter referred to as FW method), etc. has been done.

これらのうち、押出成形を除くいずれの戒形法も、芯材
に樹脂またはFRPを被覆した後、芯材を引き抜く方法
であるが、押出成形を含めて複雑形状物の戒形は極めて
困難であった。このため、複雑形状物の製造においては
、芯材を除去せずに芯材と一体としたまま中空製品を使
用する場合さえある。
Among these methods, all methods except extrusion molding involve coating the core material with resin or FRP and then pulling out the core material, but it is extremely difficult to mold complex-shaped objects, including extrusion molding. there were. For this reason, in the manufacture of complex-shaped products, hollow products may even be used with the core material integrated without removing it.

複雑形状物の成形が可能な方法として、芯材に低融点金
属を使用し、賦形後に芯材を融解して除去することも提
案されているが、操作が煩雑であり、生産性に劣るとい
う難点がある。
Using a low-melting point metal for the core material and then melting and removing the core material after shaping has been proposed as a method that can mold complex-shaped objects, but this method is complicated and has low productivity. There is a drawback.

また、変形可能な樹脂製芯材を利用して中空製品を成形
することも知られている。例えば、特開昭61− 25
39号および同62−19438号公報には、可撓性の
筒状物を芯材として使用し、内部に流体を注入して芯材
を膨張させた状態で樹脂含浸繊維を巻付け、次いで流体
を除去して芯材を縮径させて除去することからなる、F
W法によるFRP管の製造方法が提案されている。特開
昭62−167032号には、弾性変形可能な芯材を利
用した同様な方法によるFRP円筒体の製造方法が開示
されている。
It is also known to mold hollow products using a deformable resin core material. For example, JP-A-61-25
No. 39 and No. 62-19438, a flexible cylindrical material is used as a core material, a fluid is injected into the interior to expand the core material, and resin-impregnated fibers are wrapped around the core material, and then a fluid is injected into the core material to expand the core material. F
A method for manufacturing FRP pipes using the W method has been proposed. JP-A-62-167032 discloses a similar method for manufacturing an FRP cylindrical body using an elastically deformable core material.

しかし、上述した従来の樹脂芯材を利用する成形方法は
、芯材の膨張力が小さいため、断面が円形ないし異形の
管状体ないし筒状体といった単純な形状物の成形にしか
適用できず、複雑形状物の戒形には適していない。また
、芯材の膨張状態でFW法により樹脂含浸繊維を巻き付
ける際、繊維の張力に打ち勝つにはかなり高強度の芯材
を用いる必要があり、そのため芯材の膨張には高圧が必
要となり、操作およびコスト面で不利である。
However, the above-mentioned conventional molding method using a resin core material has a small expansion force of the core material, so it can only be applied to molding simple shaped objects such as tubular or cylindrical bodies with circular or irregular cross sections. Not suitable for complex-shaped objects. In addition, when winding resin-impregnated fibers using the FW method while the core material is in an expanded state, it is necessary to use a fairly high-strength core material to overcome the tension of the fibers. and is disadvantageous in terms of cost.

特開昭64−63117号には、屈曲自在で形状保持性
を有する芯材に耐熱性のエラストマーを被覆した複数部
材を連結してなる多岐管成形用中子を所望形状に変形さ
せ、金型に挿入し、樹脂を中子表面に被覆した後、中子
を引き抜くことからなる、樹脂製多岐管の製造方法が開
示されている。しかし、この方法は中子の強度が弱<F
W法が適用できない上、中子が複数部材からなり、製造
工程が複雑となる。また、樹脂の被覆後の中子の引抜き
も、中子が収縮しないため、中子の厚さによっては困難
となる。
JP-A No. 64-63117 discloses that a manifold pipe molding core, which is made by connecting a plurality of members in which a bendable core material with shape retention properties is coated with a heat-resistant elastomer, is deformed into a desired shape, and a mold is formed. A method of manufacturing a resin manifold is disclosed, which comprises inserting the core into a core, coating the surface of the core with resin, and then withdrawing the core. However, with this method, the strength of the core is weak <F
The W method cannot be applied, and the core is made up of multiple members, making the manufacturing process complicated. Furthermore, pulling out the core after coating with resin may be difficult depending on the thickness of the core because the core does not shrink.

[発明が解決しようとする課題] 本発明の目的は、複雑形状物の成形にも容易に利用でき
、かつ煩雑な操作を必要とせず、生産性および経済的に
有利な中空製品の成形方法を提供することである。
[Problems to be Solved by the Invention] The purpose of the present invention is to provide a method for molding hollow products that can be easily used for molding complex-shaped objects, does not require complicated operations, and is advantageous in terms of productivity and economy. It is to provide.

[課題を解決するための千段] 本発明者らは、上記目的を達戒する手段として形状記憶
樹脂の利用に着目した。
[A Thousand Steps to Solve the Problem] The present inventors focused on the use of shape memory resin as a means to achieve the above object.

形状記憶樹脂とは、室温においては加えられた変形形状
を固定しており、高温にすると変形前の形状に回復する
性質を持つ熱可塑性樹脂をいい、このような性質を示す
樹脂として、これまでにポリノルボルネン、トランスボ
リイソブレン、スチレン・ブタジエン共重合体、ポリウ
レタン系、ポリエステル系などが知られている。このよ
うな形状記憶樹脂は、形状記憶合金が7%程度の変形し
か回復できないのに比し、400〜500%の大変形で
も形状回復できるという特徴を持つ。
Shape memory resin is a thermoplastic resin that retains its deformed shape at room temperature and recovers to its original shape when heated to high temperatures. Among them, polynorbornene, transpolyisobrene, styrene-butadiene copolymer, polyurethane type, polyester type, etc. are known. Such a shape memory resin has the characteristic that it can recover its shape even after a large deformation of 400 to 500%, whereas a shape memory alloy can only recover a deformation of about 7%.

本発明者らは、戒形用芯材に形状記憶樹脂を用いると、
複雑な形状の中空製品であっても、その形状回復特性を
活用して成形完了後に容易に芯材を除去でき、上記目的
が達威できることを見出した。すなわち、形状記憶樹脂
からなる芯材を、本来の形状(記憶させた形状)より数
倍大きな、成形したい所望の形状に変形させて固定する
。この芯材に樹脂あるいはFRPを被覆し、樹脂の硬化
後に加熱により芯材の本来の形状を回復させて芯材を除
去するのである。
The present inventors found that when a shape memory resin is used as a core material for a precept,
We have discovered that even for hollow products with complex shapes, the core material can be easily removed after molding is completed by utilizing its shape recovery characteristics, and the above objective can be achieved. That is, the core material made of shape memory resin is deformed into a desired shape that is several times larger than the original shape (memorized shape) and then fixed. This core material is coated with resin or FRP, and after the resin hardens, the original shape of the core material is restored by heating, and the core material is removed.

ここに、本発明の要旨は、成形すべき中空製品の中空部
より小なる形状を予め記憶させておいた形状記憶樹脂よ
りなる中空芯材に、加温下に内圧を加えて膨張させるこ
とにより所望形状に戒形し、この所望形状を保持した芯
材に樹脂または樹脂含浸繊維を被覆し、次いで、(a)
芯材の形状回復温度を下回る温度で樹脂を硬化させ、次
いで芯材を形状回復温度以上に加熱することにより芯材
を記憶させた元の形状に収縮させて除去するか、あるい
は(ロ)芯材に液体内圧をかけながら形状回復温度以上
で樹脂を硬化させ、次いで内圧を除去して芯材を記憶さ
せた元の収縮形状に回復させて除去することを特徴とす
る、樹脂または繊維強化樹脂からなる中空製品の成形方
法にある。
Here, the gist of the present invention is to expand a hollow core material made of a shape memory resin, which has a shape smaller than the hollow part of a hollow product to be molded, by applying internal pressure under heating. The core material that maintains the desired shape is coated with resin or resin-impregnated fibers, and then (a)
Either the resin is cured at a temperature below the shape recovery temperature of the core material, and then the core material is heated above the shape recovery temperature to shrink the core material to its original shape and removed. A resin or fiber-reinforced resin characterized in that the resin is cured at a temperature above the shape recovery temperature while applying liquid internal pressure to the material, and then the internal pressure is removed to allow the core material to recover to its original contracted shape and then removed. A method of forming a hollow product consisting of

[作用] 以下、本発明の構威と作用について詳しく説明する。[Effect] Hereinafter, the structure and operation of the present invention will be explained in detail.

本発明において、芯材に使われる形状記憶樹脂は特に制
限を受けるものではなく、形状回復後に成形物から除去
できる程度に変形可能なものであれば、あらゆる形状記
憶樹脂を用いることができる。例えば、ポリノルボルネ
ン、トランスポリイソプレン、スチレン・プタジエン共
重合体、ポリウレタン系、ポリエステル系などの既存の
形状記憶樹脂、ならびに今後開発される形状記憶樹脂を
使うことができる。
In the present invention, the shape memory resin used for the core material is not particularly limited, and any shape memory resin can be used as long as it is deformable to the extent that it can be removed from the molded product after shape recovery. For example, existing shape memory resins such as polynorbornene, transpolyisoprene, styrene-putadiene copolymer, polyurethane type, and polyester type, as well as shape memory resins to be developed in the future can be used.

これらの形状記憶樹脂を単独で用いてもよいが、強度や
戒形性を改良するために、変形性は多少低下するが、汎
用樹脂とのポリマーアロイを用いてもよい。
These shape memory resins may be used alone, but in order to improve strength and shapeability, a polymer alloy with a general-purpose resin may be used, although the deformability is somewhat reduced.

また、FW法により成形する時は、繊維の締め付け張力
を受けるため、樹脂強度の高いものが好ましい。この目
的には、例えばポリエステルやポリノルボルネン等の高
強度樹脂が好適である。
Furthermore, when molding by the FW method, it is preferable that the resin has high strength since it is subjected to the tightening tension of the fibers. High strength resins such as polyester and polynorbornene are suitable for this purpose.

形状記憶樹脂(ボリマーアロイを含む)は、まず適当な
戒形法で、所望の中空成形物から容易に除去できるよう
、成形すべき所望成形形状の中空部より小なる形状の中
空体に成形して、中空芯材を形成する。この戒形は、押
出、射出、注型などの慣用の溶融成形法により行うこと
ができる。
Shape memory resin (including polymer alloys) is first molded into a hollow body smaller than the hollow part of the desired molded shape to be easily removed from the desired hollow molded product using an appropriate molding method. , forming a hollow core. This molding can be performed by conventional melt molding methods such as extrusion, injection, and casting.

次いで、この中空芯材を、加温下に内圧をかけながら膨
張させて、製造すべき中空製品の内部形状に合致した所
望の形状に成形する。この所望形状への膨張・成形は、
所望形状の金型(半割形状などの複数分割型の組合わせ
材)の中で行うことができる。溶融成形により製造され
た中空芯材をこの金型の中に置き、加温しつつ芯材の内
部に流体を圧大して内圧をかけることにより芯材を金型
に密着するまで膨張させた後、内圧をかけた状態で冷却
することにより、所望の膨張形状を固定する。
Next, this hollow core material is expanded while applying internal pressure under heating to form a desired shape that matches the internal shape of the hollow product to be manufactured. This expansion and molding into the desired shape is
It can be carried out in a mold of a desired shape (a combination material of a multi-segmented mold such as a half-split shape). A hollow core material manufactured by melt molding is placed in this mold, and the core material is expanded until it comes into close contact with the mold by applying internal pressure by compressing a fluid inside the core material while heating. By cooling with internal pressure applied, the desired expanded shape is fixed.

加温は、溶融温度より20゜C低い温度以下が適当であ
り、形状回復温度を超えると変形し易いため、形状回復
温度より10〜30℃高い温度が好ましい。
The appropriate temperature for heating is 20°C lower than the melting temperature, and since it is easy to deform if it exceeds the shape recovery temperature, the temperature is preferably 10 to 30°C higher than the shape recovery temperature.

加温の方法は、金型を外部加熱することもできるが、内
圧をかける流体を加温することにより芯材を加温するこ
とが好都合である。内圧をかける流体には特に制限はな
く、空気、蒸気、水、油などの不活性な気体または液体
′を適宜利用することができる。形状記憶樹脂は、高温
では弾性率が急激に低下するため、高々20〜30kg
/c1i1程度までの低い内圧で数倍にも容易に膨張さ
せることができる。
As for the method of heating, although the mold can be heated externally, it is convenient to heat the core material by heating the fluid that applies internal pressure. There are no particular restrictions on the fluid that applies internal pressure, and inert gases or liquids such as air, steam, water, and oil can be used as appropriate. The elastic modulus of shape memory resin rapidly decreases at high temperatures, so the weight of shape memory resin is at most 20 to 30 kg.
It can be easily expanded several times with an internal pressure as low as /c1i1.

冷却は、金型への放熱を利用してもよいし、あるいは内
圧をかける流体を、圧力を保持しながら徐々に高温流体
から低温流体に置換させる方法も可能である。冷却され
ると、形状記憶樹脂の弾性率は回復するので、高強度の
膨張形状に固定された芯材が得られる。
For cooling, heat radiation to the mold may be used, or the fluid that applies internal pressure may be gradually replaced from a high-temperature fluid to a low-temperature fluid while maintaining the pressure. When cooled, the elastic modulus of the shape memory resin is restored, resulting in a core material fixed in an expanded shape with high strength.

こうして製造すべき中空製品の形状に成形された芯材に
、戒形すべき樹脂または樹脂含浸繊維を被覆する。この
被覆方法としては、例えば、金型と芯材とを組合わせて
注型する方法、ハンドレイアップ法、FW法などが可能
である。所望の厚みの樹脂被覆が可能である限り、任意
の被覆方法を採用することができる。
The core material thus formed into the shape of the hollow product to be produced is coated with the resin or resin-impregnated fiber to be shaped. Possible coating methods include, for example, a method in which a mold and a core material are combined and cast, a hand lay-up method, an FW method, and the like. Any coating method can be used as long as it allows resin coating to a desired thickness.

樹脂または樹脂含浸繊維を被覆した後、常温あるいは芯
材形状記憶樹脂の形状回復温度より低い温度での加温下
に被覆材樹脂を硬化させる。この硬化は、樹脂系に適し
た方法で、自然硬化、熱硬化、あるいは紫外線や電子線
の照射により行うことができる。この段階での硬化は完
全に行う必要はなく、芯材を除去しても樹脂の自立性が
保持できる程度まで不完全に硬化させただけでもよい。
After coating the resin or resin-impregnated fibers, the coating resin is cured by heating at room temperature or at a temperature lower than the shape recovery temperature of the core shape memory resin. This curing can be carried out by natural curing, thermal curing, or irradiation with ultraviolet rays or electron beams, using a method suitable for the resin system. It is not necessary to completely cure the resin at this stage, and it is sufficient that the resin is only partially cured to the extent that the resin can maintain its self-supporting properties even after the core material is removed.

こうして被覆材樹脂が硬化した後、芯材を形状回復温度
以上に加熱して、元の形状に復元させる。
After the coating resin is cured in this manner, the core material is heated above the shape recovery temperature to restore the original shape.

必要であれば、この加熱を樹脂が完全に硬化するまで続
けることができる。元の形状は成形物に比べて非常に小
さいので、戒形物から容易に除去できる。また、突起形
状が残っていても、加温状態で引張れば、芯材は加温状
態ではゴム弾性を示すため容易に変形して引き抜くこと
ができる。従って、芯材の除去は、冷却前の芯材が軟化
状態にある間に行うことが好ましい。除去した芯材は、
再び内圧をかけ膨張成形することにより、再使用可能で
ある。
If necessary, this heating can be continued until the resin is fully cured. Since the original shape is very small compared to the molded article, it can be easily removed from the precept. Further, even if the protrusion shape remains, if it is pulled in a heated state, the core material exhibits rubber elasticity in a heated state, so it can be easily deformed and pulled out. Therefore, it is preferable to remove the core material while the core material is in a softened state before being cooled. The removed core material is
It can be reused by applying internal pressure again and performing expansion molding.

被覆材樹脂が熱硬化性樹脂であり、樹脂の硬化に芯材の
形状回復温度以上の加熱が必要な場合には、芯材の内部
に水、油などの液状流体により内圧をかけた状態で芯材
の形状回復温度以上の樹脂硬化温度に樹脂を加熱するこ
とにより、芯材を形状回復させることなく樹脂を熱硬化
させることができる。ガス流体では、この加熱中に起こ
る芯材樹脂の復元力に十分に抗することが難しい。この
場合には、熱硬化後に、芯材の形状回復温度以上の加熱
を保持したまま内圧を除去すると、芯材は元の形状に復
元して収縮するので、上と同様に除去することができる
If the coating resin is a thermosetting resin and heating above the shape recovery temperature of the core material is required to cure the resin, apply internal pressure inside the core material with a liquid fluid such as water or oil. By heating the resin to a resin curing temperature that is higher than the shape recovery temperature of the core material, the resin can be thermally cured without causing the core material to recover its shape. It is difficult for a gas fluid to sufficiently resist the restoring force of the core resin that occurs during this heating. In this case, after heat curing, if the internal pressure is removed while maintaining the heating above the shape recovery temperature of the core material, the core material will return to its original shape and shrink, so it can be removed in the same way as above. .

本発明の方法は、各種の熱硬化性あるいは紫外線もしく
は電子線硬化性の樹脂の戒形に利用でき、樹脂の種類は
特に制限されない。樹脂には、硬化剤、離型剤、顔料、
染料その他の慣用の添加剤を配合することができる。F
RPの成形の場合、繊維としてはガラス繊維の他に、炭
素繊維、アラξド繊維などの他の強化繊維も利用できる
The method of the present invention can be used to form various thermosetting, ultraviolet or electron beam curable resins, and the type of resin is not particularly limited. The resin contains a curing agent, a mold release agent, a pigment,
Dyes and other conventional additives can be incorporated. F
In the case of RP molding, in addition to glass fibers, other reinforcing fibers such as carbon fibers and aramid fibers can also be used.

添付の第1図〜第6図に、本発明の戒形方法の概要を示
す。
The attached FIGS. 1 to 6 show an overview of the precept method of the present invention.

11 第1図〜第5図は製造工程を順を追って断面図で示した
ものである、第6図は成形すべき所望の分岐管の斜視図
である。
11 FIGS. 1 to 5 are cross-sectional views showing the manufacturing process in order. FIG. 6 is a perspective view of a desired branch pipe to be molded.

まず、第1図に示す如く、芯材として形状記憶樹脂製の
分岐管2を、半割りした分岐管金型1に挿入し、金型1
を閉じ合わせる。形状記憶樹脂製分岐管2は、押出戒形
で成形した樹脂管を融着接合することにより作製できる
First, as shown in FIG. 1, a branch pipe 2 made of shape memory resin as a core material is inserted into a half-split branch pipe mold 1.
close together. The shape memory resin branch pipe 2 can be produced by fusion-bonding resin pipes formed by extrusion.

この形状記憶樹脂製分岐管2を、金型1内で加温しつつ
分岐管に適当な流体により内圧を加えて、第2図に示す
ように分岐管2が金型1に密着するまで膨張させる。内
圧を維持してこの膨張状態を保ったまま冷却することに
より、第2図に示す芯材分岐管2の膨張した形状を固定
する。
This branch pipe 2 made of shape memory resin is heated in the mold 1 and internal pressure is applied to the branch pipe with an appropriate fluid, thereby expanding the branch pipe 2 until it comes into close contact with the mold 1 as shown in FIG. let By maintaining the internal pressure and cooling while maintaining this expanded state, the expanded shape of the core branch pipe 2 shown in FIG. 2 is fixed.

この後、金型1より膨張固定された芯材2を取り出し、
第3図に示す如く被覆材樹脂3を被覆する。被覆材樹脂
を適当な手段で硬化させた後、再び加熱して芯材2を元
の状態に戻し(第4図)、小さくなった芯材を引き抜い
て除去することにより、所望の分岐管形状の成形物3が
得られる(第12 5図)。
After this, the expanded and fixed core material 2 is taken out from the mold 1,
A coating resin 3 is applied as shown in FIG. After curing the coating resin by an appropriate means, heat it again to return the core material 2 to its original state (Fig. 4), and then pull out and remove the smaller core material to create the desired branch pipe shape. A molded article 3 is obtained (Fig. 125).

ここで、芯材2となる形状記憶樹脂と、戒形物3を構戒
する被覆材樹脂とは、非接着性であることが要求される
。この両者が接着性を有する場合には、膨張した芯材に
被覆材樹脂を被覆する前に、芯材表面に離型材を塗布も
しくは被覆しておく。
Here, the shape-memory resin serving as the core material 2 and the coating resin covering the preform 3 are required to be non-adhesive. If both have adhesive properties, the surface of the core material is coated or coated with a release material before the expanded core material is coated with the coating resin.

離型材としては、シリコーンオイル、フッ素樹脂などの
公知の材料を利用できる。
As the mold release material, known materials such as silicone oil and fluororesin can be used.

[実施例] 本発明を実施例により具体的に説嘴するが、本発明はこ
れらによって限定されるものでないことはいうまでもな
い。
[Examples] The present invention will be explained in more detail with reference to Examples, but it goes without saying that the present invention is not limited to these.

実嵐囲土 押出戒形により成形した外径26m、内径20mmの形
状記憶ポリエステル(日本ゼオン製、裔品名ゼオンシェ
イブルA−80、形状回復温度80℃)製のl 樹脂管を、第l図に2で示した断面形状の分岐管になる
ように融着接合して、芯材分岐管を作製した。
A resin pipe made of shape-memory polyester (manufactured by Nippon Zeon, descendant product name Zeon Shable A-80, shape recovery temperature 80°C) with an outer diameter of 26 m and an inner diameter of 20 mm was formed by extrusion molding using Mitsu Arashi extrusion method. A core branch pipe was produced by fusion bonding so that the branch pipe had the cross-sectional shape shown in 2.

この芯材分岐管を、内径50m+の分岐管形状の金型(
第1図に1で示したもの、半割り形状を閉し合わせるこ
とにより構tc)に挿入し、形状記憶樹脂分岐管に90
℃の熱湯を注入して、20kg/dの内圧を負荷すると
同時に加温した。芯材分岐管は外径50aに膨張し、金
型と同形状に変形した。この内圧を保持しながら、熱湯
を水と置換していくことにより芯材を冷却して、芯材の
膨張形状を固定した。
This core branch pipe is molded into a branch pipe-shaped mold (
By closing the half-split shape shown by 1 in Figure 1, insert it into the structure tc) and insert it into the shape memory resin branch pipe.
℃ hot water was injected, and an internal pressure of 20 kg/d was applied and the tube was heated at the same time. The core branch pipe expanded to an outer diameter of 50a and deformed into the same shape as the mold. While maintaining this internal pressure, the core material was cooled by replacing hot water with water, and the expanded shape of the core material was fixed.

次に、金型を分割して膨張した芯材分岐管を取り出し、
この芯材表面にビニルエステル累のコンチュニアスマッ
ト(ガラス繊維強化樹脂)をハンドレイアップにより5
g厚に被覆した。常温で90分間放置して樹脂を硬化さ
せた後、被覆した芯材を90゜Cのオーブンに入れ、加
熱を開始した。芯材は間もなく元の形状を回復して、第
4図に示す如くに収縮した。このまま2時間加熱を続け
、被覆材を完全に硬化させた後、90゜Cのままで芯材
を引き抜いた。芯材の分岐部分は容易に変形して、簡単
に除去することができた。
Next, the mold is divided and the expanded core branch pipe is taken out.
On the surface of this core material, continuous mat (glass fiber reinforced resin) made of vinyl ester is hand laid up.
It was coated to a thickness of g. After the resin was cured by standing at room temperature for 90 minutes, the coated core material was placed in an oven at 90° C. and heating was started. The core material soon recovered its original shape and shrunk as shown in FIG. Heating was continued in this state for 2 hours to completely cure the covering material, and then the core material was pulled out at 90°C. The branched portion of the core material was easily deformed and could be easily removed.

失旌奥主 実施例1と同様の方法で、第7図に示す戒形物に相応し
た膨張形状となるように芯材を膨張変形させ、膨張形状
を固定した。使用した芯材樹脂はポリノルボルネン系形
状記憶樹脂(B本ゼオン製、商品名ノーソレックス、形
状回復温度40℃)であり、芯材の初期形状は、外径1
10mm,内径100 am、長さ300 mmの片側
端面が閉鎖した管状体であった。
In the same manner as in Example 1, the core material was expanded and deformed so as to have an expanded shape corresponding to the precept shown in FIG. 7, and the expanded shape was fixed. The core material resin used was a polynorbornene shape memory resin (manufactured by B-Zeon, trade name Nosolex, shape recovery temperature 40°C), and the initial shape of the core material was an outer diameter of 1.
It was a tubular body with a diameter of 10 mm, an inner diameter of 100 am, and a length of 300 mm with one end closed.

この初期形状の芯材を、半割り型の金型に入れ、60゜
Cの熱湯により5 kg/cJの内圧で膨張させ、外径
200111J長さ300 amの第7図に示すような
円筒容器形状に成形した。
The core material in this initial shape was placed in a half-split mold and expanded with hot water at 60°C at an internal pressure of 5 kg/cJ to form a cylindrical container with an outer diameter of 200111J and a length of 300 am as shown in Figure 7. Molded into shape.

冷却後、膨張した芯材の表面に5軸制御のFW成形機で
不飽和ポリエステル樹脂含浸ガラス繊維を厚み10mm
になるように被覆した。常温で60分間乾燥した後、芯
材内部に5 kg/dの内圧を油圧によりかけながら8
0゜Cに30分間加熱し、樹脂を完全に硬化させた。芯
材内部の油を除去した後、さらに90℃に加熱すると、
芯材はすぐに元の形状に回復し、成形物の開口部から容
易に引き抜くことができた。
After cooling, unsaturated polyester resin-impregnated glass fiber is applied to the surface of the expanded core material to a thickness of 10 mm using a 5-axis FW molding machine.
It was coated so that After drying for 60 minutes at room temperature, it was dried for 8 minutes while applying an internal pressure of 5 kg/d inside the core material using hydraulic pressure.
The resin was completely cured by heating to 0°C for 30 minutes. After removing the oil inside the core material, if it is further heated to 90℃,
The core material quickly recovered to its original shape and could be easily pulled out from the opening of the molded article.

15 [発明の効果] 本発明の方法によれば、形状記憶樹脂の形状回復挙動お
よび高温時の弾性率の急激な低下を利用することにより
、従来技術では難しかった樹脂あるいはFRP製の複雑
形状の中空製品が容易に成形できる。また、芯材は繰り
返し使用することができるため、生産性を損なうことも
ない。さらに、芯材樹脂の膨張変形は、加温による低弾
性率状態で行うため、低内圧で変形可能であり、変形後
に冷却して膨張形状を固定した後は、高弾性率に戻り、
高強度を発現することができるので、繊維による張力に
打ち勝ちFW法に対する芯材としても十分な強度のもの
を、従来より低い内圧で得ることができる。また、成形
物の硬化後、芯材は加熱により簡単に元の非常に小さい
形状に戻るため、得られた戒形物からの芯材の引抜きも
非常に容易である。
15 [Effects of the Invention] According to the method of the present invention, by utilizing the shape recovery behavior of shape memory resin and the rapid decrease in elastic modulus at high temperatures, it is possible to form complex shapes made of resin or FRP, which was difficult with conventional techniques. Hollow products can be easily formed. Moreover, since the core material can be used repeatedly, productivity is not impaired. Furthermore, the expansion and deformation of the core resin is performed in a low elastic modulus state due to heating, so it can be deformed at low internal pressure, and after cooling and fixing the expanded shape after deformation, it returns to a high elastic modulus,
Since it can exhibit high strength, it is possible to overcome the tension caused by the fibers and obtain a material with sufficient strength as a core material for the FW method at a lower internal pressure than before. Further, after the molded article has hardened, the core material easily returns to its original, very small shape by heating, so it is very easy to pull out the core material from the obtained pre-shaped article.

このように本発明の方法は、複雑形状物の成形にも利用
できるにもかかわらず、操作が簡単で経済的であるとい
う特長を有し、産業上極めて有用16 である。
As described above, although the method of the present invention can be used for molding complex-shaped objects, it is easy to operate and economical, making it extremely useful in industry16.

【図面の簡単な説明】[Brief explanation of drawings]

第1図〜第5図は、本発明方法の工程を示す断面図、 第6図は、本発明により成形された中空分岐管の略式斜
視図、および 第7図は、本発明の他の実施例により成形された中空容
器の斜視図である。 1 金型、  2 形状記憶樹脂製芯材、3 成形物。
1 to 5 are cross-sectional views showing the steps of the method of the present invention, FIG. 6 is a schematic perspective view of a hollow branch pipe formed according to the present invention, and FIG. 7 is a diagram showing another embodiment of the present invention. FIG. 2 is a perspective view of a hollow container molded according to an example. 1. Mold, 2. Shape memory resin core material, 3. Molded article.

Claims (2)

【特許請求の範囲】[Claims] (1)成形すべき中空製品の中空部より小なる形状を予
め記憶させておいた形状記憶樹脂よりなる中空芯材に加
温下に内圧を加えて膨張させることにより所望形状に成
形し、この所望形状を保持した芯材に樹脂または樹脂含
浸繊維を被覆し、芯材の形状回復温度を下回る温度で樹
脂を硬化させ、次いで芯材を形状回復温度以上に加熱す
ることにより芯材を記憶させた元の形状に収縮させて除
去することを特徴とする、樹脂または繊維強化樹脂から
なる中空製品の成形方法。
(1) A hollow core material made of shape memory resin, which has a shape smaller than the hollow part of the hollow product to be molded, is expanded by applying internal pressure under heating to form it into the desired shape. A core material that retains the desired shape is coated with a resin or resin-impregnated fibers, the resin is cured at a temperature below the shape recovery temperature of the core material, and then the core material is heated to a temperature above the shape recovery temperature to cause the core material to memorize. A method for molding hollow products made of resin or fiber-reinforced resin, characterized by shrinking them to their original shape and removing them.
(2)成形すべき中空製品の中空部より小なる形状を予
め記憶させておいた形状記憶樹脂よりなる中空芯材に加
温下に内圧を加えて膨張させることにより所望形状に成
形し、この所望形状を保持した芯材に樹脂または樹脂含
浸繊維を被覆し、芯材に液体内圧をかけながら形状回復
温度以上で樹脂を硬化させ、次いで内圧を除去して芯材
を記憶させた元の収縮形状に回復させて除去することを
特徴とする、樹脂または繊維強化樹脂からなる中空製品
の成形方法。
(2) A hollow core material made of shape memory resin, which has a shape smaller than the hollow part of the hollow product to be molded, is expanded by applying internal pressure under heating to form it into the desired shape. A core material that retains the desired shape is coated with resin or resin-impregnated fibers, the resin is cured above the shape recovery temperature while applying liquid internal pressure to the core material, and then the internal pressure is removed to allow the core material to memorize its original shrinkage. A method for molding a hollow product made of resin or fiber-reinforced resin, characterized by recovering the shape and removing it.
JP2004368A 1990-01-11 1990-01-11 Molding method of hollow product Pending JPH03208610A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004368A JPH03208610A (en) 1990-01-11 1990-01-11 Molding method of hollow product

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004368A JPH03208610A (en) 1990-01-11 1990-01-11 Molding method of hollow product

Publications (1)

Publication Number Publication Date
JPH03208610A true JPH03208610A (en) 1991-09-11

Family

ID=11582431

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004368A Pending JPH03208610A (en) 1990-01-11 1990-01-11 Molding method of hollow product

Country Status (1)

Country Link
JP (1) JPH03208610A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014502223A (en) * 2010-11-11 2014-01-30 スピリット アエロシステムズ,アイエヌシー. Method and system for interconnecting or mutually curing composite parts using a rigid / malleable SMP apparatus
JP2014504218A (en) * 2010-11-11 2014-02-20 スピリット アエロシステムズ,アイエヌシー. Method and system for forming an integral composite part using an SMP device
CN109910208A (en) * 2019-04-23 2019-06-21 哈尔滨工业大学 A kind of core model and preparation method thereof and composite material shape tube forming method
CN110154287A (en) * 2019-07-01 2019-08-23 哈尔滨工业大学 A kind of application method of bidirectional shape memory core model and bidirectional shape memory core model

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014502223A (en) * 2010-11-11 2014-01-30 スピリット アエロシステムズ,アイエヌシー. Method and system for interconnecting or mutually curing composite parts using a rigid / malleable SMP apparatus
JP2014504218A (en) * 2010-11-11 2014-02-20 スピリット アエロシステムズ,アイエヌシー. Method and system for forming an integral composite part using an SMP device
CN109910208A (en) * 2019-04-23 2019-06-21 哈尔滨工业大学 A kind of core model and preparation method thereof and composite material shape tube forming method
CN110154287A (en) * 2019-07-01 2019-08-23 哈尔滨工业大学 A kind of application method of bidirectional shape memory core model and bidirectional shape memory core model

Similar Documents

Publication Publication Date Title
US7422714B1 (en) Method of using a shape memory material as a mandrel for composite part manufacturing
EP1009622B1 (en) Method for the moulding of hollow bodies which comprise at least one layer of reinforced plastic
US6986855B1 (en) Structural and optical applications for shape memory polymers (SMP)
US2723426A (en) Manufacture of reinforced plastic tubing
US7622069B1 (en) Molding methods using shape memory polymers
US7910038B2 (en) Preforms and methods of making the same
US6716503B1 (en) Reinforced thermoplastic storage vessel manufacture
US2886853A (en) Process for the production of hollow objects
US20140374950A1 (en) Process for the rapid fabrication of composite gas cylinders and related shapes
US8007705B2 (en) Method of manufacture of one-piece composite parts using a two-piece form including a shaped polymer that does not draw with a rigid insert designed to draw
US20100230859A1 (en) Method of manufacture of one-piece composite parts with a polymer form that transitions between its glassy and elastomeric states
JP3318329B2 (en) Method for producing a heat-recoverable article and apparatus for expanding and contracting the article
JPH03208610A (en) Molding method of hollow product
JPH04175148A (en) Regeneration of thermally expansive mandrel
JPH03277532A (en) Production of bent pipe made of fiber reinforced plastic
US8091608B2 (en) Method of forming a hollow sand core
Everhart et al. Reusable shape memory polymer mandrels
JPH0788968A (en) Forming method of frp hollow body
Everhart et al. Shape memory polymer configurative tooling
GB2222653A (en) Hollow tubular structures of fibre reinforced plastics material and method for their production
WO1992008594A1 (en) A method and an apparatus for the manufacture of moulded components on thermally expandable cores
JPH05177722A (en) Structure of composite fiber reinforced resin tube and its manufacture
JPH03272832A (en) Manufacture of hollow body of fiber reinforced thermoplastic resin
JPH01184124A (en) Preparation of fiber reinforced resin hollow body
JPH06278671A (en) Fiber-reinforced thermosetting resin pipe for bicycle frame and its manufacture