JPH03207790A - Ferromagnetic liquid crystal composition - Google Patents
Ferromagnetic liquid crystal compositionInfo
- Publication number
- JPH03207790A JPH03207790A JP2001501A JP150190A JPH03207790A JP H03207790 A JPH03207790 A JP H03207790A JP 2001501 A JP2001501 A JP 2001501A JP 150190 A JP150190 A JP 150190A JP H03207790 A JPH03207790 A JP H03207790A
- Authority
- JP
- Japan
- Prior art keywords
- formulas
- tables
- mathematical
- chemical formulas
- chemical
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 239000004973 liquid crystal related substance Substances 0.000 title claims abstract description 92
- 239000000203 mixture Substances 0.000 title claims abstract description 39
- 230000005294 ferromagnetic effect Effects 0.000 title 1
- 150000001875 compounds Chemical class 0.000 claims abstract description 86
- 239000002019 doping agent Substances 0.000 claims abstract description 35
- 125000000217 alkyl group Chemical group 0.000 claims abstract description 25
- 239000004990 Smectic liquid crystal Substances 0.000 claims abstract description 20
- 230000001747 exhibiting effect Effects 0.000 claims abstract description 18
- 239000011159 matrix material Substances 0.000 claims abstract description 16
- 125000003545 alkoxy group Chemical group 0.000 claims abstract description 14
- 239000000126 substance Substances 0.000 claims description 63
- 125000004432 carbon atom Chemical group C* 0.000 claims description 25
- 239000005262 ferroelectric liquid crystals (FLCs) Substances 0.000 claims description 14
- 229910052799 carbon Inorganic materials 0.000 claims description 9
- 229910052731 fluorine Inorganic materials 0.000 claims description 9
- 125000004093 cyano group Chemical group *C#N 0.000 claims description 7
- 125000004435 hydrogen atom Chemical group [H]* 0.000 claims description 7
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 claims description 6
- 239000000460 chlorine Substances 0.000 claims description 6
- 125000001153 fluoro group Chemical group F* 0.000 claims description 6
- 125000004423 acyloxy group Chemical group 0.000 claims description 5
- 125000004453 alkoxycarbonyl group Chemical group 0.000 claims description 5
- 239000011737 fluorine Substances 0.000 claims description 5
- 229910052801 chlorine Inorganic materials 0.000 claims description 4
- 229910052717 sulfur Inorganic materials 0.000 claims description 4
- ZAMOUSCENKQFHK-UHFFFAOYSA-N Chlorine atom Chemical compound [Cl] ZAMOUSCENKQFHK-UHFFFAOYSA-N 0.000 claims description 3
- PXGOKWXKJXAPGV-UHFFFAOYSA-N Fluorine Chemical compound FF PXGOKWXKJXAPGV-UHFFFAOYSA-N 0.000 claims description 3
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical group [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 claims description 3
- 229910052757 nitrogen Inorganic materials 0.000 claims description 3
- 229910052760 oxygen Inorganic materials 0.000 claims description 3
- 239000001301 oxygen Substances 0.000 claims description 3
- NINIDFKCEFEMDL-UHFFFAOYSA-N Sulfur Chemical compound [S] NINIDFKCEFEMDL-UHFFFAOYSA-N 0.000 claims description 2
- 239000011593 sulfur Substances 0.000 claims description 2
- 239000000463 material Substances 0.000 abstract description 10
- 239000012071 phase Substances 0.000 description 127
- 230000010287 polarization Effects 0.000 description 28
- 230000002269 spontaneous effect Effects 0.000 description 27
- 230000004044 response Effects 0.000 description 17
- 238000000034 method Methods 0.000 description 10
- 230000003287 optical effect Effects 0.000 description 6
- 238000000819 phase cycle Methods 0.000 description 6
- 239000002131 composite material Substances 0.000 description 5
- 239000007788 liquid Substances 0.000 description 5
- 125000002496 methyl group Chemical group [H]C([H])([H])* 0.000 description 5
- 230000004043 responsiveness Effects 0.000 description 5
- 230000007704 transition Effects 0.000 description 5
- 230000000694 effects Effects 0.000 description 4
- -1 (S)-2-methylbutyl Chemical group 0.000 description 3
- 239000013543 active substance Substances 0.000 description 3
- 239000004988 Nematic liquid crystal Substances 0.000 description 2
- 230000002411 adverse Effects 0.000 description 2
- 125000005194 alkoxycarbonyloxy group Chemical group 0.000 description 2
- 238000013459 approach Methods 0.000 description 2
- 230000008859 change Effects 0.000 description 2
- 230000005621 ferroelectricity Effects 0.000 description 2
- 230000001965 increasing effect Effects 0.000 description 2
- 230000001939 inductive effect Effects 0.000 description 2
- 239000004575 stone Substances 0.000 description 2
- QPRQEDXDYOZYLA-YFKPBYRVSA-N (S)-2-methylbutan-1-ol Chemical compound CC[C@H](C)CO QPRQEDXDYOZYLA-YFKPBYRVSA-N 0.000 description 1
- WKBOTKDWSSQWDR-UHFFFAOYSA-N Bromine atom Chemical group [Br] WKBOTKDWSSQWDR-UHFFFAOYSA-N 0.000 description 1
- 101150026868 CHS1 gene Proteins 0.000 description 1
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 1
- 235000008708 Morus alba Nutrition 0.000 description 1
- 240000000249 Morus alba Species 0.000 description 1
- HXELGNKCCDGMMN-UHFFFAOYSA-N [F].[Cl] Chemical compound [F].[Cl] HXELGNKCCDGMMN-UHFFFAOYSA-N 0.000 description 1
- 239000002253 acid Substances 0.000 description 1
- 239000000654 additive Substances 0.000 description 1
- 230000002776 aggregation Effects 0.000 description 1
- 238000004220 aggregation Methods 0.000 description 1
- 125000004691 alkyl thio carbonyl group Chemical group 0.000 description 1
- 125000004414 alkyl thio group Chemical group 0.000 description 1
- 238000009125 cardiac resynchronization therapy Methods 0.000 description 1
- 239000003795 chemical substances by application Substances 0.000 description 1
- 125000001309 chloro group Chemical group Cl* 0.000 description 1
- 238000004587 chromatography analysis Methods 0.000 description 1
- 229940114081 cinnamate Drugs 0.000 description 1
- 239000000470 constituent Substances 0.000 description 1
- 238000010276 construction Methods 0.000 description 1
- 238000001816 cooling Methods 0.000 description 1
- 230000003247 decreasing effect Effects 0.000 description 1
- 239000012769 display material Substances 0.000 description 1
- 230000005684 electric field Effects 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 238000002474 experimental method Methods 0.000 description 1
- 238000013213 extrapolation Methods 0.000 description 1
- 239000011521 glass Substances 0.000 description 1
- 239000007791 liquid phase Substances 0.000 description 1
- 238000005259 measurement Methods 0.000 description 1
- 238000002844 melting Methods 0.000 description 1
- 230000008018 melting Effects 0.000 description 1
- 230000003446 memory effect Effects 0.000 description 1
- 230000007334 memory performance Effects 0.000 description 1
- 125000000956 methoxy group Chemical group [H]C([H])([H])O* 0.000 description 1
- 230000000813 microbial effect Effects 0.000 description 1
- 125000000449 nitro group Chemical group [O-][N+](*)=O 0.000 description 1
- 230000000704 physical effect Effects 0.000 description 1
- 230000008569 process Effects 0.000 description 1
- 238000001953 recrystallisation Methods 0.000 description 1
- 238000011160 research Methods 0.000 description 1
- 238000012827 research and development Methods 0.000 description 1
- 238000000926 separation method Methods 0.000 description 1
Landscapes
- Liquid Crystal Substances (AREA)
Abstract
Description
【発明の詳細な説明】
〔産業上の利用分野〕
本発明は電気光学的表示材料として有用な新規液晶組成
物に関するもので、特に強誘電性を有する液晶材料を提
供するものであり、従来の液晶材料と比較して、特に応
答性、メモリー性にすぐれた液晶表示素子への利用可能
性を有する液晶材料を提供するものである.
〔従来技術〕
現在、広く用いられている液晶表示素子は主にネマチッ
ク液晶を利用したTN型と呼ばれるものテアって、多く
の長所・利点を有しているもののその応答性においては
、CRTなどの発光型の表示方式と比較すると、格段に
遅いという大きな欠点があった,TN型以外の液晶表示
方式も多く検討されているが、その応答性における改善
はなかなかなされていない.
ところが、強誘電性スメクチック液晶を利用した液晶デ
バイスでは、従来のTN型液晶表示素子の100〜10
00倍の高速応答が可能で、かつ双安定性を有するため
、電源を切っても表示の記憶が得られる(メモリー効果
)ことが、最近明らかになった.このため、光シャッタ
ーやプリンターヘッド、薄型テレビ等への利用可能性が
極めて大きく、現在、各方面で実用化に向けて開発研究
がなされている.
強誘電性液晶は、液晶相としてはチルト系のキラルスメ
クチック相に属するものであるが、その中でも、実用的
に望ましいものは、最も粘度の低いキラルスメクチック
C(以下、sc0と省略する.)相と呼ばれるものであ
る.
〔発明が解決しようとする!*a)
SC11相を示す液晶化合物(以下、SC′″化合物と
いう.)はこれまでにも検討されてきており、既に数多
くの化合物が合威されている.しかしながら、これらの
SC8化合物には単独では強誘電性液晶表示用光スイッ
チング素子として用いるための以下の条件、即ち、
(イ)室温を含む広い温度範囲で強誘電性を示すこと
(ロ)高温域において適当な相系列を有すること
(ハ)特にキラルネマチック(以下、N0と省略する.
)相において長い螺旋ピッチを示すこと(二)適当なチ
ルト角を持つこと
(ホ)粘性が小さいこと
(へ)自発分極がある程度以上大きな値であること
さらに
(ト)(口)及び(ハ)の結果として良好な配向を示す
こと
(チ)(ホ)及び(へ)の結果として、高速の応答性を
示すこと
をすべて満足するようなものは知られていなかった.
そのため、現在では、S00相を示す液晶組成物(以下
、SC1液晶組成物という.)が検討用等に用いられて
いるのが、実情である.良好な配同性を得るためには、
例えば、特開昭61−153623号公報等に示されて
いるように、sc”相の高温域にN”相を有する液晶に
おいて、N″1相の螺旋ピッチの長さを大きくする方法
が一般的に有力である.この場合にSC0相とN8相の
中間の温度域にスメクチックA(以下、SAと省略する
.)相を有する場合に配向はより良好となり、螺旋ピッ
チを大きくするには、左螺旋を生じさせる光学活性物質
と、右螺旋を生じさせる光学活性化合物を組み合せて用
いればよいことも知られている.(ネマチック(以下、
Nと省略する.)液晶に光学活性物質を添加して生じる
螺旋ピッチを任意の長さに調整することは既に公知の技
術である.)シかし、これらの技術によっては良好な配
向性は得られるものの、高速応答性が得られるわけでは
なかった.
高速応答性を示すには、例えば、第12回液晶討論会に
おける特別講演(同討論会予稿集P.98)で示されて
いるように、低粘性のスメクチツクC(以下、SCと省
略する.)相を示す母体の液晶組成物(以下、SC母体
液晶という。)に、自発分極(以下、P3と省略する.
)の大きいSC”化合物を添加する方式が優れている.
この方式によれば、螺旋を生じさせる光学活性化合物の
割合が少なくなるため、螺旋ピッチは比較的長くなるが
、配同性が良好となるほど螺旋ピッチを長くしようとす
ると光学活性化合物の添加量を少量にする必要があり、
そのため自発分極が小さくなりすぎ、高速応答性が得ら
れなくなってしまう問題点があった.
また、SC母体液晶としてこれまで用いられてきたもの
は、例えば、ジャパン・ディスプレイ′86講演予稿集
(352ページ〜)又は特開昭62−583号公報に記
載されている.[10 1トCOOイ})or
(R,R’はアキラルなアルキル基を表わす.)(R,
R’は上記と同様.)
の如く、化合物自身又はその同族体が、SC相を示すも
のに限られるか、又はそれに加えて分子長輪に対して垂
直方向に強いダイポール(分極)を示すような液晶化合
物を添加した組威物であり、SC相の温度範囲を広く保
つと粘性が大きくなり、粘性を小さくするとSC相の温
度範囲が狭くなるという問題点があった.
従って、従来技術では良好な配向性と高速応答性を同時
に実現するのは困難なことであった.本発明が解決しよ
うとする課題は、高速応答性及び配向性においてともに
充分に満足できる強誘電性液晶組成物を提供することに
ある.〔課題を解決するための手段〕
本発明は、上記課題を解決するために、光学的に不活性
でスメクチツクC相を示す母体液晶(以下、SC母体液
晶という.)に、光学活性化合物から戒るキラルドーバ
ントを加えて成るキラルスメクチックC相を示す液晶組
成物であって、母体液晶が、
(1)下記一般式(A−1)、(A−2)、(A−3)
、(A−4)及び(A−5)で表わされる化合物から成
るA群から選ばれる化合物、及び(2)下記一般式(B
)で表わされる化合物を含有することを特徴とする室温
を含む広い温度範囲でキラルスメクチツクC相を示す強
誘電性液晶組或物を提供する.
一般式(A−1)
一般式(A−2)
一般式(A−3)
R”−4か《江戸
一般式(A−4)
一般式(A−5)
Ra4coo{ン戸
(上記一般式(A−1)〜(A−5)中、R1及びRh
は各々独立的に炭素原子数1〜20の直鎖状又は分岐状
のアルキル基又はアルコキシル基を表わすが、R1及び
Rbのうち、少なくとも一方の基はアルコキシル基を表
わすが、好ましくは、RI1及びRhのうち、一方の基
は炭素原子数4〜12の直鎖状アルキル基を表わし、他
方の基は炭素原子数4〜12の直鎖状又は分岐状のアル
コキシル基を表わす.)
一般式(B)
(式中、R●及びRtは各々独立的に炭素原子数1〜1
日の直鎖状又は分岐状のアルキル基又はアルコキシル基
を表わし、■は−COo一又はーOCO −F
■及び←6つ← のうち少なくとも1個す.)
A群に族する化合物は、室温あるいは室温付近の温度範
囲で、SC相を示す化合物あるいはその同族体(アルキ
ル鎖の炭素数及び、またはその形状のみが異った化合物
)であって、粘性は中程度であるが、低温域までSC相
の温度範囲を拡大するのに寄与するところが大きい化合
物である.本発明は、特に前記一般式(A− 1 )、
(A、2)、(A− 3 )、(A−4)又は(A−5
)で表わされる化合物の少なくともl種を含有すること
を特徴とする.
一般式(A−1)、(A、2)、(A−3)、(A−
4 )及び(A−5)で表わされる化合物としては、更
に詳しくは、以下の化合物を挙げることができる.
R”0イ這cooイトORゝ ・・・(A−53)−a
式(A−11)〜(A−53)で表わされる化合物のう
ち、一般式(A−11)、(A−12)、(A−21)
、(A−22)、(^−31)、(A−32)、(A−
41)、(A−42)、(A−52)及び(A−53)
で表わされる化合物が好ましく、一般式(A−11)、
(A−12)、(A−22>、(A−31)及び(A−
53)で表わされる化合物が特に好ましい.
A群に属する化合物と類似した性質を有する化合物とし
て、次の(1)〜(3)の化合物も必要とあれば液晶組
成物の戒分として含有していて差しつかえない.
(1)一般式(A−1)〜(A−3)において、R’及
びRゝのうち、少くとも一方の基が、アルコキシカルボ
ニル、アルカノイルオキシ又はアルコキシカルポニルオ
キシ基であり、他方の基がアルキル、アルコキシ、アル
コキシカルボニル、アルカノイルオキシ又はアルJ−j
pシカルボニル基であるところの化合物.
(2)一般式(A−1)〜(A−3)又は上記(1)で
表わされる化合物であって、任意の一C■←(3)次の
一般式(A− 4 )
される化合物.
(A−7)
で表わ
一般式(A−4)
Ri示ト豆}−Rノ ・・・(A−4)(式中、、
Ri及びR’は、各々独立的にアルキル、アルコキシル
、アルキルチオ、アルコキシカルポニル、アルキルチオ
カルボニル、アルカノイルオキシ、又はアルコキシカル
ボニルオキシ基を表わすが、少なくとも一方の基はアル
キル碁ではなく、は2位又は3位にFが置換していてよ
い.)一般式(A−5)
R五OCOOGR’ ・・・(A−5)(式中、R・
及びRjは、一般式(A−4)の場合と同様の意味を有
し、
を表わす.
)
一般式(A−6)
(式中、
Ri
及びRj
は、
一般式(A−4)
の場
表わす.)
一般式(A−7)
般式(A−6)の場合と同様の意味を有する.)前記一
般式(B)で表わされる化合物は、高い温度域までSC
相を示すか、あるいはsc相を示さない場合でもTc
(SC相を上限温度)の低い液晶組威物に添加すること
により、そのTcを上昇しうる効果を有しているもので
あり、sc相の温度範囲の特に高温域における拡大に寄
与するものであり、具体的には以下の化合物をあげるこ
とができる.
/
・フ
/
上記中、SBはスメクチンクB相、SFはスメクチック
F相、SGはスメクチックG相、SHはスメクチックH
相、S及びS′は各々別の帰属不明のスメクチック相を
各々表わす.
上記の化合物のうち、一般式(C−6)、(C−13)
及び(C−20)で表わされる化合物が特に好ましく、
R1及びR′のうち、少なくとも一方がアルキル基であ
る化合物が低粘性であるので、特に好ましい.
一般式(B)で表わされる化合物と類似の効果を有する
化合物としては、次の一般式(G)で表わされる化合物
を挙げることができる。これらは一般式(G)で表わさ
れる化合物と併用して用いることができる.
一般式(G)
式中、R′″及びR”は各々独立的に炭素原子数1〜1
8の、好ましくは3〜12の直鎖状又は分岐状のアルキ
ル基を表わし、Z1及びZ,は各々独立的に−coo−
, −oco−, −o−, −s一又は単結合を表わ
し、好ましくは少なくとも1方が単結合を表わす.
Z,及びZsは各々独立的に、−coo−, −oco
−CH*0 0CHg , COS ,
−SCO ,CBz−Cllz−,CミC−あるいは
単結合を表わすが、少なくとも1方は単結合であること
が好ましい.
イIΣ,×=〉 及び {Eン
は各々独立的に、
の環における任意の1〜2個の水素がフッ素に置換した
環構造を表わすが、好ましくは×Σ,フッ素置換体)で
あり、さらにその少なくとも1本発明で使用するSC母
体液晶において、A群の化合物の割合は10〜98重量
%の範囲が好ましく、50〜95重量%の範囲が特に好
ましい.一般式(B)で表わされる化合物の割合は、小
さすぎるとTcが低く、大きすぎると応答性を低下する
ので1〜90重量%の範囲、特に5〜50重量%の範囲
が好ましい.
本発明で使用するSC母体液晶は、そのSC相の高温側
において、降温時に、
(イ)I(等方性液体)相→N相→SA相→SC相の相
系列を有するもの
(ロ)■相→SA相→SC相の相系列を有するもの
(ハ)I相→N相→SC相の相系列を有するもの
又は
(二)I相→SC相の相系列を有するもののいずれかの
相系列を有するものが用いられるが、(イ)〜(二)の
選択は、同時に用いるキラルドーパント及び、SC′″
液晶組威物とした場合の好ましい相系列により異なって
くる.最も繁用性のあるのは、(イ)であり、キラルド
ーパントをSC母体液晶に添加した場合に、N1相の温
度範囲を広げ、SA相等の温度範囲を狭くしやすい傾向
が強い場合には(r2)を、キラルドーバントをSC母
体液晶に添加した場合に、SA相の温度範囲を広げ、N
0相の温度範囲を狭くしやすい傾向が強い場合には(ハ
)を、また、SC性が弱く、N1相やSA相の温度範囲
を広げやすい場合などには(二)を用いるのが、最も適
している.垂要であるのはSC0液晶組威物とした場合
の相系列であって、一般的には、■→N1→SA→SC
0の相系列が配向の点で有利である.一方、1→N9→
SC0の相系列も配向制御方法によっては、より良好な
配向を示す場合もあり、また、大きなチルト角が得やす
いので、ゲスト・ホスト方式などに適している。[Detailed Description of the Invention] [Industrial Application Field] The present invention relates to a novel liquid crystal composition useful as an electro-optical display material, and in particular provides a liquid crystal material having ferroelectricity, which is different from conventional liquid crystal compositions. The present invention provides a liquid crystal material that has particularly excellent responsiveness and memory performance compared to other liquid crystal materials, and can be used in liquid crystal display devices. [Prior Art] The currently widely used liquid crystal display elements are mainly TN-type devices that use nematic liquid crystals. Although they have many advantages, their responsiveness is inferior to that of CRTs, etc. Many liquid crystal display systems other than the TN type, which had the major drawback of being much slower than the light-emitting type display systems used in 2015, have been studied, but improvements in their responsiveness have not yet been achieved. However, in liquid crystal devices using ferroelectric smectic liquid crystals, the 100 to 10
It has recently been revealed that because it is capable of 00 times faster response and has bistability, it can retain the display even when the power is turned off (memory effect). For this reason, it has great potential to be used in optical shutters, printer heads, flat-screen televisions, etc., and research and development is currently being conducted in various fields to put it into practical use. The liquid crystal phase of ferroelectric liquid crystals belongs to the tilted chiral smectic phase, and among these, the one that is practically desirable is the chiral smectic C (hereinafter abbreviated as sc0) phase, which has the lowest viscosity. It is called. [Invention tries to solve it! *a) Liquid crystal compounds exhibiting the SC11 phase (hereinafter referred to as SC''' compounds) have been studied, and many compounds have already been synthesized. The following conditions must be met for use as an optical switching element for ferroelectric liquid crystal displays: (a) It must exhibit ferroelectricity in a wide temperature range including room temperature (b) It must have an appropriate phase series in a high temperature range ( c) Particularly chiral nematic (hereinafter abbreviated as N0).
) exhibiting a long helical pitch in the phase; (2) having an appropriate tilt angle; (e) having low viscosity; (f) having a large value of spontaneous polarization above a certain level. There is no known material that satisfies all of the following: exhibiting good orientation as a result of (i), (e) and (e), and exhibiting high-speed response as a result of (e). Therefore, at present, liquid crystal compositions exhibiting the S00 phase (hereinafter referred to as SC1 liquid crystal compositions) are currently being used for research purposes. In order to obtain good distribution,
For example, as shown in Japanese Unexamined Patent Application Publication No. 61-153623, it is common to increase the length of the helical pitch of the N''1 phase in liquid crystals that have an N'' phase in the high temperature range of the sc'' phase. In this case, if the smectic A (hereinafter abbreviated as SA) phase is present in the temperature range between the SC0 phase and the N8 phase, the orientation will be better, and in order to increase the helical pitch, It is also known that an optically active substance that produces a left-handed helix and an optically active compound that produces a right-handed helix can be used in combination.
Abbreviated as N. ) It is already a known technique to adjust the helical pitch to an arbitrary length by adding an optically active substance to liquid crystal. ) However, although these techniques can provide good orientation, they do not necessarily provide high-speed response. In order to exhibit high-speed response, for example, as shown in the special lecture at the 12th Liquid Crystal Conference (Proceedings of the same conference, p. 98), low-viscosity smectic C (hereinafter abbreviated as SC) is required. ) phase (hereinafter referred to as SC matrix liquid crystal) has a spontaneous polarization (hereinafter abbreviated as P3).
) is superior.
According to this method, the proportion of the optically active compound that produces the helix is small, so the helical pitch is relatively long. need to be,
As a result, there was a problem in that the spontaneous polarization became too small, making it impossible to obtain high-speed response. Further, those that have been used so far as SC matrix liquid crystals are described in, for example, Japan Display '86 Lecture Proceedings (from page 352) or Japanese Patent Application Laid-open No. 1983-583. [10 1TOCOO}) or (R, R' represents an achiral alkyl group.) (R,
R' is the same as above. ), the compounds themselves or their homologs are limited to those exhibiting the SC phase, or in addition, compounds containing liquid crystal compounds that exhibit strong dipole (polarization) in the direction perpendicular to the molecular long rings are added. The problem was that if the temperature range of the SC phase was kept wide, the viscosity would increase, and if the viscosity was decreased, the temperature range of the SC phase would become narrow. Therefore, with conventional technology, it is difficult to simultaneously achieve good orientation and high-speed response. The problem to be solved by the present invention is to provide a ferroelectric liquid crystal composition that is fully satisfactory in both high-speed response and orientation. [Means for Solving the Problems] In order to solve the above-mentioned problems, the present invention provides a matrix liquid crystal that is optically inactive and exhibits a smectic C phase (hereinafter referred to as an SC matrix liquid crystal) from an optically active compound. A liquid crystal composition exhibiting a chiral smectic C phase in which a chiral dopant is added, wherein the parent liquid crystal is (1) represented by the following general formula (A-1), (A-2), or (A-3).
, (A-4) and (A-5), and (2) the following general formula (B
) A ferroelectric liquid crystal structure exhibiting a chiral smectic C phase in a wide temperature range including room temperature is provided. General formula (A-1) General formula (A-2) General formula (A-3) R”-4 or Edo general formula (A-4) General formula (A-5) Ra4coo (A-1) to (A-5), R1 and Rh
each independently represents a linear or branched alkyl group or alkoxyl group having 1 to 20 carbon atoms, and at least one group among R1 and Rb represents an alkoxyl group, but preferably RI1 and One group of Rh represents a linear alkyl group having 4 to 12 carbon atoms, and the other group represents a linear or branched alkoxyl group having 4 to 12 carbon atoms. ) General formula (B) (In the formula, R● and Rt each independently have a carbon atom number of 1 to 1
Represents a straight-chain or branched alkyl group or alkoxyl group, and ■ represents at least one of -COo or -OCO -F ■ and ←6←. ) Compounds belonging to Group A are compounds that exhibit an SC phase at or near room temperature, or their homologs (compounds that differ only in the number of carbon atoms in the alkyl chain and/or the shape thereof), and have a high viscosity. Although it has a moderate value, it is a compound that greatly contributes to expanding the temperature range of the SC phase to low temperatures. The present invention particularly provides the general formula (A-1),
(A, 2), (A-3), (A-4) or (A-5
) is characterized in that it contains at least l types of compounds represented by: General formulas (A-1), (A, 2), (A-3), (A-
More specifically, the compounds represented by (4) and (A-5) include the following compounds. R"0 I crawl coo it ORゝ...(A-53)-a
Among the compounds represented by formulas (A-11) to (A-53), general formulas (A-11), (A-12), (A-21)
, (A-22), (^-31), (A-32), (A-
41), (A-42), (A-52) and (A-53)
Preferably, the compound represented by the general formula (A-11),
(A-12), (A-22>, (A-31) and (A-
Particularly preferred are compounds represented by 53). If necessary, the following compounds (1) to (3) may be included as compounds in the liquid crystal composition as compounds having properties similar to the compounds belonging to Group A. (1) In general formulas (A-1) to (A-3), at least one of R' and R' is an alkoxycarbonyl, alkanoyloxy, or alkoxycarbonyloxy group, and the other group is Alkyl, alkoxy, alkoxycarbonyl, alkanoyloxy or Al J-j
Compounds that are p-cyclocarbonyl groups. (2) A compound represented by the general formulas (A-1) to (A-3) or the above (1), and any one C←(3) A compound represented by the following general formula (A-4) .. (A-7) Represented by the general formula (A-4)
Ri and R' each independently represent an alkyl, alkoxyl, alkylthio, alkoxycarbonyl, alkylthiocarbonyl, alkanoyloxy, or alkoxycarbonyloxy group, but at least one of the groups is not an alkyl group, and is at the 2- or 3-position. F may be substituted for . ) General formula (A-5) R5OCOOGR' ... (A-5) (in the formula, R.
and Rj have the same meaning as in general formula (A-4) and represent. ) General formula (A-6) (In the formula, Ri and Rj represent the general formula (A-4).) General formula (A-7) The same meaning as in the general formula (A-6) have. ) The compound represented by the general formula (B) can be SC
Tc exhibits a phase or even if it does not exhibit a sc phase.
By adding it to a liquid crystal composition with a low upper limit temperature (SC phase), it has the effect of increasing its Tc, and contributes to expanding the temperature range of the SC phase, especially in the high temperature range. Specifically, the following compounds can be mentioned. / ・F/ In the above, SB is smectic B phase, SF is smectic F phase, SG is smectic G phase, and SH is smectic H phase.
The phases S and S' each represent a separate, unidentified smectic phase. Among the above compounds, general formulas (C-6), (C-13)
Particularly preferred are compounds represented by and (C-20),
Compounds in which at least one of R1 and R' is an alkyl group are particularly preferred because they have low viscosity. Examples of compounds having effects similar to those of the compound represented by general formula (B) include compounds represented by the following general formula (G). These can be used in combination with the compound represented by general formula (G). General formula (G) In the formula, R''' and R'' each independently have 1 to 1 carbon atoms.
8, preferably 3 to 12 linear or branched alkyl groups, and Z1 and Z each independently represent -coo-
, -oco-, -o-, -s represents one or a single bond, preferably at least one represents a single bond. Z, and Zs are each independently -coo-, -oco
-CH*0 0CHg, COS,
-SCO, CBz-Cllz-, CmiC- or a single bond, but at least one is preferably a single bond. IΣ, ×=〉 and {En each independently represent a ring structure in which any one or two hydrogens in the ring of are substituted with fluorine, preferably ×Σ, a fluorine substituted product), Further, in at least one of the SC parent liquid crystals used in the present invention, the proportion of Group A compounds is preferably in the range of 10 to 98% by weight, particularly preferably in the range of 50 to 95% by weight. The proportion of the compound represented by the general formula (B) is preferably in the range of 1 to 90% by weight, particularly in the range of 5 to 50% by weight, because if it is too small, the Tc will be low, and if it is too large, the responsiveness will be reduced. The SC base liquid crystal used in the present invention has a phase sequence of (a) I (isotropic liquid) phase → N phase → SA phase → SC phase on the high temperature side of its SC phase when the temperature is lowered (b) (iii) Those with a phase sequence of phase → SA phase → SC phase (c) Those with a phase sequence of I phase → N phase → SC phase, or (2) Those with a phase sequence of I phase → SC phase. However, the selection of (a) to (ii) is based on the chiral dopant used simultaneously and the SC′″
It differs depending on the preferred phase series when used as a liquid crystal composition. The most commonly used method is (a), in which there is a strong tendency to widen the temperature range of the N1 phase and narrow the temperature range of the SA phase etc. when a chiral dopant is added to the SC base liquid crystal. (r2) expands the temperature range of the SA phase when a chiral dopant is added to the SC matrix liquid crystal, and N
(c) is used when there is a strong tendency to narrow the temperature range of the 0 phase, and (2) is used when the SC property is weak and the temperature range of the N1 phase and SA phase is likely to be widened. Most suitable. What is important is the phase series when using an SC0 liquid crystal composition, and generally, ■→N1→SA→SC
0 phase series is advantageous in terms of orientation. On the other hand, 1→N9→
The SC0 phase series may also exhibit better orientation depending on the orientation control method, and a large tilt angle can be easily obtained, so it is suitable for the guest-host system.
また、I−43A−4SC”の相系列も、初期の強誘電
性液晶(p−デシルオキシベンジリデンアごノケイヒ酸
(S)−2−メチルブチル等)が、この相系列であった
ため、その配向方法についてよく検討されており、良好
な配向を得ることも不可能ではない.
本発明で使用するキラルドーパントとしては、(1)S
C”相を示す化合物、(2) S C ”相以外の液晶
相のみを示す化合物又は(3)液晶性を全く示さない化
合物を用いることができるが、(3)の場合には、SC
母体液晶に添加して得られるSC1液晶組成物の液晶性
が低下する傾向を防止するために、液晶類似の骨格を有
する化合物を用いることが好ましい.
キラルドーバントがSC0液晶組或物にもたらす諸物性
のうち重要なものは、その誘起する螺旋ピンチ、自発分
極の向き及びその大きさであるが、これらはキラルドー
バントを構戒する各化合物の光学活性部位により最も大
きな影響を受ける.これまでキラルドーパント、sc”
化合物又はネマチック液晶への添加剤として用いられて
きた光学活性化合物における光学活性基の代表的なもの
を以下に掲げる.
(IV− 1 )
CI.
+ CHz+TCH CtHs
(IV−2)
CH.
−0 +CH,チi− CH − C.lI5(IV−
3)
CL
+CHzh−0 + CHz−÷yCH CJs(I
V−4)
CH,
1申
−O{− CHz}=−0 −{− CHg−ナyCH
CzHs(IV−7)
CH3
+CH1÷7CB Rs
(■
8)
CH.
−0 + CHz−}−CH Rs
(IV−12)
CIi3
−CH R4
(IV−13)
CB,
−CHz−CI Cut ORs
(IV−14)
CHI
− CH − CHt − ORS
(IV−21)
CHs
−S + CHz ’ナ, Cll(CHz}r− C
Hs(IV−32)
CH3
−O−CB−R.
(■
35)
一〇−じH−L;I′I.−L;tl−ut<s(IV
−4zノ
一〇一6−じkl L;)lx Ltl
L,zlls(IV−48)
−(;li−L;一υ−H5
(IV−53)
CH,
CH
0−R,
(IV−55)
−O−CB.−Cll
FIS
(IV−57)
Cl
−O CHx CH Rs
(IV−62)
CF3
−0−CH−RS
(IV−64)
一〇
CI.
CH! CI CB! ORs
(IV−65)
Cfl3
−0−CB−CH.
ORs
(IV−66)
CHs
−0 + GHz−+−rCl{CHt}ii− OR
s(IV−67)
−COOCHz Cl (;tl L;z
tls(IV−69)
Cl
−COOCB* CO Rs
(IV−70)
Cll,
−O Cut CH CHz OCORs(I
V−71)
CH.
O CH CB* O CORs(■
72)
CH3
0 CH GHz{CHt}i−OCORs(IV
−73)
−O−CHI
CH3
CB−{CHt)−i−OCORs
(IV−75)
CHs
1申
O CL CI ORs
(!V−76)
CH3
一S−CHRs
(IV−78)
CtHs
O−CB,−CI−0れ
(■
79)
−O−C−O−じkl K4
(IV−80)
COOCIIg CI Rs
(IV−81)
CN
−O CHg CB Rs
(IV−82)
CN
CO Rs
(IV一83)
cnzcN
COO CH* Cll Rs
(IV−84)
CH.CN
O CHz CH Rs
0
上記各一般式において、mは1〜4の整数を表わし、n
は1〜10の整数を表わし、R,は炭素原子数3〜8の
アルキル基を表わし、R4は炭素原子数2〜10のアル
キル基を表わし、RSは炭素原子数1〜10のアルキル
基を表わし、R6は炭素原子数1〜4のアルキル基を表
わす.
光学活性基として、式(IV− 1 )〜(IV−22
)で表わされる光学活性基のみを含有する光学活性化合
物ではSC母体液晶に添加してSC1液晶組成物とした
際に誘起される自発分極は小さいものが多く、単独でs
c”相を示す場合でもそのほとんどが10nC/cm”
以下にすぎない。In addition, the phase series of ``I-43A-4SC'' is similar to that of the early ferroelectric liquid crystals (p-decyloxybenzylideneanocinnamic acid (S)-2-methylbutyl, etc.), so the orientation method The chiral dopants used in the present invention include (1) S
A compound exhibiting a C'' phase, (2) a compound exhibiting only a liquid crystal phase other than the SC'' phase, or (3) a compound exhibiting no liquid crystallinity at all can be used, but in the case of (3),
In order to prevent the tendency for the liquid crystallinity of the SC1 liquid crystal composition obtained by adding it to the base liquid crystal to decrease, it is preferable to use a compound having a skeleton similar to that of a liquid crystal. Among the various physical properties that a chiral dopant brings to an SC0 liquid crystal composition, important ones are the helical pinch it induces, the direction and magnitude of spontaneous polarization; It is most affected by the optically active site. Until now, chiral dopants, sc”
Typical optically active groups in optically active compounds that have been used as compounds or additives to nematic liquid crystals are listed below. (IV-1) CI. + CHz+TCH CtHs (IV-2) CH. -0 +CH, CHi-CH-C. lI5(IV-
3) CL +CHzh-0 + CHz-÷yCH CJs(I
V-4) CH, 1 -O{- CHz}=-0 -{- CHg-NyCH
CzHs (IV-7) CH3 +CH1÷7CB Rs (■ 8) CH. -0 + CHz-}-CH Rs (IV-12) CIi3 -CH R4 (IV-13) CB, -CHz-CI Cut ORs (IV-14) CHI - CH - CHt - ORS (IV-21) CHs - S + CHz 'na, Cll(CHz}r- C
Hs(IV-32) CH3-O-CB-R. (■ 35) 10-ji H-L; I'I. -L;tl-ut<s(IV
-4zノ1016-jikl L;)lx Ltl
L, zlls (IV-48) -(;li-L;1υ-H5 (IV-53) CH, CH 0-R, (IV-55) -O-CB.-Cll FIS (IV-57) Cl -O CHx CH Rs (IV-62) CF3 -0-CH-RS (IV-64) 10 CI. CH! CI CB! ORs (IV-65) Cfl3 -0-CB-CH. ORs (IV-66 ) CHs −0 + GHz−+−rCl{CHt}ii− OR
s(IV-67) -COOCHz Cl (;tl L;z
tls (IV-69) Cl -COOCB* CO Rs (IV-70) Cll, -O Cut CH CHz OCORs (I
V-71) CH. O CH CB* O CORs (■ 72) CH3 0 CH GHz{CHt}i-OCORs (IV
-73) -O-CHI CH3 CB-{CHt)-i-OCORs (IV-75) CHs 1 O CL CI ORs (!V-76) CH3 -S-CHRs (IV-78) CtHs O-CB, -CI-0 (■ 79) -O-C-O-jikl K4 (IV-80) COOCIIg CI Rs (IV-81) CN -O CHg CB Rs (IV-82) CN CO Rs (IV-83 ) cnzcN COO CH* Cll Rs (IV-84) CH. CN O CHZ CH Rs 0 In each of the above general formulas, m represents an integer of 1 to 4, and n
represents an integer of 1 to 10, R represents an alkyl group having 3 to 8 carbon atoms, R4 represents an alkyl group having 2 to 10 carbon atoms, and RS represents an alkyl group having 1 to 10 carbon atoms. where R6 represents an alkyl group having 1 to 4 carbon atoms. As optically active groups, formulas (IV-1) to (IV-22
) In optically active compounds containing only the optically active group represented by
Even if it shows the c” phase, most of it is 10nC/cm”
No more than the following.
一方、光学活性基として、式(IV−31)〜(■−9
1)で表わされる光学活性基を含有する光学活性化合物
は、SC母体液晶に添加してSC9液晶組威物とした際
に誘起する自発分極が大きいものが多く、単独でSC1
相を示す場合などでは300nC/cm”以上の大きな
値を示すものも存在する.このような光学活性基を末端
に有するような光学活性化合物の基本骨格の代表的なも
のを以下に掲げる.
(V−12)
?OCR!O{}OCH碩■
(V
82)
Cべ牛OCRべ今
(V−83)
−■バエcoo 。)
(V−156)
寞ンocnt−○
(V−223)
《べC00〈舅
(V
228)
Gバ+oco項}
(V−247)
G汽嵜coo氷}
(V−25i)
Oバやcoo項}
( V − 252)
0バoco −@
( V − 253)
Oバ寮co..o{}
(V−500)
{*キcoo桑λ
上記各基本骨格中のベンゼン環あるいはシクロヘキサン
環にフッ素原子、塩素原子、臭素原子、メチル基、メト
キシ基、シアノ基又はニトロ基が置換した各基本骨格も
使用できる.
以上のような碁本骨格の片側もしくは両側に前記キラル
基が結合した光学活性化合物がキラルドーバントの構威
威分として有効に使用することができる.特に両側に前
記キラル基が結合した一般式(D)
Q目−Z Qi−
〔式中、Q”及びQ gN″は互いに異なった光学活性
基であって、各光学活性基は少なくとも1個の不斉炭素
原子を有し、かつ、Q”及びQ lmのうち少なくとも
1方の基は、不斉炭素原子が酸素、イオO
I1
ウ、窒素、フッ素、塩素あるいは一C一又は一C三Nと
直結した構造を有する.Zは一般式(E)
これらの環上の任意の1〜2個の水素原子がフッ素原子
又はシアノ基に夏換した構造を表わし、YI及びY2は
各々独立的に単結合、− COO −−OCO− −
cogo−、 OCIIg CHtCHg−一〇
二C−、− COS−又はーSCO一を表わし、Sは0
又は1を表わす.)
で表わされる液晶性分子の中心骨格(コア)部分を表わ
す.〕
で表わされる光学活性化合物が好ましい.更に、好まし
くは光学活性基Q一及びQ一は各々次の一般式(F−1
)及び(F−2)で表わされる.
一般式(F−1)
XI
Rl −CH−Y” −
一般式(F−2)
x8
R! −CH−Y’ −
(式中、Rl及びRzは各々独立的に炭素原子数2〜1
0のアルキル基又は炭素原子数1−10のアルコキシル
基、アルコキシカルボニル基又はアルカノイルオキシ基
を表わし、C8は不斉炭素原子を表わし、X+及びX8
は各々独立的にcttx−F一、Cf一又は−CNを表
わし、yz及びysは各々独立的に単結合、−o−
−coo− −oco−+ CHz}17 0 +
Cllt■、+Cut}rr OCO子CL石又は +
CB.h下C00+CHm石を表わし、i1、i!.2
、m1、m2、n1及びn2は各々独立的に0〜5の整
数を表わす.)
さらに好ましくは、各キラル基が同一でなく、かつ、そ
の少なくとも一方が、その不斉炭素原子が酸素(O)、
イオウ(S)、チッ素(N)、フッ素(F)、塩素(C
j!)等のへテロ原子あるい0
11
はC,CNに直結した構造であること、特に、前記(I
V−31)〜(IV−101)で表わされる基のいずれ
かであることが望ましい.
このように、基本骨格の両側に互いに異ったキラル基が
結合した光学活性化合物を用いることによる利点として
以下の点を挙げることができる.(1) 片側にのみ
キラル基を有する化合物より強い自発分極を示しうる.
即ち、前記(IV−31)〜(IV−91)で表わされ
る基から選ばれるキラル基と(IV− 1 )〜(IV
−22)で表わされる基から選ばれるキラル基とを基本
骨格の両側に有する化合物と、同一の基本骨格でキラル
基としては(IV−31)〜(■−91)で表わされる
基から選ばれる同一の基のみで他の側はアキラルな基で
ある化合物をそれぞれSC母体液晶に添加して、その外
挿値として自発分極を求めてみると、両側にキラル基を
有する化合物の方が10〜30nC/cm”あるいはそ
れ以上大きい,(IV−1)〜(IV−22)で表わさ
れる基に由来する自発分極はたかだか10nC/cv”
程度であるので、両側のキラル基による自発分極の単純
和よりも大きくなっていることがわかる.さらに(IV
−31)〜(rV−91)で表わされる基から選ばれる
基であって互いに異ったキラル基を上記基本骨格の両側
に有するような化合物では、両方のキラル基による自発
分極の極性(よく知られた強誘電性液晶である(S)−
2−メチノレブチルb−デシルオキシベンジリデンアミ
ノフエニルシンナメート(IlOBAMBC)の極性を
eと決める.)を同一にあわせた場合には非常に大きい
自発分極を得ることができる.
この場合には両側のキラル基による自発分柵の単純和よ
りもさらに1 0 01IC/Cll”あるいはそれ以
上に大きな自発分極を得ることもできる.キラルドーバ
ントとしてはその誘起しうる自発分極が大きい程、その
使用量が少なくてもすむので、低粘性のSC母体液晶の
割合を多くすることができ、その結果、SC゜液晶組威
物の低粘度化が可能となる.結果として、応答性の向上
につながるものである.
(2) N”相あるいはSC0相に誘起する螺旋ピン
チが非常に長い化合物、及び非常に短い化合物など、螺
旋ピッチを調整することが可能である.前述のように良
好な配向性を得るためには、そのN1相あるいはS08
相における螺旋ピッチが長いことが重要である.キラル
ドーバントは全体として螺旋ピッチが調整されていれば
よいのであって、個々の化合物については、必ずしもそ
の必要はないが、キラルドーバントの主或分としてはあ
る程度螺旋ピッチが長い方が、その調整が容易である.
また、螺旋ピンチ調整を主目的として加える化合物では
、その螺旋ピッチが短い程、その添加量を押えることが
できるので好都合である。On the other hand, as optically active groups, formulas (IV-31) to (■-9
Many of the optically active compounds containing the optically active group represented by 1) induce a large spontaneous polarization when added to the SC base liquid crystal to form an SC9 liquid crystal composite, and when used alone, they induce a large amount of spontaneous polarization.
In some cases, such as when exhibiting a phase, there are compounds that exhibit large values of 300 nC/cm" or more. Typical basic skeletons of optically active compounds that have such optically active groups at their ends are listed below. ( V-12) ? OCR! O Be C00〈舅(V 228) G bar + oco term} (V-247) G 汽嵜coo freeze} (V-25i) O bar and coo term} (V-252) 0 bar oco -@ (V-253) Obaryo co..o{} (V-500) {*ki coo mulberry λ Fluorine atom, chlorine atom, bromine atom, methyl group, methoxy group, cyano group or Various basic skeletons substituted with nitro groups can also be used. Optically active compounds in which the above chiral groups are bonded to one or both sides of the Go main skeleton as described above can be effectively used as a component of a chiral dopant. In particular, the general formula (D) in which the chiral groups are bonded to both sides, Q-Z Qi- [wherein Q" and Q gN" are mutually different optically active groups, and each optically active group has at least one and at least one of Q'' and Qlm has an asymmetric carbon atom of oxygen, ioOI1, nitrogen, fluorine, chlorine, or 1C1 or 1C3. It has a structure directly connected to N. Z represents a structure of the general formula (E) in which any one or two hydrogen atoms on these rings are replaced with a fluorine atom or a cyano group, and YI and Y2 are each independently a single bond, -COO-- OCO--
cogo-, OCIIg CHtCHg-102C-, -COS- or -SCO-, S is 0
Or represents 1. ) represents the central skeleton (core) of a liquid crystal molecule. ] Optically active compounds represented by the following are preferred. Furthermore, preferably, the optically active groups Q1 and Q1 each have the following general formula (F-1
) and (F-2). General formula (F-1) XI Rl -CH-Y" - General formula (F-2)
0 alkyl group, or an alkoxyl group, alkoxycarbonyl group, or alkanoyloxy group having 1 to 10 carbon atoms, C8 represents an asymmetric carbon atom, and X+ and X8
each independently represents cttx-F1, Cf1 or -CN, and yz and ys each independently represent a single bond, -o-
-coo- -oco-+ CHz}17 0 +
Cllt■, +Cut}rr OCO child CL stone or +
C.B. Represents C00+CHm stone under h, i1, i! .. 2
, m1, m2, n1 and n2 each independently represent an integer from 0 to 5. ) More preferably, the chiral groups are not the same, and at least one of them has an asymmetric carbon atom of oxygen (O),
Sulfur (S), nitrogen (N), fluorine (F), chlorine (C
j! ) etc. or 0 11 has a structure directly connected to C, CN, especially in the above (I
V-31) to (IV-101) are preferable. As described above, the advantages of using an optically active compound in which different chiral groups are bonded to both sides of the basic skeleton are as follows. (1) It can exhibit stronger spontaneous polarization than compounds with chiral groups on only one side. That is, a chiral group selected from the groups represented by (IV-31) to (IV-91) above and (IV-1) to (IV
-22) A compound having a chiral group selected from groups represented by (IV-31) to (■-91) on both sides of the basic skeleton, and a compound having the same basic skeleton with chiral groups selected from groups represented by (IV-31) to (■-91). Compounds that have only the same group and an achiral group on the other side are added to the SC matrix liquid crystal, and when the spontaneous polarization is determined as an extrapolated value, it is found that the compound that has chiral groups on both sides is 10 to 30 nC/cm" or larger, the spontaneous polarization derived from the groups represented by (IV-1) to (IV-22) is at most 10 nC/cv"
It can be seen that this is larger than the simple sum of the spontaneous polarizations due to the chiral groups on both sides. Furthermore (IV
-31) to (rV-91), and which have different chiral groups on both sides of the basic skeleton, the polarity of spontaneous polarization due to both chiral groups (often (S)- is a known ferroelectric liquid crystal.
Determine the polarity of 2-methynolebutyl b-decyloxybenzylidene aminophenyl cinnamate (IlOBAMBC) as e. ), a very large spontaneous polarization can be obtained. In this case, it is possible to obtain a spontaneous polarization that is 1001 IC/Cll or even larger than the simple sum of the spontaneous polarization caused by the chiral groups on both sides.As a chiral dopant, the spontaneous polarization that it can induce is large. Since the amount used can be reduced, the proportion of low-viscosity SC liquid crystal can be increased, and as a result, it is possible to reduce the viscosity of the SC゜ liquid crystal composition.As a result, the responsiveness (2) It is possible to adjust the helical pitch in compounds where the helical pinch induced in the N'' or SC0 phase is very long or very short. As mentioned above, in order to obtain good orientation, the N1 phase or S08
It is important that the helical pitch in the phase is long. It is sufficient that the helical pitch of the chiral dopant is adjusted as a whole, and it is not necessary for individual compounds to do so. Easy to adjust.
Furthermore, in the case of a compound added primarily for the purpose of adjusting the helical pinch, the shorter the helical pitch is, the more convenient the amount added can be suppressed.
螺旋ピッチを長くするには、両儒のキラル基による螺旋
ピッチの向きが互いに相反すればよいが、(IV−31
)〜(IV−91)で表わされる基から選ばれる基を両
倒に有する化合物では、その自発分極の極性は同一であ
ることが好ましい.(3)大きな自発分極を示しうる特
に(IV−31)〜(rV−91)で表わされる基から
選ばれるキラル基であって、不斉合戒、光学分割等の化
学的手法により得られたものは、その光学純度は必ずし
も100%ではないものが多いが、これらを100%に
精製するのはかなり困難である.しかしながら、天然物
から得られた(S)−2−メチルブタノール由来のキラ
ル基、あるいは微生物工学的手法で得られるような光学
純度の極めて高いキラル基と組み合わせれば、これらは
ジアステレオマーとなるため、クロマトグラフイー、再
結晶による分離が容易となり光学純度を100%に近づ
けることができる.
一般式(B)の化合物は、キラルドーパントの構威成分
として10%以上、好ましくは30%以上、特に好まし
くは50%以上用いるのが有効である.
一般式(B)の化合物中で、特に好ましい基本骨格とキ
ラル基の組み合せを有する化合物を以下に示す.
上記一般式中、R4及びR4′は各々独立的に炭素原子
数2〜10のアルキル基を表わし、Rs及びR , /
は各々独立的に炭素原子数1〜1oのアルキル碁を表わ
し、R9は炭素原子数2〜10の直鎖状のアルキル基又
は炭素原子数3〜10の分岐状のアルキル碁、又は炭素
原子数4〜10の少なくとも1個の不斉炭素を含む光学
的活性なアルキル基を表わし、iはO〜5の整数を表わ
し、Yは単結合、−o−, −oco−, −coo−
,又は−ocoo −を表わし、Wは、塩素フッ素又は
−0−CH3を表わし、Z′は、
−COO−
−OCO−
−CB.0−
−OCR寞一.
又は単
す.
XI及びX4は各々独立的に水素原子、フッ素原子又は
シアノ碁を表わし、X寞は水素原子又はXIを表わし、
X3は水素原子又はX4を表わす及びX4のうち少なく
とも一方は水素原子を表わす,
上記のキラルドーパントは、SC母体液晶中にl〜60
重量%の割合で添加してSC1液晶組戒物として用いる
のが適当であるが、さらに好ましくは2〜50重量%の
割合で添加することが好ましい.キラルドーバントの添
加割合が60重量%より多いと、自発分極は増加するが
、キラルドーパント自体が母体液晶にくらべるとはるか
に粘性が大きいため、SC0液晶組成物の粘度が大きく
なり、結果的に高速応答性に悪影響を与える傾向にある
ので好ましくない.また、キラルドーバントの添加量の
増加はその螺旋ピッチを短くするために配向性にも悪影
響を与える傾向にあるので好ましくない。一方、キラル
ドーパントの添加割合が1重量%より少ないと、自発分
極があまりに小さくなりやはり高速応答性は望めない。In order to lengthen the helical pitch, the directions of the helical pitch due to the chiral groups of both Confucian groups should be opposite to each other, but (IV-31
) to (IV-91), it is preferable that the polarities of their spontaneous polarizations be the same. (3) A chiral group particularly selected from the groups represented by (IV-31) to (rV-91) that exhibits large spontaneous polarization, and which is obtained by chemical methods such as asymmetric aggregation and optical resolution. Although many of these substances do not necessarily have 100% optical purity, it is quite difficult to purify them to 100%. However, when combined with chiral groups derived from naturally occurring (S)-2-methylbutanol or chiral groups with extremely high optical purity, such as those obtained by microbial engineering techniques, these become diastereomers. Therefore, separation by chromatography and recrystallization becomes easy, and optical purity can approach 100%. It is effective to use the compound of general formula (B) in an amount of 10% or more, preferably 30% or more, particularly preferably 50% or more as a constituent component of the chiral dopant. Among the compounds of general formula (B), compounds having particularly preferable combinations of basic skeleton and chiral group are shown below. In the above general formula, R4 and R4' each independently represent an alkyl group having 2 to 10 carbon atoms, and Rs and R, /
each independently represents an alkyl group having 1 to 1 carbon atoms, and R9 is a linear alkyl group having 2 to 10 carbon atoms or a branched alkyl group having 3 to 10 carbon atoms, or represents an optically active alkyl group containing at least one asymmetric carbon of 4 to 10, i represents an integer of O to 5, Y is a single bond, -o-, -oco-, -coo-
, or -ocoo-, W represents chlorine fluorine or -0-CH3, and Z' is -COO- -OCO- -CB. 0- -OCR Hoichi. Or simply. XI and X4 each independently represent a hydrogen atom, a fluorine atom or a cyano atom, X 4 represents a hydrogen atom or XI,
X3 represents a hydrogen atom or X4, and at least one of X4 represents a hydrogen atom.
It is appropriate to add it in a proportion of 2% by weight and use it as an SC1 liquid crystal composition, but it is more preferable to add it in a proportion of 2 to 50% by weight. When the addition ratio of the chiral dopant is more than 60% by weight, the spontaneous polarization increases, but since the chiral dopant itself has a much higher viscosity than the base liquid crystal, the viscosity of the SC0 liquid crystal composition increases, resulting in This is not desirable because it tends to have a negative effect on high-speed response. Further, an increase in the amount of chiral dopant added tends to shorten the helical pitch, which tends to adversely affect the orientation, which is not preferable. On the other hand, if the proportion of the chiral dopant added is less than 1% by weight, the spontaneous polarization becomes too small and high-speed response cannot be expected.
SC′″液晶組成物の自発分極の値は、3〜30nc/
cm’の範囲にあるようにキラルドーパントの添加割合
を調整することが好ましく、SC1相を示すキラルドー
バントの場合、単独で100nC/11”m”程度の自
発分極を示すか、又はそれに相当する強さの自発分極を
誘起するキラルドーバントの場合、キラルドーバントの
添加割合はlO〜40重量%の範囲が好ましく、3 0
0 nc/cm”以上の強い自発分極を示すキラルド
ーパントの場合、キラルドーバントの添加割合は、2〜
25重量%の範囲が好ましい.キラルドーパントの誘起
する自発分極が強い程、その最も望ましい添加割合は減
少する.しかしながら、キラルドーバントが誘起するP
1の値が小さい場合には、その添加量がSC母体液晶に
対して多くなり、これに伴なってS01液晶組威物の粘
性が大きくなり、その結果、高速応答性が得られなくな
る傾向にあるので好ましくない.従って、本発明で使用
するキラルドーバントとしては、Sc母体液晶に10重
量%添加した場合に1. O nC/ cya”以上の
P.を誘起できるものが好ましく、5重量%添加した場
合に0.5nCΔ1以上のP,を誘起できるものが特に
好ましい.
本発明のSC′″液晶組成物は、等方性液体状態からの
冷却時においてN1′相、あるいはSA相、あるいはN
0相とSA相を経てsco相へと相転移するが、そのI
IN”相からSA相への相転移温度(以下N”−SA点
という.)から、該N′″−SA点の1度高温側までに
おけるN11相に出現する螺旋のピッチが3μm以上で
あるsc8液晶組或物がより好ましく、該螺旋のピッチ
が10am以上であり、N” −SA点に近づくにつれ
て該螺旋のピッチが発散的に大きくなるsc1液晶組成
物が特に好ましい.
本発明のSC′″液晶組威物のN0相を示す温度範囲は
、3度以上30度未満の範囲が好ましい。The spontaneous polarization value of the SC′″ liquid crystal composition is 3 to 30 nc/
It is preferable to adjust the addition ratio of the chiral dopant so that it is in the range of cm', and in the case of a chiral dopant that exhibits the SC1 phase, it alone exhibits a spontaneous polarization of about 100 nC/11 "m" or equivalent thereto. In the case of a chiral dopant that induces strong spontaneous polarization, the addition ratio of the chiral dopant is preferably in the range of 10 to 40% by weight, and 30% by weight.
In the case of a chiral dopant that exhibits strong spontaneous polarization of 0 nc/cm" or more, the addition ratio of the chiral dopant is 2 to 2.
A range of 25% by weight is preferred. The stronger the spontaneous polarization induced by the chiral dopant, the lower its most desirable addition ratio. However, the chiral dopant-induced P
If the value of 1 is small, the amount added will be large relative to the SC base liquid crystal, and the viscosity of the S01 liquid crystal composite will increase accordingly, and as a result, high-speed response will tend not to be obtained. I don't like it because it is. Therefore, when the chiral dopant used in the present invention is added to the Sc host liquid crystal in an amount of 10% by weight, 1. Those capable of inducing P of 0 nC/cya'' or more are preferable, and those capable of inducing P of 0.5 nCΔ1 or more when added in an amount of 5% by weight are particularly preferable. During cooling from the isotropic liquid state, the N1' phase, SA phase, or N
There is a phase transition to the sco phase through the 0 phase and the SA phase, but the I
The pitch of the helix that appears in the N11 phase from the phase transition temperature from the IN'' phase to the SA phase (hereinafter referred to as the N''-SA point) to one degree higher than the N''''-SA point is 3 μm or more. An sc8 liquid crystal composition is more preferred, and an sc1 liquid crystal composition in which the helical pitch is 10 am or more, and in which the helical pitch increases divergently as it approaches the N''-SA point, is particularly preferred. The temperature range in which the SC'' liquid crystal composition of the present invention exhibits the N0 phase is preferably 3 degrees or more and less than 30 degrees.
N1相を示す温度範囲が、3度未満である場合、隆温時
にすみやかにSA相に相転移するため、N1相で液晶分
子を充分に配向しにくくなる傾向にあるので好ましくな
い.また、N0相を示す温度範囲が30度以上である場
合、sc0液晶組成物の透明点が高温になり、セルに液
晶材料を充填する工程等における作業性に悪影響を及ぼ
しゃすい.キラノレドーバントは、キラlレドーバント
自体の液晶性の有無にかかわらず、SC母体液晶に添加
した場合に、
(1) N”相を示す温度範囲を拡大する傾向にある
もの、又は
(2) N0相を示す温度範囲を縮小する傾向にあるも
の
など、それぞれ固有の性質を有している.本発明のSC
0液晶組威物のN1相を示す温度範囲を上記の好ましい
範囲に調整するためには、(1)の場合、N相を示す温
度範囲が狭いSC母体液晶、又は、N相を示さないSC
母体液晶を用いればよく、(2)の場合、N相を示す温
度範囲が広いSC母体液晶を用いればよい.この方法は
、N8相に限らず、SA相及びSC0相についても同様
に応用することができる.例えば、キラルドーバントが
SC1液晶組威物のSA相のみを拡大し、N1相及びS
C0相を縮小するような場合には、SC母体液晶として
、SC相の上限温度が高く、N相の温度範囲が広く、か
つ、SC相→N相→I相の相系列を有するもの、又はS
A相の温度範囲が狭<SC相→SA相→N相→■相の相
系列を有するものを用いればよい.
このようなキラルドーパントの傾向は、SC母体液晶に
一定量のキラルドーバントを添加して得られるSC1液
晶組成物の相転移温度の変化を測定することにより、容
易に知ることができる.この結果から、SC1液晶組威
物における各相、特にN′″相を示す温度範囲は容易に
調整することができる.
一般式(D)の光学活性化合物のうち、両倒のキラル基
Rl”+Rl によってN8相に誘起される螺旋の向
きが互いに逆であるような化合物では、その誘起する螺
旋ピッチはかなり長いため、このような化合物をキラル
ドーバントの主威分として用いる場合には、螺旋ピッチ
調整が不要であるか、あるいは容易であることが多いが
、一般的には以下のようにして螺旋ピッチを長く調整す
ることができる.
複数の光学活性化合物を含むSC”液晶組成物のN′″
相に出現する螺旋のビツチP(μm)は各光学活性物質
の濃度をCi、各単位濃度あたりの螺旋のピッチをPi
(μm)とするとP Pi
おり、(ここでは鯉旋のピッチは右巻きを正、左巻きを
負とする.)、これを用いてSC0液晶組或物のSA−
N’″点T0におけるpiをp ,iとする時、となる
ようにCiを選べばよい.ここでPiはN相を有する該
SC母体液晶に各光学活性化合物を単位濃度添加するこ
とにより瀾定が可能である.実際にはT0は各Ciによ
って変化するが、各光学活性化合物を該SC母体液晶中
に、濃度ΣCiだけ添加したときのSA−N”点の変化
などから、かなり正確に類推できることが多く、推定[
T.’とそれを用いて選ばれた組威物のT0とが大きく
異なる場合にはT0′に換えてT0を用いて再度測定す
ればよい。If the temperature range in which the N1 phase is exhibited is less than 3 degrees Celsius, it is not preferable because the phase transition to the SA phase occurs immediately when the temperature rises, making it difficult to fully align liquid crystal molecules in the N1 phase. Furthermore, if the temperature range showing the N0 phase is 30 degrees Celsius or higher, the clearing point of the sc0 liquid crystal composition becomes high, which is likely to adversely affect workability in the process of filling the cell with liquid crystal material. A chiranoredobant is one that, when added to an SC matrix liquid crystal, regardless of whether or not the chiral redobant itself has liquid crystallinity, (1) tends to expand the temperature range in which it exhibits the N'' phase, or (2) Each of the SCs of the present invention has unique properties, such as those that tend to reduce the temperature range in which the N0 phase is exhibited.
In order to adjust the temperature range in which the N1 phase of the 0 liquid crystal composition exhibits the N1 phase to the above-mentioned preferred range, in the case of (1), the SC base liquid crystal which exhibits the N phase is narrow in the temperature range, or the SC which does not exhibit the N phase.
It is sufficient to use a matrix liquid crystal, and in the case of (2), it is sufficient to use an SC matrix liquid crystal that exhibits N phase over a wide temperature range. This method can be applied not only to the N8 phase but also to the SA phase and SC0 phase. For example, the chiral dopant expands only the SA phase of the SC1 liquid crystal composition, and the N1 phase and S
In the case of reducing the C0 phase, the SC host liquid crystal should have a high upper limit temperature for the SC phase, a wide temperature range for the N phase, and a phase sequence of SC phase → N phase → I phase, or S
It is sufficient to use a material with a narrow temperature range of A phase and a phase sequence of SC phase → SA phase → N phase → ■ phase. Such a tendency of the chiral dopant can be easily determined by measuring the change in the phase transition temperature of the SC1 liquid crystal composition obtained by adding a certain amount of the chiral dopant to the SC base liquid crystal. From this result, it is possible to easily adjust the temperature range in which each phase in the SC1 liquid crystal composite exhibits the N''' phase. Among the optically active compounds of general formula (D), the diagonal chiral group Rl'' In compounds where the helical directions induced in the N8 phase by +Rl are opposite to each other, the induced helical pitch is quite long, so when such a compound is used as the main component of a chiral dopant, Pitch adjustment is often unnecessary or easy, but generally the helical pitch can be adjusted to a longer length as follows. N''' of SC"liquid crystal composition containing multiple optically active compounds
The pitch of the spiral appearing in the phase P (μm) is determined by the concentration of each optically active substance as Ci, and the pitch of the spiral per unit concentration as Pi.
(μm), then P Pi (Here, the right-handed pitch is positive and the left-handed pitch is negative.) Using this, SA- of an SC0 liquid crystal structure is calculated.
When pi at N''' point T0 is p, i, Ci can be selected so that In reality, T0 changes depending on each Ci, but it can be determined quite accurately from the change in the SA-N'' point when each optically active compound is added to the SC matrix liquid crystal at a concentration of ΣCi. There are many things that can be inferred, and estimation [
T. If there is a large difference between ' and T0 of the composite material selected using it, it is sufficient to replace T0' with T0 and perform the measurement again.
以下に実施例をあげて本発明を具体的に説明するが、本
発明の主旨及び適用範囲は、これらの実施例によって限
定されるものではない.なお、実施例中、「%」は重量
%を表わす.また組威物の相転移温度の測定は、温度!
ll節ステージを備えた偏光顕微鏡及び示差走査熱量計
(DSC)を併用して行った.
実施例I
A群に例示の一般式(A−11)で表わされる化合物か
ら、
35%
35%
30%
から成るSC相を示す液晶組成物(以下、母体液晶(A
)という.)を調製した。The present invention will be specifically explained below with reference to Examples, but the gist and scope of the present invention are not limited by these Examples. In addition, in the examples, "%" represents weight %. In addition, the phase transition temperature of composite materials can be measured using temperature!
The experiments were carried out using a polarizing microscope equipped with a stage and a differential scanning calorimeter (DSC). Example I A liquid crystal composition exhibiting an SC phase consisting of 35% 35% 30% (hereinafter referred to as base liquid crystal
). ) was prepared.
この組放物は57℃以下でSC相を、64.5℃以下で
SA相を、69℃以下でN相を各々示し、その融点は1
4℃であった。This assembled paraboloid exhibits an SC phase below 57°C, an SA phase below 64.5°C, and an N phase below 69°C, and its melting point is 1.
The temperature was 4°C.
次にSC母体液晶に添加してSC0液晶組成物とした際
に、N“相に右巻きの螺旋を出現させる化合物として、
式
(この化合物を前記SC母体液晶(A)に10%添加し
た際にN″相に出現させる螺旋のピッチ(外挿+11)
は60℃において4. 7 p mである.)の化合物
73%と、左巻きの螺旋を出現させる化合物として、式
(この化合物を前記SC母体液晶(A)に10%添加し
た際にN0相に出現させる螺旋ピッチ(外挿値)は60
℃において11.9μmである。)の化合物27%とを
混合して、N1相に出現させる螺旋のピッチが調整され
たキラルドーパントを調製した。Next, when added to the SC base liquid crystal to form an SC0 liquid crystal composition, as a compound that causes a right-handed helix to appear in the N'' phase,
Formula (pitch of helix that appears in the N'' phase when 10% of this compound is added to the SC matrix liquid crystal (A) (extrapolation +11)
is 4. at 60°C. It's 7pm. ), and as a compound that makes a left-handed helix appear, the helical pitch (extrapolated value) that appears in the N0 phase when 10% of this compound is added to the SC matrix liquid crystal (A) is 60
It is 11.9 μm at °C. ) to prepare a chiral dopant in which the pitch of the helix appearing in the N1 phase was adjusted.
このキラルドーパントを、上記SC母体液晶(A)に1
0%添加して得たSC”液晶組成物の25℃における自
発分極の値は、約6nC/cm” テあった。This chiral dopant is added to the SC base liquid crystal (A) at 1
The spontaneous polarization value of the SC" liquid crystal composition obtained with 0% addition at 25° C. was about 6 nC/cm".
次に、母体液晶(A) 75.6%B
群に例示の式(B−.6−1)の化合物 4.2%
式(B− 6− 2)の化合物 4.2%及び上記
キラルドーパント1 6. 0%?ら成るSC9液晶g
l戚物を調製した.このSC0液晶1N戒物は57℃以
下でsc1相を、59℃以下でSA相を、64℃以下で
N“相を各々示した.このSC”液晶組威物を配向処理
(ポリイミドコーティングーラビング処理)を施した2
枚のガラス透明電極から成る厚さ約2μmのセルに充填
し、等方性液体相から、室温まで徐冷を行ったところ、
良好な配向性を示し、均一なSC1相のモノドメインが
得られた.
このセルに電界強度10V■,/μm、50Hzの矩形
波を印加して、その電気光学応答速度を測定したところ
、25℃で49μ秒の高速応答性が確認された。この時
の自発分極は約114nC/c1、チルト角は29.2
゜であり、コントラストは非常に良好であった。Next, the mother liquid crystal (A) 75.6%B
Compound of formula (B-.6-1) 4.2%
4.2% of the compound of formula (B-6-2) and the above chiral dopant 16. 0%? SC9 liquid crystal g
A relative was prepared. This SC0 liquid crystal 1N compound showed an SC1 phase at 57℃ or lower, an SA phase at 59℃ or lower, and an N'' phase at 64℃ or lower. treatment) 2
When a cell with a thickness of approximately 2 μm consisting of a sheet of glass transparent electrodes was filled and slowly cooled from an isotropic liquid phase to room temperature,
A uniform SC1 phase monodomain with good orientation was obtained. When a rectangular wave of 50 Hz and an electric field strength of 10 V/μm was applied to this cell and its electro-optical response speed was measured, a high-speed response of 49 μsec at 25° C. was confirmed. The spontaneous polarization at this time is approximately 114nC/c1, and the tilt angle is 29.2
°, and the contrast was very good.
実施例2
実施例1において、式(B−64)及び(B−6−2)
の化合物に代えて、式(B−13−1)及び(B−13
−2)の化合物を各4.2%用いた以外は、実施例工と
同様にして、sc”液晶組放物をall!Lた.このs
c”液晶1l威物は56.5℃以下でsc”相を、64
℃以下でSA相を、68.5℃以下でN′″相を各々示
した.
実施例lと同様にして、表示用セルを作成し、その電気
光学応答速度を測定したところ、25゜Cで56μ秒の
高速応答性を示した.自発分極は1 3. 4 nC/
C11” 、チルト角は27.6°でコントラストも
良好であった.
実施例3
実施例1において、式(B−6−1)及び(B−6−2
)の化合物に代えて、式(B−20−1)、(B− 2
0− 2)及び(B20−3)の化合物を各2.8%用
いた以外は実施例1と同様にしてSC”液晶組威物を調
製した.このSC0液晶組成物は56.5℃以下でSC
1相を、65℃以下でN1相を各々示した.実施例1と
同様にして表示用セルを作威し、その電気光学応答速度
を測定したところ、25゜Cで55μ秒の高速応答性を
示した.
この時の自発分極は1 4.5nC/cm” 、チルト
角は3 0. 4 ”と大きく、コントラストは良好で
あった.
〔発明の効果〕
本発明の強誘電性液晶組威物は、配同性及び高速応答性
に優れており、かつ、室温を含む広い温度範囲で作動が
可能な液晶材料である.従って、本発明の強誘電性液晶
&III′s.物は、強誘電性スメクチック液晶を利用
した液晶デバイスの材料として極めて有用である.
代
理
人Example 2 In Example 1, formulas (B-64) and (B-6-2)
Instead of the compound of formula (B-13-1) and (B-13
SC" liquid crystal set paraboloids were prepared in the same manner as in the example construction except that 4.2% of each of the compounds of -2) was used.
The 1L c" liquid crystal exhibits the sc" phase at temperatures below 56.5℃, 64
It exhibited an SA phase at temperatures below 68.5 °C and an N''' phase at temperatures below 68.5 °C.A display cell was prepared in the same manner as in Example 1, and its electro-optical response speed was measured. It showed a high-speed response of 56 μsec at
C11", the tilt angle was 27.6°, and the contrast was also good. Example 3 In Example 1, formulas (B-6-1) and (B-6-2
) Formula (B-20-1), (B-2
An SC" liquid crystal composition was prepared in the same manner as in Example 1, except that 2.8% each of the compounds B20-2) and (B20-3) were used. SC
1 phase and N1 phase at temperatures below 65°C. A display cell was prepared in the same manner as in Example 1, and its electro-optical response speed was measured, and it showed a high-speed response of 55 μsec at 25°C. At this time, the spontaneous polarization was 14.5 nC/cm'', the tilt angle was large, 30.4'', and the contrast was good. [Effects of the Invention] The ferroelectric liquid crystal composition of the present invention is a liquid crystal material that has excellent coordination properties and high-speed response, and can operate in a wide temperature range including room temperature. Therefore, the ferroelectric liquid crystal &III's of the present invention. The material is extremely useful as a material for liquid crystal devices using ferroelectric smectic liquid crystals. agent
Claims (1)
に、光学活性化合物から成るキラルドーパントを加えて
成るキラルスメクチックC相を示す液晶組成物であって
、母体液晶が、 (1)下記一般式(A−1)、(A−2)、(A−3)
、(A−4)及び(A−5)で表わされる化合物から成
るA群から選ばれる化合物、 及び (2)下記一般式(C)で表わされる化合物を含有する
ことを特徴とする室温を含む広い温度範囲でキラルスメ
クチックC相を示す強誘電性液晶組成物。 一般式(A−1) ▲数式、化学式、表等があります▼ 一般式(A−2) ▲数式、化学式、表等があります▼ 一般式(A−3) ▲数式、化学式、表等があります▼ 一般式(A−4) ▲数式、化学式、表等があります▼ 一般式(A−5) ▲数式、化学式、表等があります▼ (上記一般式(A−1)〜(A−5)中、R^a及びR
^bは各々独立的に炭素原子数1〜20の直鎖状又は分
岐状のアルキル基又はアルコキシル基を表わすが、R^
a及びR^bのうち、少なくとも一方の基はアルコキシ
ル基を表わす。) 一般式(B) ▲数式、化学式、表等があります▼ (式中、R^e及びR^fは各々独立的に炭素原子数1
〜18の直鎖状又は分岐状のアルキル基又はアルコキシ
ル基を表わし、Vは−COO−又は−OCO−を表わし
、▲数式、化学式、表等があります▼は▲数式、化学式
、表等があります▼、▲数式、化学式、表等があります
▼、 ▲数式、化学式、表等があります▼、▲数式、化学式、
表等があります▼、▲数式、化学式、表等があります▼
又は▲数式、化学式、表等があります▼ を表わし、▲数式、化学式、表等があります▼は▲数式
、化学式、表等があります▼、▲数式、化学式、表等が
あります▼、 ▲数式、化学式、表等があります▼、▲数式、化学式、
表等があります▼、▲数式、化学式、表等があります▼
、▲数式、化学式、表等があります▼、 ▲数式、化学式、表等があります▼又は▲数式、化学式
、表等があります▼を表わし、▲数式、化学式、表等が
あります▼は ▲数式、化学式、表等があります▼、▲数式、化学式、
表等があります▼、▲数式、化学式、表等があります▼
、▲数式、化学式、表等があります▼、 ▲数式、化学式、表等があります▼又は▲数式、化学式
、表等があります▼を表わすが、▲数式、化学式、表等
があります▼、 ▲数式、化学式、表等があります▼及び▲数式、化学式
、表等があります▼のうち少なくとも1個 は▲数式、化学式、表等があります▼、▲数式、化学式
、表等があります▼又は▲数式、化学式、表等がありま
す▼を表わす。) 2、A群が一般式(A−1)で表わされる化合物から成
る請求項1記載の強誘電性液晶組成物。 3、▲数式、化学式、表等があります▼が▲数式、化学
式、表等があります▼ であり、▲数式、化学式、表等があります▼が▲数式、
化学式、表等があります▼又は▲数式、化学式、表等が
あります▼ である請求項1又は2記載の強誘電性液晶組成物。 4、▲数式、化学式、表等があります▼が ▲数式、化学式、表等があります▼である請求項1又 は2記載の強誘電性液晶組成物。 5、キラルドーパントが一般式(D) Q^1^*−Z−Q^2^* 〔式中、Q^1^*及びQ^2^*は互いに異なった光
学活性基であって、各光学活性基は少なくとも1個の不
斉炭素原子を有し、かつ、Q^1^*及びQ^2^*の
うち少なくとも1方の基は、不斉炭素原子が酸素、イオ
ウ、窒素、フッ素、塩素あるいは▲数式、化学式、表等
があります▼又は−C≡Nと直結した構造を有する、Z
は一般式(E) ▲数式、化学式、表等があります▼ (式中、▲数式、化学式、表等があります▼、▲数式、
化学式、表等があります▼及び▲数式、化学式、表等が
あります▼ は各々独立的に▲数式、化学式、表等があります▼、▲
数式、化学式、表等があります▼、 ▲数式、化学式、表等があります▼、▲数式、化学式、
表等があります▼、▲数式、化学式、表等があります▼
、▲数式、化学式、表等があります▼、 ▲数式、化学式、表等があります▼、▲数式、化学式、
表等があります▼、▲数式、化学式、表等があります▼
又はこれらの環上の任意の1〜2個の水素原子がフッ素
原子又はシアノ基に置換した構造を表わし、Y^1及び
Y^2は各々独立的に単結合、−COO−、−OCO−
、−CH_2O−、−OCH_2−、−CH_2CH_
2−、−C≡C−、−COS−又は−SCO−を表わし
、sは0又は1を表わす。) で表わされる液晶性分子の中心骨格(コア)部分を表わ
す。〕 で表わされる光学活性化合物を含有する請求項1、2、
3又は4記載の強誘電性液晶組成物。 6、Q^1^*が下記一般式(F−1)で表わされる光
学活性基であり、Q^2^*が下記一般式(F−2)で
表わされる光学活性基である請求項5記載の強誘電性液
晶組成物。一般式(F−1) ▲数式、化学式、表等があります▼ 一般式(F−2) ▲数式、化学式、表等があります▼ (式中、R^1及びR^2は各々独立的に炭素原子数2
〜10のアルキル基又は炭素原子数1〜10のアルコキ
シル基、アルコキシカルボニル基又はアルカノイルオキ
シ基を表わし、C^*は不斉炭素原子を表わし、X^1
及びX^2は各々独立的にCH_3−、F−、Cl−又
は−CNを表わし、Y^2及びY^3は各々独立的に単
結合、−O−、−COO−、−OCO−、▲数式、化学
式、表等があります▼、▲数式、化学式、表等がありま
す▼ 又は▲数式、化学式、表等があります▼を表わし、l1
、 l2、m1、m2、n1及びn2は各々独立的に0〜5
の整数を表わす。)[Scope of Claims] 1. A liquid crystal composition exhibiting a chiral smectic C phase obtained by adding a chiral dopant consisting of an optically active compound to a matrix liquid crystal that is optically inactive and exhibiting a smectic C phase, wherein the matrix liquid crystal is , (1) The following general formulas (A-1), (A-2), (A-3)
, a compound selected from Group A consisting of compounds represented by (A-4) and (A-5), and (2) a compound represented by the following general formula (C), including room temperature. A ferroelectric liquid crystal composition that exhibits a chiral smectic C phase over a wide temperature range. General formula (A-1) ▲ Contains mathematical formulas, chemical formulas, tables, etc. ▼ General formula (A-2) ▲ Contains mathematical formulas, chemical formulas, tables, etc. ▼ General formula (A-3) ▲ Contains mathematical formulas, chemical formulas, tables, etc. ▼ General formula (A-4) ▲ There are mathematical formulas, chemical formulas, tables, etc. ▼ General formula (A-5) ▲ There are mathematical formulas, chemical formulas, tables, etc. ▼ (General formulas (A-1) to (A-5) above) Medium, R^a and R
Each ^b independently represents a linear or branched alkyl group or alkoxyl group having 1 to 20 carbon atoms, but R^
At least one of a and R^b represents an alkoxyl group. ) General formula (B) ▲There are mathematical formulas, chemical formulas, tables, etc.▼ (In the formula, R^e and R^f each independently represent the number of carbon atoms, 1
~18 represents a linear or branched alkyl group or alkoxyl group, V represents -COO- or -OCO-, ▲ has a mathematical formula, chemical formula, table, etc. ▼ has a ▲ mathematical formula, chemical formula, table, etc. ▼, ▲There are mathematical formulas, chemical formulas, tables, etc.▼, ▲There are mathematical formulas, chemical formulas, tables, etc.▼,▲Mathematical formulas, chemical formulas,
There are tables, etc. ▼, ▲ There are mathematical formulas, chemical formulas, tables, etc. ▼
Or ▲There are mathematical formulas, chemical formulas, tables, etc.▼, ▲There are mathematical formulas, chemical formulas, tables, etc.▼ means ▲There are mathematical formulas, chemical formulas, tables, etc.▼, ▲There are mathematical formulas, chemical formulas, tables, etc.▼, ▲Mathematical formulas, There are chemical formulas, tables, etc.▼,▲mathematical formulas, chemical formulas,
There are tables, etc. ▼, ▲ There are mathematical formulas, chemical formulas, tables, etc. ▼
, ▲ There are mathematical formulas, chemical formulas, tables, etc. ▼, ▲ There are mathematical formulas, chemical formulas, tables, etc. ▼ or ▲ There are mathematical formulas, chemical formulas, tables, etc. ▼ Represents ▲ There are mathematical formulas, chemical formulas, tables, etc. There are chemical formulas, tables, etc.▼,▲mathematical formulas, chemical formulas,
There are tables, etc. ▼, ▲ There are mathematical formulas, chemical formulas, tables, etc. ▼
, ▲There are mathematical formulas, chemical formulas, tables, etc.▼, ▲There are mathematical formulas, chemical formulas, tables, etc.▼ or ▲There are mathematical formulas, chemical formulas, tables, etc.▼, but ▲There are mathematical formulas, chemical formulas, tables, etc.▼, ▲Mathematical formulas , there are chemical formulas, tables, etc. ▼ and ▲ there are mathematical formulas, chemical formulas, tables, etc. ▼, at least one of them is ▲ there are mathematical formulas, chemical formulas, tables, etc. ▼, ▲ there are mathematical formulas, chemical formulas, tables, etc. ▼ or ▲ mathematical formulas, There are chemical formulas, tables, etc. Represents ▼. 2. The ferroelectric liquid crystal composition according to claim 1, wherein group A comprises a compound represented by general formula (A-1). 3. ▲ There are mathematical formulas, chemical formulas, tables, etc. ▼ is ▲ There are mathematical formulas, chemical formulas, tables, etc. ▼ , ▲ There are mathematical formulas, chemical formulas, tables, etc. ▼ is ▲ Mathematical formulas,
3. The ferroelectric liquid crystal composition according to claim 1 or 2, which has chemical formulas, tables, etc. ▼ or ▲ has numerical formulas, chemical formulas, tables, etc. ▼. 4. The ferroelectric liquid crystal composition according to claim 1 or 2, wherein ▲There are mathematical formulas, chemical formulas, tables, etc.▼ is ▲There are mathematical formulas, chemical formulas, tables, etc.▼. 5. The chiral dopant has the general formula (D) Q^1^*-Z-Q^2^* [In the formula, Q^1^* and Q^2^* are different optically active groups, and each The optically active group has at least one asymmetric carbon atom, and in at least one of Q^1^* and Q^2^*, the asymmetric carbon atom is oxygen, sulfur, nitrogen, or fluorine. , chlorine or ▲There are mathematical formulas, chemical formulas, tables, etc.▼ or Z, which has a structure directly connected to -C≡N
is a general formula (E) ▲There are mathematical formulas, chemical formulas, tables, etc.▼ (In the formula, ▲There are mathematical formulas, chemical formulas, tables, etc.▼, ▲Mathematical formulas,
There are chemical formulas, tables, etc. ▼ and ▲ There are mathematical formulas, chemical formulas, tables, etc. ▼ are each independently ▲ There are mathematical formulas, chemical formulas, tables, etc. ▼, ▲
There are mathematical formulas, chemical formulas, tables, etc. ▼, ▲ There are mathematical formulas, chemical formulas, tables, etc. ▼, ▲ Mathematical formulas, chemical formulas,
There are tables, etc. ▼, ▲ There are mathematical formulas, chemical formulas, tables, etc. ▼
, ▲ There are mathematical formulas, chemical formulas, tables, etc. ▼, ▲ There are mathematical formulas, chemical formulas, tables, etc. ▼, ▲ Mathematical formulas, chemical formulas,
There are tables, etc. ▼, ▲ There are mathematical formulas, chemical formulas, tables, etc. ▼
or represents a structure in which any one or two hydrogen atoms on these rings are substituted with a fluorine atom or a cyano group, and Y^1 and Y^2 each independently represent a single bond, -COO-, -OCO-
, -CH_2O-, -OCH_2-, -CH_2CH_
2-, -C≡C-, -COS- or -SCO-, and s represents 0 or 1. ) represents the central skeleton (core) part of a liquid crystal molecule. ] Claims 1, 2, containing an optically active compound represented by
5. The ferroelectric liquid crystal composition according to 3 or 4. 6.Q^1^* is an optically active group represented by the following general formula (F-1), and Q^2^* is an optically active group represented by the following general formula (F-2).Claim 5 The ferroelectric liquid crystal composition described above. General formula (F-1) ▲ There are mathematical formulas, chemical formulas, tables, etc. ▼ General formula (F-2) ▲ There are mathematical formulas, chemical formulas, tables, etc. ▼ (In the formula, R^1 and R^2 each independently Number of carbon atoms: 2
~10 alkyl group, or an alkoxyl group, alkoxycarbonyl group, or alkanoyloxy group having 1 to 10 carbon atoms, C^* represents an asymmetric carbon atom, and X^1
and X^2 each independently represent CH_3-, F-, Cl- or -CN, and Y^2 and Y^3 each independently represent a single bond, -O-, -COO-, -OCO-, Represents ▲There are mathematical formulas, chemical formulas, tables, etc.▼, ▲There are mathematical formulas, chemical formulas, tables, etc.▼ or ▲There are mathematical formulas, chemical formulas, tables, etc.▼, and l1
, l2, m1, m2, n1 and n2 are each independently 0 to 5.
represents an integer. )
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2001501A JPH03207790A (en) | 1990-01-10 | 1990-01-10 | Ferromagnetic liquid crystal composition |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2001501A JPH03207790A (en) | 1990-01-10 | 1990-01-10 | Ferromagnetic liquid crystal composition |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH03207790A true JPH03207790A (en) | 1991-09-11 |
Family
ID=11503213
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2001501A Pending JPH03207790A (en) | 1990-01-10 | 1990-01-10 | Ferromagnetic liquid crystal composition |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH03207790A (en) |
-
1990
- 1990-01-10 JP JP2001501A patent/JPH03207790A/en active Pending
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JPH03207790A (en) | Ferromagnetic liquid crystal composition | |
JPH02269795A (en) | Ferroelectric liquid crystal composition | |
JPH03207789A (en) | Ferromagnetic liquid crystal composition | |
JPH0347892A (en) | Ferroelectric liquid crystal composition | |
JPH02245090A (en) | Ferroelectric liquid crystal composition | |
JPH036292A (en) | Ferroelectric liquid crystal composition | |
JPH02219892A (en) | Ferroelectric liquid crystal composition | |
JPH02245091A (en) | Ferroelectric liquid crystal composition | |
JPH02227491A (en) | Ferroelectric liquid crystalline composition | |
JPH02191695A (en) | Ferroelectric liquid crystal composition | |
JPH03152187A (en) | Ferroelectric liquid crystal composition | |
JPH02232292A (en) | Ferroelectric liquid crystal composition | |
JPH032297A (en) | Ferroelectric liquid crystal composition | |
JPH02269188A (en) | Ferroelectric liquid crystal composition | |
JPH03182590A (en) | Ferroelectric liquid crystal composition | |
JPH02255792A (en) | Ferroelectric liquid crystal composition | |
JPH02251596A (en) | Ferroelectric liquid crystal composition | |
JPH02229884A (en) | Ferroelectric liquid crystal composition | |
JPH02251597A (en) | Ferroelectric liquid crystal composition | |
JPH02311593A (en) | Ferroelectric liquid crystal composition | |
JPH02208392A (en) | Ferroelectric liquid crystal composition | |
JPH02286784A (en) | Ferroelectric liquid crystal composition | |
JPH02222488A (en) | Ferroelectric liquid crystal composition | |
JPH02279787A (en) | Ferroelectric liquid crystal composition | |
JPH02269187A (en) | Ferroelectric liquid crystal composition |