JPH03207833A - Nitriding steel and its manufacture - Google Patents

Nitriding steel and its manufacture

Info

Publication number
JPH03207833A
JPH03207833A JP196190A JP196190A JPH03207833A JP H03207833 A JPH03207833 A JP H03207833A JP 196190 A JP196190 A JP 196190A JP 196190 A JP196190 A JP 196190A JP H03207833 A JPH03207833 A JP H03207833A
Authority
JP
Japan
Prior art keywords
nitriding
steel
cooling
cooled
thereafter
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP196190A
Other languages
Japanese (ja)
Inventor
Manabu Hirai
学 平井
Fukukazu Nakazato
中里 福和
Mitsuo Uno
宇野 光男
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Sumitomo Metal Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Industries Ltd filed Critical Sumitomo Metal Industries Ltd
Priority to JP196190A priority Critical patent/JPH03207833A/en
Publication of JPH03207833A publication Critical patent/JPH03207833A/en
Pending legal-status Critical Current

Links

Landscapes

  • Heat Treatment Of Steel (AREA)

Abstract

PURPOSE:To obtain the nitriding steel capable of short time nitriding by incorporating specified amounts of Cr, Mo, V and Nb into a medium-high carbon steel, subjecting it to hot rolling and thereafter executing cooling under specified conditions. CONSTITUTION:At the time of manufacturing a nitriding steel for machine structural parts requiring wear resistance in civil engineering machine, industrial machine, or the like, a slab having a compsn. obtd. by incorporating, by weight, 0.50 to 3.50% Cr, 0.50 to 1.50% Mo, 0.10 to 0.50% V and 0.01 to 0.10% Nb into a steel contg. 0.30 to 0.60% C, 0.10 to 0.50% Si and 0.30 to 0.90% Mn is hot-rolled, is thereafter rapidly cooled to the temp. range of 600 to the Ar1 transformation point, is held to the above temp. for 8 to 10 hr and is thereafter air-cooled to a room temp. Or, the slab is hot-rolled, is thereafter gradually cooled to the temp. range of 450 to 550 deg.C at 35 to 50 deg.C/hr cooling rate and is thereafter air-cooled. The nitriding steel having the structure of ferrite and fine pearlite, capable of short time nitriding and excellent in mechanical characteristics and nitriding properties can be obtd.

Description

【発明の詳細な説明】 産業上の利用分野 この発明は土木機械、産業機械等のfit摩耗性が要求
される機械構造部品用の窒化用鋼とその製造方法に関す
る。
DETAILED DESCRIPTION OF THE INVENTION Field of Industrial Application This invention relates to a nitriding steel for mechanical structural parts that require fit wear resistance, such as civil engineering machinery and industrial machinery, and a method for manufacturing the same.

従来の技術 機械工具や機械部品の耐摩耗特性を向上させる方法とし
ては、高周波焼入れ、浸炭焼入れ等があるが、結晶粒の
粗大化により靭性が劣化するという問題を有するととも
に、熱処理歪が大きく非対称かつ複雑形状(例、自動車
部品のクランクシャフト)の部品の表面硬化には適さな
い。
Conventional techniques Methods for improving the wear resistance properties of mechanical tools and mechanical parts include induction hardening and carburizing hardening, but these have the problem of deteriorating toughness due to coarsening of crystal grains, and the heat treatment distortion is large and asymmetrical. Moreover, it is not suitable for surface hardening of parts with complex shapes (eg, crankshafts for automobile parts).

窒化処理は、例えばアンモニアガス雰囲気中で熱処理(
A+変態点以下)を施し、鋼中の表層部に窒素を浸入さ
せ窒化物、炭窒化物を生或させることにより、耐摩耗性
を向上させることを目的としてするもので、900℃前
後の高温で表面硬化処理を行う浸炭処理と異なり、50
0〜550℃の低温で行われるため、結晶粒の粗大化に
よる靭性の劣化や熱処理歪みが生じるようなことがない
という特徴を有する。このため従来より耐摩耗性が要求
される工具類には、窒化処理が広く用いられている。
Nitriding treatment is performed by heat treatment (for example, in an ammonia gas atmosphere).
The purpose is to improve wear resistance by applying nitrogen to the surface layer of the steel to form nitrides and carbonitrides. Unlike carburizing treatment, which performs surface hardening treatment at 50
Since it is carried out at a low temperature of 0 to 550°C, it is characterized in that it does not cause deterioration of toughness or heat treatment distortion due to coarsening of crystal grains. For this reason, nitriding has been widely used for tools that require wear resistance.

発明が解決しようとする課題 しかし、窒化処理には通常60〜100時間程度要する
ため、コスト合理化や工数削減の観点から窒化処理時間
の短縮化が望まれている。しかし、未だ効果的な方法が
見当らないのが現状である。
Problems to be Solved by the Invention However, since the nitriding process usually takes about 60 to 100 hours, it is desired to shorten the nitriding process time from the viewpoint of cost rationalization and man-hour reduction. However, the current situation is that no effective method has yet been found.

この発明はこのような実情よりみて、窒化用鋼の組戒を
制御することによって、窒化処理時の窒素の拡散速度を
大きくし、短時間の窒化処理が可能な高靭性の窒化用鋼
とその製造方法を提案しようとするものである。
In view of these circumstances, this invention provides a high-toughness nitriding steel that increases the diffusion rate of nitrogen during nitriding by controlling the composition of the nitriding steel, and enables short-time nitriding. This is an attempt to propose a manufacturing method.

課題を解決するための手段 この発明者らは、前記耐摩耗特性の向上を図るため、種
々研究を重ねた結果、次に記載する知見を得た。
Means for Solving the Problems The inventors have conducted various studies in order to improve the above-mentioned wear resistance characteristics, and as a result, they have obtained the knowledge described below.

■ Cr,Mo,V,Nbは窒化層深さを向上させるの
に有効な戒分であり、窒化時間の短縮に効果を発揮する
(2) Cr, Mo, V, and Nb are effective ingredients for increasing the depth of the nitriding layer, and are effective in shortening the nitriding time.

■ フェライトと微細パーライト中の窒素の拡散速度が
速いため窒化時間を短縮できる。
■Nitriding time can be shortened because the diffusion rate of nitrogen in ferrite and fine pearlite is fast.

■ MOの添加により圧延後の冷却中にペイナイトが生
威し易いため、ペイナイトの生或を抑制し、フェライト
と微細バーライトの混合組織を得るためには、圧延後の
冷却方法を制御する必要がある。
■ Because paynite is likely to grow during cooling after rolling due to the addition of MO, it is necessary to control the cooling method after rolling in order to suppress the formation of paynite and obtain a mixed structure of ferrite and fine barite. There is.

この,発明は上記知見に基づいてなされたものであり、
Cr,Mo、■の添加に加え、Nbを適量添加すること
、および圧延後の冷却方法を制御してミクロ組織をフェ
ライトと微細バーライト組織との混合組織とすることに
よって、窒化時間の短縮をはかるとともに、Nbの適量
添加により靭性を向上させたものである。
This invention was made based on the above knowledge,
In addition to the addition of Cr, Mo, and ■, the nitriding time can be shortened by adding an appropriate amount of Nb and by controlling the cooling method after rolling to make the microstructure a mixed structure of ferrite and fine barlite. In addition to improving toughness by adding an appropriate amount of Nb.

すなわち、この発明の要旨は、重量比で、C 0.30
〜0.60%、Si0.10〜0.50%、Mn 0.
30 − 0.90%、C r 0.50 − 3.5
0%、Mo 0.50 〜1.50%、V 0.10−
 0.50%、Nb 0.01〜0.10%を含有し、
残部Feおよび不可避的不純物からなり、フェライトと
微細バーライトとの混合組織を有することを特徴とする
窒化用鋼であり、またその製造方法として、前記組戒の
鋼を熱間圧延後600℃〜Ar+変態点の温度域まで急
冷し、当該温度で8〜10時間保持した後空冷すること
を特徴とし、また前記組戒の鋼を熱間圧延後35〜50
℃/Hrの冷却速度で450〜550℃まで冷却した後
空冷することを特徴とするものである。       
   作   用 この発明鋼の化学戒分の限定理由は以下の通りである。
That is, the gist of this invention is that, in terms of weight ratio, C 0.30
~0.60%, Si0.10-0.50%, Mn 0.
30-0.90%, Cr 0.50-3.5
0%, Mo 0.50-1.50%, V 0.10-
0.50%, Nb 0.01-0.10%,
It is a nitriding steel characterized by having the remainder Fe and unavoidable impurities, and having a mixed structure of ferrite and fine barite, and as a manufacturing method, the steel of the above-mentioned assembly is hot-rolled and then heated at 600 ° C. It is characterized in that it is rapidly cooled to a temperature range of Ar + transformation point, held at that temperature for 8 to 10 hours, and then air cooled, and the above-mentioned steel is heated to a temperature of 35 to 50% after hot rolling.
It is characterized in that it is cooled to 450 to 550°C at a cooling rate of °C/Hr and then air-cooled.
Function The reasons for limiting the chemical precepts of this invention steel are as follows.

C:0.30〜0.10% Cは鋼に所定の静的強度を付与するのに必要な元素であ
るが、反面、靭性を劣化させる元素である。特に窒化用
鋼においては、静的強度と靭性のバランスが必要であり
、最低限の静的強度を得るには0.30%以上が必要で
ある。しかし、0.60%を超えると靭性が急激に低下
するため、C含有量としては0.30〜0,60%が好
ましい。
C: 0.30 to 0.10% C is an element necessary to impart a certain static strength to steel, but on the other hand, it is an element that deteriorates toughness. Particularly in steel for nitriding, a balance between static strength and toughness is required, and 0.30% or more is required to obtain the minimum static strength. However, if it exceeds 0.60%, the toughness decreases rapidly, so the C content is preferably 0.30 to 0.60%.

Si:0.10〜0,50% Siは溶鋼の脱酸に必要な元素であり、また鋼に所定の
静的強度を付与するのに必要な元素であるが、0.10
%未満では脱酸作用に所望の効果が得られず、他方0.
50%を超えると加工性が劣化するため、0.10〜0
.50%とした。
Si: 0.10-0.50% Si is an element necessary for deoxidizing molten steel, and is also an element necessary for imparting a certain static strength to steel, but 0.10%
%, the desired deoxidizing effect cannot be obtained; on the other hand, if it is less than 0.
If it exceeds 50%, workability deteriorates, so 0.10 to 0
.. It was set at 50%.

Mn  :  0.30−  0.90%MnはSiと
同様、溶鋼の脱酸に必要な元素であり、また鋼に焼入性
を付与するのに有効な元素であるが、0.30%未満で
は脱酸作用に所望の効果が得られず、他方0.90%を
超えると靭性が劣化するため、0.30〜0.90%と
した。
Mn: 0.30-0.90%Mn, like Si, is an element necessary for deoxidizing molten steel, and is also an effective element for imparting hardenability to steel, but less than 0.30%. If the content exceeds 0.90%, the toughness deteriorates, so the content was set at 0.30 to 0.90%.

Cr :  0.50 〜3.50% Crは窒化特性を向上させ、鋼の焼入性を付与するのに
有効な元素であるが、0.50%未満では窒化特性と焼
入性の向上に所望の効果を得ることができず、他方3.
50%を超えると靭性の低下をきたすため、0.50〜
3.50%とした。
Cr: 0.50 to 3.50% Cr is an effective element for improving nitriding properties and imparting hardenability to steel, but if it is less than 0.50%, it does not improve nitriding properties and hardenability. The desired effect cannot be obtained, and 3.
If it exceeds 50%, the toughness will decrease, so 0.50~
It was set at 3.50%.

Mo :  0.50 − 1.50%MoはCrと同
様、窒化特性と焼入性の向上に有効な元素であるが、0
.50%未満では窒化特性と焼入性を十分に向上させる
ことができず、他方1.50%を超えると窒化特性に対
する効果が飽和し、経済性を損なうので、0.50〜1
.50%とした。
Mo: 0.50 - 1.50% Mo is an effective element for improving nitriding properties and hardenability like Cr, but
.. If it is less than 50%, the nitriding properties and hardenability cannot be sufficiently improved, while if it exceeds 1.50%, the effect on the nitriding properties is saturated and the economic efficiency is impaired.
.. It was set at 50%.

V:0.10〜0. 50% ■は窒化特性を向上させ、同時に鋼の高温強度を高める
のに有効な元素であるが、その効果を発揮させるために
は少なくとも 0.10%以上必要であり、他方0.5
0%を超えると窒化特性に対する効果が飽和し、経済性
を損うため0,10〜0.50%とした。
V:0.10~0. 50% ■ is an effective element for improving the nitriding properties and at the same time increasing the high-temperature strength of steel, but in order to exhibit its effect, it must be at least 0.10%, and on the other hand, 0.5
If it exceeds 0%, the effect on nitriding properties will be saturated and economic efficiency will be impaired, so the content was set at 0.10 to 0.50%.

Nb:0.01〜0.10% Nbは窒化特性と静的強度、および靭性を向上させるの
に有効な元素であるが、 0.01%未満ではそれらの
効果が十分に得られず、他方0.10%を超えると機械
加工時の切削性を損うため、0.01〜0.10%とし
た。
Nb: 0.01-0.10% Nb is an effective element for improving nitriding properties, static strength, and toughness, but if it is less than 0.01%, these effects cannot be sufficiently obtained, and on the other hand, If it exceeds 0.10%, machinability during machining will be impaired, so it was set at 0.01 to 0.10%.

また、窒化鋼のミクロ組織をフェライトと微細バーライ
ト組織との混合組織とした理由は、以下の通りである。
The reason why the microstructure of the nitrided steel is a mixed structure of ferrite and fine barlite is as follows.

フェライトおよび微細バーライト組織は、ペイナイト組
織やマルテンサイト組織に比較して、硬さは柔らかいも
のの、靭性が著しく良好であり、かつN移動の妨げとな
る転位の量が少ないなめ、窒化時のNの拡散が容易で、
短時間窒化が可能である。したがって、フェライトと微
細バーライトとの混合組織とする必要がある。
Although ferrite and fine barlite structures are softer in hardness than payinite and martensitic structures, they have significantly better toughness and less dislocations that impede N movement. is easy to spread,
Nitriding is possible for a short time. Therefore, it is necessary to have a mixed structure of ferrite and fine barlite.

窒化用鋼のミクロ組織をフェライトと微細バーライトと
の混合組織とするためには、窒化用鋼を熱間圧延した後
の冷却を制御する必要がある。その制御方法として、こ
の発明では次の2通りの手段を採用した。
In order to make the microstructure of the nitriding steel a mixed structure of ferrite and fine barlite, it is necessary to control cooling after hot rolling the nitriding steel. In this invention, the following two methods are adopted as the control method.

(1)熱間圧延後600℃〜A r +変態点の温度域
まで急冷し、当該温度に8〜10時間保持する。
(1) After hot rolling, it is rapidly cooled to a temperature range of 600°C to A r + transformation point, and maintained at the temperature for 8 to 10 hours.

その理由は、熱間圧延後急冷を行うのは、フェライトと
バーライトの生成量を抑え、微細バーライトの生戒率を
高めるためである。また、熱間圧延後の冷却目標温度が
600℃未満の時は、その後の空冷によりペイナイトが
生戊する可能性がある。
The reason for this is that rapid cooling is performed after hot rolling to suppress the amount of ferrite and barlite produced and to increase the survival rate of fine barlite. Moreover, when the cooling target temperature after hot rolling is less than 600° C., there is a possibility that paynite will be formed due to subsequent air cooling.

一方、Ar+変態点より高い温度に冷却してその温度に
保持しても、オーステナイトからフェライトが生戒する
のみで、微細バーライトが生威しないばかりか、その後
の空冷で微細バーライトとともにペイナイトも生或する
On the other hand, even if it is cooled to a temperature higher than the Ar + transformation point and held at that temperature, ferrite is only recovered from austenite and fine barlite is not produced, and not only is it possible to produce paynite along with fine barite during subsequent air cooling. be alive.

このため、熱間圧延後の冷却目標温度としては、600
℃〜A r +変態点とした。
Therefore, the target temperature for cooling after hot rolling is 600.
℃~A r + transformation point.

なお、保持時間が8時間未満では微細バーライトが完全
に生戒せず、他方10時間を超えるとフェライトと微細
パーライトの混合組織は得られるが、長時間保温はコス
トアップにつながるため、8〜10時間と定めた。
If the holding time is less than 8 hours, the fine barlite will not be completely preserved, while if the holding time exceeds 10 hours, a mixed structure of ferrite and fine pearlite will be obtained. It was set as 10 hours.

(2)熱間圧延後35−50℃/Hrの冷却速度で45
0〜550℃まで冷却(徐冷)する。
(2) 45 at a cooling rate of 35-50℃/Hr after hot rolling
Cool (slowly cool) to 0 to 550°C.

その理由は、熱間圧延後50℃/Hrより大きな速度で
冷却すると、ペイナイトが生戒する。他方、35℃/}
1r未満の冷却速度で徐冷すると、フェライトと微細バ
ーライトの変態は完了するものの、冷却に要する時間が
長くなり、工数削減に反する。
The reason is that if the steel is cooled at a rate higher than 50° C./Hr after hot rolling, paynite will be lost. On the other hand, 35℃/}
Slow cooling at a cooling rate of less than 1 r completes the transformation of ferrite and fine barite, but the time required for cooling becomes longer, which goes against the reduction in man-hours.

また、550℃より高温まで冷却した後空冷すると、空
冷時にペイナイトが生或する。他方、450℃未満まで
冷却すると、冷却時間が長くかがる。
Furthermore, if the material is cooled to a temperature higher than 550° C. and then air cooled, paynite is formed during air cooling. On the other hand, cooling to less than 450° C. takes a long time.

このため、冷却速度を35〜50℃/Hr 、冷却目標
温度を450〜550℃と定めた。
For this reason, the cooling rate was set at 35-50°C/Hr, and the cooling target temperature was set at 450-550°C.

実  施  例 実施例1 第1表に示す化学戒分を有する鋼を溶製後、各々160
mm角の鋼片とし、この鋼片を1100℃に加熱し、仕
上温度950℃の熱間圧延を施して30mmの丸棒とし
た後、40℃/Hrの冷却速度となるよ,うに調整した
雰囲気炉にて500℃まで冷却した。
Examples Example 1 After melting steel having the chemical precepts shown in Table 1, each
A mm square steel billet was heated to 1100°C, hot rolled at a finishing temperature of 950°C to form a 30mm round bar, and the cooling rate was adjusted to 40°C/Hr. It was cooled to 500°C in an atmospheric furnace.

冷却後、JIS 3号(2mmノッチ)シャルビー衝撃
試験片と、第1図に示す静的曲げ試験片(L:55mm
,t + : 10mm,t 2 :8mm)に加工し
た後、NHs ガス中で530℃にて24時間ガス窒化
処理を行い、シャルビー衝撃試験と静的曲げ試験を行っ
た。なお、静的曲げ試験では、10−”/ sの歪み速
度で静的曲げ強度(亀裂発生荷重)を調べた。
After cooling, a JIS No. 3 (2 mm notch) Charby impact test piece and a static bending test piece (L: 55 mm) shown in Figure 1 were used.
, t + : 10 mm, t 2 : 8 mm), gas nitriding treatment was performed at 530° C. for 24 hours in NHs gas, and Charby impact test and static bending test were performed. In the static bending test, static bending strength (crack initiation load) was examined at a strain rate of 10-''/s.

シャルピー衝撃試験片については、衝撃試験実施後に白
層近傍硬さ(鋼表面より 0.1m.m位置の硬さ)、
母材(芯部)硬さおよび窒化層深さを測定し、母材のミ
クロ組織観察を行った。
For Charpy impact test pieces, after the impact test, the hardness near the white layer (hardness at 0.1 mm from the steel surface),
The hardness of the base material (core) and the depth of the nitrided layer were measured, and the microstructure of the base material was observed.

以上の測定結果を第1表に併せて示す。The above measurement results are also shown in Table 1.

第l表より明らかなごとく、供試鋼No.1〜10の本
発明鋼はシャルビー吸収エネルギー、静的曲げ強度、白
層近傍硬さ、母材硬さ、窒化層深さ共に目標値(それぞ
れ15. OKgf−m、2000Kgf以上、HV9
00以上、HV250以上、 0.70mm以上)を満
足している。
As is clear from Table 1, test steel No. The invention steels Nos. 1 to 10 have the target values for Charby absorbed energy, static bending strength, near-white layer hardness, base metal hardness, and nitrided layer depth (15. OK gf-m, 2000 Kgf or more, and HV9, respectively).
00 or more, HV250 or more, and 0.70mm or more).

一方、供試鋼No.11〜29と現用鋼A,Bの比較鋼
のうち、CあるいはMn,Crが規定より多い鋼(No
.11、15、17、25、28)およびNbが規定よ
り少ない鋼(No.24、A,B)ではシャルビー吸収
エネルギーが大きく低下しており、靭性の劣化が認めら
れる。また、シャルビー吸収エネルギーの低下が認めら
れないその他の比較鋼も含めて、静的曲げ強度はすべて
大きく低下している。
On the other hand, test steel No. Among the comparison steels of No. 11 to 29 and current steels A and B, steels with higher C or Mn and Cr content than specified (No.
.. No. 11, 15, 17, 25, 28) and steels containing less Nb than specified (No. 24, A, B), the Charby absorbed energy is greatly reduced, and deterioration of toughness is observed. In addition, the static bending strength of all steels, including the other comparison steels in which no decrease in Charby absorbed energy was observed, was significantly decreased.

窒化層深さの増大に寄与する戒分(Cr,Mo、V,N
bが規定より少なイfR (No. 18、20、22
、24、25、26、27、28、29、A)では、窒
化層深さが浅くなっている。
The precepts (Cr, Mo, V, N
If b is less than the standard (No. 18, 20, 22
, 24, 25, 26, 27, 28, 29, A), the nitrided layer depth is shallow.

以上の結果より、製造条件を満足しても戒分の含有量が
異なると、目標とする特性が得られないことがわかる。
From the above results, it can be seen that even if the manufacturing conditions are satisfied, if the content of precepts is different, the target characteristics cannot be obtained.

次に、合金或分の含有量が本発明と同一で、鋼中にペイ
ナイトを含んでいる鋼、ミクロ組織が焼戻しマルテンサ
イト鋼の場合の結果を以下に示す。
Next, the results will be shown below in the case of a steel having a certain alloy content the same as that of the present invention, containing payinite, and a tempered martensitic steel having a microstructure.

第1表と同一の化学或分を有する鋼片(160m m角
)を圧延素材とし、当該鋼片を1100℃に加熱し、仕
上温度950℃で熱間圧延を施して30m mの丸棒と
した直後、下記(a)または(b)の処理を行った。
A steel slab (160 mm square) having the same chemical properties as shown in Table 1 was used as a rolled material, heated to 1100°C, and hot rolled at a finishing temperature of 950°C to form a 30 mm round bar. Immediately after that, the following treatment (a) or (b) was performed.

(a)55℃/Hrの冷却速度となるように調整した雰
囲気炉にて冷却を実施。
(a) Cooling was performed in an atmospheric furnace adjusted to have a cooling rate of 55° C./Hr.

(b)オイル中で焼入れした後、650℃にて1時間焼
戻しを実施。
(b) After quenching in oil, tempering was performed at 650°C for 1 hour.

第1表の供試鋼No.1〜5、11〜l9については(
a)を、供試鋼No. 6−to、20−29について
は(b)の処理を実施した。また、現用鋼A,Bについ
ては(a)(b)両方の処理を実施した。
Test steel No. in Table 1. For 1-5, 11-19 (
a), test steel No. For samples 6-to and 20-29, the process (b) was performed. Furthermore, for the current steels A and B, both treatments (a) and (b) were carried out.

(a)または(b)の処理後は、実施例1と同じ要領で
試験片加工、窒化処理を行ってから機械的性質、窒化特
性、並びに母材ミクロ組織の調査を行った。
After the treatment in (a) or (b), the specimen was processed and nitrided in the same manner as in Example 1, and then the mechanical properties, nitriding properties, and base material microstructure were investigated.

以上の結果を第2表に示す。The above results are shown in Table 2.

第2表より明らかなごとく、目標値をすべて満.足して
いる鋼は皆無で、特に従来より一般に行われる処理(b
)を採用した比較処理No.36〜40、50〜59で
は、母材硬さは高いものの、シャルピー吸収エネルギー
の低下が激しい。
As is clear from Table 2, all target values were met. There is no added steel, especially for conventional treatments (b).
) Comparison processing No. In samples No. 36-40 and No. 50-59, although the base material hardness was high, the Charpy absorbed energy decreased significantly.

このように、ミクロ組織中にペイナイトを含む鋼や、ミ
クロ組織が焼戻しマルテンサイト鋼の場合は、仮に合金
戒分の含有量が規定値を満足していても、機械的性質と
窒化特性が劣化することがわかる。
In this way, in the case of steel containing payinite in the microstructure or tempered martensitic steel, even if the content of alloying elements satisfies the specified value, the mechanical properties and nitriding properties deteriorate. I understand that.

実施例2 第1表に示す供試鋼No. 1の160mm角鋼片を熱
間圧延後、第2図に示すヒートパターンにて冷却し、実
施例1と同じ要領で試験片加工と窒化処理を行い、機械
的性質と窒化特性および母材ミクロ組織の調査を行った
Example 2 Test steel No. shown in Table 1. After hot-rolling the 160 mm square steel piece of Example 1, it was cooled using the heat pattern shown in Figure 2, and the test piece was processed and nitrided in the same manner as in Example 1 to determine the mechanical properties, nitriding properties, and base material microstructure. conducted a survey.

また、同じ鋼片を第3図に示すビートパターンにて冷却
した後、実施例1と同じ要領で試験片加工と窒化処理お
よび母材ミクロ組織の調査を行った。
Further, after cooling the same steel piece in the beat pattern shown in FIG. 3, the test piece was processed, nitrided, and the base material microstructure was investigated in the same manner as in Example 1.

上記2つの調査結果を、本願発明と異なる条件で実施し
た場合と比較して第3表および第4表に示す。
The results of the above two investigations are shown in Tables 3 and 4 in comparison with those conducted under conditions different from those of the present invention.

第3表より、本発明と比較例の中で、保持時間が規定値
より長いもの(試験No. 6、9)、第4表より、冷
却速度が規定値より小さいもの(試験No.19)並び
に冷却終点温度が規定値より低いもの(試験No. 1
5、18)は、いずれもミクロ組織はフェライトと微細
バーライトとの混合組織となっており、機械的性質と窒
化特性の特性値はすべて目標値を満たしている。
Table 3 shows that among the present invention and comparative examples, the holding time is longer than the specified value (Test No. 6, 9), and Table 4 shows that the cooling rate is smaller than the specified value (Test No. 19). and those whose cooling end point temperature is lower than the specified value (Test No. 1
5 and 18), the microstructure is a mixture of ferrite and fine barite, and the characteristic values of mechanical properties and nitriding properties all meet the target values.

一方、比較例の中で、保持温度が規定を外れたもの(N
o.5、8)、保持時間が規定より短かいもの(No.
7、10)、冷却速度が規定より大きいもの(No.1
6)、冷却終点温度が規定より高いもの(No.17、
20)は、シャルビー吸収エネルギー、静的曲げ強度、
窒化層深さが目標値に達していないことがわかる。
On the other hand, among the comparative examples, the holding temperature was outside the specified range (N
o. 5, 8), those whose retention time is shorter than specified (No.
7, 10), those whose cooling rate is higher than the specified one (No. 1)
6), cooling end point temperature higher than specified (No. 17,
20) is Charby absorbed energy, static bending strength,
It can be seen that the nitrided layer depth has not reached the target value.

以下余白 発明の効果 上記の実施例からも明らかなごとく、この発明に係る窒
化用鋼は、機械的性質および窒化特性共に優れており、
またその製造においては、合金戒分量を制御し、フェラ
イトと微細バーライトとの混合組織をつくることにより
、短時間窒化が可能で、機械的性質および窒化特性の優
れた窒化用鋼を低コストで製造することが可能である。
Effects of the Invention As is clear from the above examples, the nitriding steel according to the present invention has excellent mechanical properties and nitriding properties,
In addition, by controlling the amount of alloy and creating a mixed structure of ferrite and fine barite, we can produce nitriding steel that can be nitrided in a short time and has excellent mechanical properties and nitriding properties at a low cost. It is possible to manufacture.

【図面の簡単な説明】[Brief explanation of drawings]

第1図はこの発明の実施例1における静的曲げ試験片を
示す模式図、第2図および第3図は同実施例2における
冷却のヒートパターンを示す図である。
FIG. 1 is a schematic diagram showing a static bending test piece in Example 1 of the present invention, and FIGS. 2 and 3 are diagrams showing cooling heat patterns in Example 2.

Claims (1)

【特許請求の範囲】 1 重量比で、C0.30〜0.60%、Si0.10〜0
.50%、Mn0.30〜0.90%、Cr0.50〜
3.50%、Mo0.50〜1.50%、V0.10〜
0.50%、Nb0.01〜0.10%を含有し、残部
Feおよび不可避的不純物からなり、フェライトと微細
パーライトとの混合組織を有することを特徴とする窒化
用鋼。 2 重量比で、C0.30〜0.60%、Si0.10〜0
.50%、Mn0.30〜0.90%、Cr0.50〜
3.50%、Mo0.50〜1.50%、V0.10〜
0.50%、′Nb0.01〜0.10%を含有し、残
部Feおよび不可避的不純物からなる鋼を、熱間圧延後
600℃〜Ar_1変態点の温度域まで急冷し、当該温
度域に8〜10時間保持した後、空冷することを特徴と
する窒化用鋼の製造方法。 3 重量比で、C0.30〜0.60%、Si0.10〜0
.50%、Mn0.30〜0.90%、Cr0.50〜
3.50%、Mo0.50〜1.50%、V0.10〜
0.50%、Nb0.01〜0.10%を含有し、残部
Feおよび不可避的不純物からなる鋼を、熱間圧延後3
5〜50℃/Hrの冷却速度で450〜550℃まで冷
却し、その後空冷することを特徴とする窒化用鋼の製造
方法。
[Claims] 1 Weight ratio: C0.30-0.60%, Si0.10-0
.. 50%, Mn0.30~0.90%, Cr0.50~
3.50%, Mo0.50~1.50%, V0.10~
0.50%, Nb 0.01 to 0.10%, the remainder consisting of Fe and inevitable impurities, and having a mixed structure of ferrite and fine pearlite. 2 Weight ratio: C0.30-0.60%, Si0.10-0
.. 50%, Mn0.30~0.90%, Cr0.50~
3.50%, Mo0.50~1.50%, V0.10~
After hot rolling, a steel containing 0.50% and 0.01~0.10% of Nb, and the balance consisting of Fe and unavoidable impurities is rapidly cooled to a temperature range of 600°C to Ar_1 transformation point, and then A method for producing steel for nitriding, which comprises holding the steel for 8 to 10 hours and then cooling it in air. 3 Weight ratio: C0.30-0.60%, Si0.10-0
.. 50%, Mn0.30~0.90%, Cr0.50~
3.50%, Mo0.50~1.50%, V0.10~
After hot rolling, a steel containing 0.50%, 0.01 to 0.10% Nb, and the balance consisting of Fe and unavoidable impurities was heated.
A method for producing steel for nitriding, characterized by cooling to 450 to 550°C at a cooling rate of 5 to 50°C/Hr, and then cooling in air.
JP196190A 1990-01-08 1990-01-08 Nitriding steel and its manufacture Pending JPH03207833A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP196190A JPH03207833A (en) 1990-01-08 1990-01-08 Nitriding steel and its manufacture

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP196190A JPH03207833A (en) 1990-01-08 1990-01-08 Nitriding steel and its manufacture

Publications (1)

Publication Number Publication Date
JPH03207833A true JPH03207833A (en) 1991-09-11

Family

ID=11516187

Family Applications (1)

Application Number Title Priority Date Filing Date
JP196190A Pending JPH03207833A (en) 1990-01-08 1990-01-08 Nitriding steel and its manufacture

Country Status (1)

Country Link
JP (1) JPH03207833A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09324241A (en) * 1996-06-07 1997-12-16 Sumitomo Metal Ind Ltd Steel for sort-nitriding, soft-nitrided parts and its production
CN102443740A (en) * 2010-10-14 2012-05-09 宝山钢铁股份有限公司 Alloy steel nitride and manufacture method thereof

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09324241A (en) * 1996-06-07 1997-12-16 Sumitomo Metal Ind Ltd Steel for sort-nitriding, soft-nitrided parts and its production
CN102443740A (en) * 2010-10-14 2012-05-09 宝山钢铁股份有限公司 Alloy steel nitride and manufacture method thereof

Similar Documents

Publication Publication Date Title
JP2020521048A (en) Steel part manufacturing method and corresponding steel part
KR20150133759A (en) Bainitic microalloy steel with enhanced nitriding characteristics
JP5565102B2 (en) Steel for machine structure and manufacturing method thereof
JPH0156124B2 (en)
JP2001234238A (en) Producing method for highly wear resistant and high toughness rail
JPH05320749A (en) Production of ultrahigh strength steel
JPH039168B2 (en)
JPS6365020A (en) Manufacture of surface hardened steel for rapid heating and quenching
JPH07173530A (en) Production of high toughness rail having pearlite metallic structure
JP2009215576A (en) Method for producing rolled non-heat treated steel material
JPWO2017056896A1 (en) Crankshaft rough profile, nitrided crankshaft, and method of manufacturing the same
JPH11217649A (en) Steel for induction hardening having both cold workability and high strength and its production
JP3422865B2 (en) Method for producing high-strength martensitic stainless steel member
JP2894184B2 (en) Steel for soft nitriding
JP2768062B2 (en) Manufacturing method of high strength tough steel
JPH08199309A (en) Stainless steel excellent in workability and its production
JPH03207833A (en) Nitriding steel and its manufacture
JP3467929B2 (en) High toughness hot forged non-heat treated steel for induction hardening
JPS6137333B2 (en)
JPH07310118A (en) Production of case hardening steel suitable for cold-working
JP2767254B2 (en) Method for producing Cr-Mo case hardened steel
JPH0227408B2 (en)
KR102448753B1 (en) Non-heat treated steel with improved machinability and toughness and the method for manufacturing the same
JPH01177338A (en) Non-heat treated steel for nitriding
KR900006688B1 (en) Method of steel for hot rolled forging