JPH0320768B2 - - Google Patents

Info

Publication number
JPH0320768B2
JPH0320768B2 JP62183A JP62183A JPH0320768B2 JP H0320768 B2 JPH0320768 B2 JP H0320768B2 JP 62183 A JP62183 A JP 62183A JP 62183 A JP62183 A JP 62183A JP H0320768 B2 JPH0320768 B2 JP H0320768B2
Authority
JP
Japan
Prior art keywords
circuit
temperature
temperature sensor
output
resistor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP62183A
Other languages
Japanese (ja)
Other versions
JPS59125415A (en
Inventor
Hisayasu Katayama
Takashi Iwasa
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP62183A priority Critical patent/JPS59125415A/en
Publication of JPS59125415A publication Critical patent/JPS59125415A/en
Publication of JPH0320768B2 publication Critical patent/JPH0320768B2/ja
Granted legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D23/00Control of temperature
    • G05D23/19Control of temperature characterised by the use of electric means
    • G05D23/20Control of temperature characterised by the use of electric means with sensing elements having variation of electric or magnetic properties with change of temperature
    • G05D23/24Control of temperature characterised by the use of electric means with sensing elements having variation of electric or magnetic properties with change of temperature the sensing element having a resistance varying with temperature, e.g. a thermistor

Description

【発明の詳細な説明】 産業上の利用分野 本発明は、電気毛布や電気フロアヒータ等の電
気暖房器具に於ける温度制御装置に関するもので
ある。
DETAILED DESCRIPTION OF THE INVENTION Field of Industrial Application The present invention relates to a temperature control device for electric heating appliances such as electric blankets and electric floor heaters.

従来例の構成とその問題点 従来の電気毛布や電気フロアヒータ等の温度制
御装置は、交流電源に接続されたヒータ、および
電力制御素子を直列に接続してなる発熱回路を前
記ヒータの制御変化に応じて抵抗、容量が変化す
る温度センサの温度検知信号により電力制御素子
を制御するものが一般的であり、特に温度センサ
の温度検知線の断線に対する保安は重要課題であ
る。
Configuration of conventional examples and their problems Conventional temperature control devices such as electric blankets and electric floor heaters use a heat generating circuit consisting of a heater connected to an AC power source and a power control element connected in series to control changes in the heater. Generally, a power control element is controlled by a temperature detection signal from a temperature sensor whose resistance and capacitance change depending on the temperature, and safety against disconnection of the temperature detection line of the temperature sensor is particularly important.

第1図は、電気毛布や電気フロアヒータ等に用
いられる温度センサの構造図であり、芯糸1の上
に電極線2を巻き、その上にプラスチツクサーミ
スタによる感温素子3を被覆し、その上に電極線
4を巻き、さらにその上に絶縁用外被5を被覆し
て構成している。
Figure 1 is a structural diagram of a temperature sensor used in electric blankets, electric floor heaters, etc., in which an electrode wire 2 is wound around a core thread 1, and a temperature sensing element 3 made of a plastic thermistor is covered thereon. An electrode wire 4 is wound thereon, and an insulating jacket 5 is further coated thereon.

第2図は電極線2,4の間の抵抗(Ω)、容量
分(F)からなるセンサインピーダンスの温度特性を
示すものであり、図からも明らかなように負の温
度特性を示し、抵抗分インピーダンスは容量分イ
ンピーダンスに比較すると非常に大きく、センサ
インピーダンスは容量分によつて決定する。とこ
ろで、電極線2または4が断線故障した場合に
は、ンサーインピーダンスが正常時より大きくな
り、制御温度が異常に高くなることがあり場合に
よつては制御せずヒータは通電し続ける危険性が
あつた。
Figure 2 shows the temperature characteristics of the sensor impedance, which consists of the resistance (Ω) and capacitance (F) between the electrode wires 2 and 4.As is clear from the figure, it shows negative temperature characteristics, and the resistance The component impedance is very large compared to the capacitance impedance, and the sensor impedance is determined by the capacitance. By the way, if the electrode wire 2 or 4 is disconnected, the sensor impedance will become larger than normal, and the control temperature may become abnormally high. In some cases, there is a risk that the heater will continue to be energized without being controlled. It was hot.

従来、電極線の断線検出方式としては、第3図
に示す回路がある。第3図に示す従来回路は、特
開昭57−103518号公報で示されたヒータと温度セ
ンサが一体に構成されているものを、ヒータと温
度センサが独立した構成の温度制御装置に応用し
たものである。図において、6は交流電源、7は
電源スイツチ、8は回路電源を構成している。9
はヒータ、10は前記ヒータ9の通電を制御する
電力制御素子、11は温度センサ、12は前記温
度センサ11のインピーダンスで定まる温度検出
電流を直流電圧に変換する温度検出回路である。
13は回路の接地側に接続された温度センサ11
の電極線の断線をチエツクする断線検出回路、1
4は交流電源6のゼロボルト電圧でパルスを発生
するゼロクロスパルス発生回路、15は温度制御
回路で温度検出回路12の出力と断線検出回路1
3の出力を処理して電力制御素子10のゲートト
リガ信号を出力し電気毛布等の温度を制御する。
Conventionally, as a method for detecting disconnection of an electrode wire, there is a circuit shown in FIG. The conventional circuit shown in Fig. 3 is an application of the integrated heater and temperature sensor shown in Japanese Patent Application Laid-Open No. 57-103518 to a temperature control device in which the heater and temperature sensor are independent. It is something. In the figure, 6 constitutes an AC power supply, 7 constitutes a power switch, and 8 constitutes a circuit power supply. 9
10 is a heater, 10 is a power control element that controls energization of the heater 9, 11 is a temperature sensor, and 12 is a temperature detection circuit that converts a temperature detection current determined by the impedance of the temperature sensor 11 into a DC voltage.
13 is a temperature sensor 11 connected to the ground side of the circuit
Disconnection detection circuit for checking disconnection of electrode wire, 1
4 is a zero cross pulse generation circuit that generates pulses with zero volt voltage of AC power supply 6; 15 is a temperature control circuit that connects the output of temperature detection circuit 12 and disconnection detection circuit 1;
3 and outputs a gate trigger signal for the power control element 10 to control the temperature of an electric blanket or the like.

以上の構成において、ゼロクロスパルス発生回
路14で発生したゼロクロスパルスZpを断線検
出回路13に入力し、回路の接地側に接続された
温度センサ11の電極線にゼロクロスパルス電流
を流す。断線検出回路13は温度センサ11の接
地側電極線の非断線または断線時により異なる出
力を発生し、その出力を温度制御回路15に入力
し、温度検出回路12の出力とで処理して電力制
御素子10のゲートトリガ信号VGを決定する。
すなわち、温度センサ11の接地電極線が非断線
時はゼロクロスパルス電流が流れ電力制御素子1
0をトリガしヒータ9を通電するが、断線時はゼ
ロクロスパルス電流が流れず電力制御素子10を
トリガせずヒータ9への通電を停止する。したが
つて、接地側電極線が断線故障した場合には安全
であるが、他方の非接地側の電極線が断線故障し
た場合にはヒータ温度が異常に昇温し人体が直接
触される電気毛布等では火傷、火災の危険があ
る。
In the above configuration, the zero-cross pulse Zp generated by the zero-cross pulse generation circuit 14 is input to the disconnection detection circuit 13, and a zero-cross pulse current is caused to flow through the electrode wire of the temperature sensor 11 connected to the ground side of the circuit. The disconnection detection circuit 13 generates different outputs depending on whether the ground electrode wire of the temperature sensor 11 is disconnected or disconnected, and inputs the output to the temperature control circuit 15 and processes it with the output of the temperature detection circuit 12 for power control. A gate trigger signal V G of element 10 is determined.
That is, when the ground electrode wire of the temperature sensor 11 is not disconnected, a zero cross pulse current flows and the power control element 1
0 is triggered and the heater 9 is energized, but when the wire is disconnected, the zero-cross pulse current does not flow and the power control element 10 is not triggered and the energization to the heater 9 is stopped. Therefore, it is safe if the grounding side electrode wire breaks, but if the other non-grounding electrode wire breaks, the heater temperature will rise abnormally and the electric power that comes into direct contact with the human body will be safe. Blankets, etc. pose a risk of burns and fire.

発明の目的 本発明は上記従来の欠点を解消するもので、交
流電源のゼロボルトで電力制御素子を制御し、か
つ温度センサの非接地側電極線の断線故障を検出
することを目的とする。
OBJECTS OF THE INVENTION The present invention solves the above-mentioned conventional drawbacks, and aims to control a power control element with zero volts of an AC power source and detect a disconnection failure in a non-grounded electrode wire of a temperature sensor.

発明の構成 上記目的を達成するため、本発明は、温度セン
サの非接地側電極線の断線故障を、非断線時と断
線時とで温度センサの位相が異なる信号を検出
し、交流電源と同期したパルスで比較し、その出
力と温度センサの温度によつて変化する温度信号
出力と比較した出力をヒータの通電を制御する電
力制御素子の制御信号とする構成である。
Composition of the Invention In order to achieve the above object, the present invention detects a disconnection failure of the non-grounded electrode wire of a temperature sensor by detecting a signal in which the phase of the temperature sensor differs between when the wire is not disconnected and when the wire is disconnected, and synchronizes it with an AC power source. The output is compared with a temperature signal output that changes depending on the temperature of the temperature sensor, and the output is used as a control signal for a power control element that controls energization of the heater.

実施例の説明 以下、本発明の一実施例について、図面に基づ
いて説明する。
DESCRIPTION OF EMBODIMENTS An embodiment of the present invention will be described below with reference to the drawings.

第4図において、16は交流電源、17は電源
スイツチ、18のダイオード、19の抵抗、20
のコンデンサで回路電源Aを構成する。21はヒ
ータ、22は前記ヒータ21の通電を制御する電
力制御素子、23はゲート抵抗、24は非接地側
電極線、25は接地側電極線、26は前記非接地
側電極線24と接地側電極線25との間に介装さ
れた感温素子であり、非接地側電極線24と接地
側電極線25と感温素子26で温度によつて抵
抗、容量、インピーダンスが変化する温度センサ
Bを構成する。27は温度検出トランジスタであ
りベース接地とする。前記トランジスタ27は電
力制御素子22の非導通電圧時に導通しベース、
エミツタ、接地側電極線25、感温素子26、非
接地側電極線24、抵抗28の経路で電流が流
れ、感温素子26の抵抗、容量からなるインピー
ダンスで定まる温度検出電流となる。トランジス
タ27のコレクタに接続された抵抗29とコンデ
ンサ30は前記温度検出電流を電圧に変換し温度
検出電圧を前記コンデンサ30の両端に発生す
る。31はトランジスタ27のベース、エミツタ
逆電圧抑制ダイオードであり、トランジスタ2
7、抵抗29、コンデンサ30で温度検出回路C
を構成する。32,33は抵抗、前記抵抗32,
33は非接地側電極線24の一端と直列に接続し
接地する。抵抗32と抵抗33の接続点に発生す
る電圧をトランジスタ34のベース電圧とし、前
記トランジスタ34のエミツタを接地し、コレク
タを抵抗35を介して回路電源Vccに接続する。
36はトランジスタ34のベース、エミツタ逆電
圧抑制ダイオードであり、抵抗32,33、トラ
ンジスタ34、抵抗35で断線検出回路Dを構成
する。Eは交流電源16のゼロボルト電圧でゼロ
クロスパルスを発生するゼロクロスパルス発生回
路であり、抵抗37を介して交流電源16に接続
する。38は前記断線検出回路Dの出力Vkと前
記ゼロクロスパルス発生回路Eの出力Zpとを入力
とする論理回路である。Fは温度制御回路で温度
検出回路Cの出力と論理積回路38の出力VS
処理して電力制御素子22のゲートトリガ信号
VGを出力し電気毛布等の温度を制御する。
In Fig. 4, 16 is an AC power supply, 17 is a power switch, 18 is a diode, 19 is a resistor, 20 is a
The circuit power supply A is composed of the capacitors. 21 is a heater, 22 is a power control element for controlling energization of the heater 21, 23 is a gate resistor, 24 is a non-grounded electrode wire, 25 is a grounded electrode wire, and 26 is connected to the non-grounded electrode wire 24 on the ground side. Temperature sensor B is a temperature sensing element interposed between the electrode wire 25, and the resistance, capacitance, and impedance of the non-grounded electrode wire 24, the grounded electrode wire 25, and the temperature sensing element 26 change depending on the temperature. Configure. 27 is a temperature detection transistor whose base is grounded. The transistor 27 has a base that is conductive when the power control element 22 is at a non-conducting voltage;
A current flows through the path of the emitter, the ground electrode wire 25, the temperature sensing element 26, the non-ground electrode wire 24, and the resistor 28, and becomes a temperature detection current determined by the impedance formed by the resistance and capacitance of the temperature sensing element 26. A resistor 29 and a capacitor 30 connected to the collector of the transistor 27 convert the temperature detection current into a voltage and generate a temperature detection voltage across the capacitor 30. 31 is a base and emitter reverse voltage suppression diode of transistor 27;
7. Temperature detection circuit C with resistor 29 and capacitor 30
Configure. 32 and 33 are resistors; the resistor 32,
33 is connected in series with one end of the non-grounded electrode wire 24 and grounded. The voltage generated at the connection point between the resistors 32 and 33 is set as the base voltage of the transistor 34, the emitter of the transistor 34 is grounded, and the collector is connected via the resistor 35 to the circuit power supply Vcc.
36 is a base and emitter reverse voltage suppression diode of the transistor 34, and the resistors 32, 33, the transistor 34, and the resistor 35 constitute a disconnection detection circuit D. Reference numeral E denotes a zero-cross pulse generation circuit that generates a zero-cross pulse using the zero volt voltage of the AC power source 16, and is connected to the AC power source 16 via a resistor 37. 38 is a logic circuit which receives the output V k of the disconnection detection circuit D and the output Z p of the zero cross pulse generation circuit E as inputs. F is a temperature control circuit that processes the output of the temperature detection circuit C and the output V S of the AND circuit 38 to generate a gate trigger signal for the power control element 22.
Outputs V G to control the temperature of electric blankets, etc.

以上のような構成においてその動作を第5図お
よび第6図とともに説明する。
The operation of the above configuration will be explained with reference to FIGS. 5 and 6.

非接地側電極線24が非断線時について説明す
る。温度センサBは、第6図aの等価回路を示す
ように非接地側電極線24と接地側電極線25と
の間の抵抗分39と容量分40からなつており、
抵抗分39のインピーダンスは非常に大きく、ほ
とんど容量分40で温度センサBのインピーダン
スが決定している。抵抗分39と容量分40は感
温素子26の等価回路である。したがつて、感温
素子26側に流れる電流iSは、容量分40により
位相が進み、抵抗32,33に流れる電流は位相
が遅れることとなり、抵抗32と抵抗33との接
続点に発生する交流電圧VAの位相も、交流電源
16より遅れることとなる。そして、抵抗32と
抵抗33との接続点に発生する交流電圧VAがト
ランジスタ34のベースに入力されるため、トラ
ンジスタ34のコレクタ電圧VKは、交流電圧VA
の正電位時はトランジスタ34がオンし「L」と
なり、負電位時はトランジスタ34がオフし
「H」となる。トランジスタ34のコレクタ電圧
VKが「H」となるは、感温素子26の容量分4
0により位相が遅れることから交流電源16のゼ
ロクロス部となり、論理積回路38の一方の入力
信号となる。論理積回路38の他方の入力には、
交流電源16のゼロボルト電圧でゼロクロスパル
スを発生するゼロクロス発生回路Eの出力ZPが入
力され、出力ZPはゼロクロスにおいて「H」の信
号である。したがつて論理積回路38の出力VS
もゼロクロスにおいて「H」となり温度制御回路
Fに入力され、温度検出回路Cとの出力により、
温度が低いと電力制御素子7のゲートトリガ信号
VGを出力しヒータ21を通電し、温度が高い時
はゲートトリガ信号VGを出力しないためヒータ
21に交流電源16を供給しないので設定温度に
おいてヒータ21の通電を制御するものである。
The case when the non-ground side electrode wire 24 is not disconnected will be explained. The temperature sensor B consists of a resistance 39 and a capacitance 40 between the non-grounded electrode wire 24 and the grounded electrode wire 25, as shown in the equivalent circuit of FIG. 6a.
The impedance of the resistance component 39 is very large, and the impedance of the temperature sensor B is almost determined by the capacitance component 40. The resistance portion 39 and the capacitance portion 40 are an equivalent circuit of the temperature sensing element 26. Therefore, the phase of the current i S flowing to the temperature sensing element 26 side is advanced by the capacitance 40, and the phase of the current flowing to the resistors 32 and 33 is delayed, which occurs at the connection point between the resistors 32 and 33. The phase of the AC voltage V A also lags behind the AC power supply 16 . Since the AC voltage V A generated at the connection point between the resistor 32 and the resistor 33 is input to the base of the transistor 34, the collector voltage V K of the transistor 34 is the AC voltage V A
When the potential is positive, the transistor 34 is turned on and becomes "L", and when the potential is negative, the transistor 34 is turned off and becomes "H". Collector voltage of transistor 34
V K becomes "H" because the capacitance of the temperature sensing element 26 is 4
Since the phase is delayed by 0, it becomes a zero cross portion of the AC power supply 16, and becomes one input signal of the AND circuit 38. The other input of the AND circuit 38 is
The output Z P of a zero cross generation circuit E that generates a zero cross pulse with the zero volt voltage of the AC power supply 16 is input, and the output Z P is an "H" signal at the zero cross. Therefore, the output V S of the AND circuit 38
also becomes "H" at the zero cross and is input to the temperature control circuit F, and by the output from the temperature detection circuit C,
When the temperature is low, the gate trigger signal of the power control element 7
V G is output to energize the heater 21, and when the temperature is high, the gate trigger signal V G is not output, so the AC power source 16 is not supplied to the heater 21, so the energization of the heater 21 is controlled at the set temperature.

次に非接地側電極線24が断線故障した場合に
ついて説明する。非接地側電極線24が断線故障
した場合の温度センサBの等価回路を第6図bに
示す。図のように断線故障した部分の両端間にも
感温素子26が介装することとなり、抵抗分41
と容量分42が発生し、抵抗分41のインピーダ
ンスは容量分42のインピーダンスに比較すると
非常に大きく断線故障した部分のインピーダンス
もほとんど容量分42で決まる。従つて、断線故
障した部分の容量分42により、抵抗32,33
に流れる電流iaの位相は進み、抵抗32と抵抗3
3との接続点に発生する交流電圧VAの位相も交
流電源16より進むこととなる。交流電圧VA
位相は容量分42により、ゼロクロス発生回路E
の出力ZPの立上がり位相より、さらに進み最大は
90゜近くとなる。そしてトランジスタ34のベー
スに抵抗32と抵抗33との接続点に発生する交
流電圧VAが入力されているので、トランジスタ
34のコレクタ電圧VKは、交流電圧VAの正電位
時はトランジスタ34がオンし「L」となり、負
電位時はトランジスタ34がオフし「H」とな
る。トランジスタ34のコレクタ電圧VKが「L」
となるは、断線故障した部分の容量分42により
位相が進むことから交流電源16のゼロクロス部
となり、論理積回路38の一方の入力信号とな
る。論理積回路38の他方の入力には、交流電源
16のゼロボルト電圧でゼロクロスパルスを発生
するゼロクロス発生回路Eの出力ZPが入力され、
出力ZPはゼロクロスにおいて「H」の信号であ
る。したがつて論理積回路38の出力VSは、常
に「L」の信号となり温度制御回路Fに入力さ
れ、温度検出回路Cが温度が低いことを検出した
出力を出しても、論理積回路38の出力VSが常
に「L」であるため、温度制御回路Fの出力も常
に「L」となり電力制御素子22をトリガしな
い。すなわち、非接地側電極線24が断線故障し
た場合には、電力制御素子22へのゲートトリガ
信号を常に「L」とするものである。
Next, a case where the non-grounded side electrode wire 24 is disconnected will be explained. FIG. 6b shows an equivalent circuit of the temperature sensor B when the non-grounded electrode wire 24 is disconnected. As shown in the figure, a temperature sensing element 26 is also interposed between both ends of the disconnected part, and the resistance is 41
A capacitive component 42 occurs, and the impedance of the resistive component 41 is very large compared to the impedance of the capacitive component 42, and the impedance of the part where the disconnection failure occurs is also almost determined by the capacitive component 42. Therefore, due to the capacitance 42 of the part where the disconnection occurred, the resistors 32 and 33
The phase of the current ia flowing through the resistor 32 and the resistor 3 advances.
The phase of the AC voltage V A generated at the connection point with AC power supply 3 also leads that of AC power supply 16 . The phase of the AC voltage V A is determined by the capacitance 42, and the zero cross generation circuit E
The output Z goes further from the rising phase of P , and the maximum is
It will be close to 90°. Since the AC voltage V A generated at the connection point between the resistors 32 and 33 is input to the base of the transistor 34, the collector voltage V K of the transistor 34 is such that when the AC voltage V A is at a positive potential, the transistor 34 is The transistor 34 is turned on and becomes "L", and when the potential is negative, the transistor 34 is turned off and becomes "H". Collector voltage V K of transistor 34 is “L”
Since the phase is advanced by the capacitance 42 of the disconnected part, it becomes the zero-crossing part of the AC power supply 16, and becomes one input signal of the AND circuit 38. The other input of the AND circuit 38 receives the output Z P of the zero cross generation circuit E that generates a zero cross pulse with the zero volt voltage of the AC power supply 16.
The output Z P is an "H" signal at zero cross. Therefore, the output V S of the AND circuit 38 always becomes an "L" signal and is input to the temperature control circuit F, and even if the temperature detection circuit C outputs an output indicating that the temperature is low, the AND circuit 38 Since the output V S of the temperature control circuit F is always "L", the output of the temperature control circuit F is also always "L" and does not trigger the power control element 22. That is, when the non-ground side electrode wire 24 has a disconnection failure, the gate trigger signal to the power control element 22 is always set to "L".

このように本実施例によれば、非接地側である
電極線24の断線故障が温度センサの容量分の分
布が異なることで発生する位相変化で検出できる
ものであり、電力制御素子22のゼロボルトスイ
ツチ制御と非接地側電極線24の断線故障検出を
瞬時に行なえ、極めて安全性の高い温度制御装置
が提供できるという効果を有する。なお、上記実
施例では非接地側の断線検出についてのみ説明を
したが、接地側電極線25の断線は従来例の第3
図の回路を利用して検出することができる。
As described above, according to this embodiment, a disconnection failure of the electrode wire 24 on the non-grounded side can be detected by a phase change caused by a difference in the distribution of the capacitance of the temperature sensor, and the zero volt of the power control element 22 can be detected. Switch control and disconnection failure detection of the non-grounded electrode wire 24 can be instantaneously performed, and an extremely safe temperature control device can be provided. In the above embodiment, only the disconnection detection on the non-grounding side was explained, but the disconnection of the grounding side electrode wire 25 is detected in the third example of the conventional example.
It can be detected using the circuit shown in the figure.

発明の効果 以上のように本発明によれば次の効果を得るこ
とができる。
Effects of the Invention As described above, according to the present invention, the following effects can be obtained.

(1) 温度センサの容量分による位相を検出し、非
接地側からの電極線の断線故障を検出できるも
のであるから極めて安全性が高い。
(1) It is extremely safe because it detects the phase based on the capacitance of the temperature sensor and can detect disconnection failures in the electrode wire from the non-grounded side.

(2) 半導体集積回路等で構成する場合、非接地側
の電極線であつても、断線検出信号入力電圧が
極めて低いレベルで実現できるため、半導体集
積回路化が容易である (3) 電力制御素子のゼロボルトスイツチ制御と非
接地側の電極線の断線検出を瞬時に交流電源の
サイクル毎に行なえることにより、安全性が高
くまた耐雑音性能が優れている。
(2) When configured with a semiconductor integrated circuit, etc., the disconnection detection signal input voltage can be achieved at an extremely low level even for non-grounded electrode lines, so it is easy to implement the semiconductor integrated circuit (3) Power control The device's zero-volt switch control and disconnection detection of the non-grounded electrode wire can be instantaneously performed every cycle of the AC power supply, resulting in high safety and excellent noise resistance.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は、温度センサの構造図、第2図は前記
温度センサの温度特性図、第3図は従来の温度制
御装置、第4図は本発明の一実施例である温度制
御装置、第5図は第4図における温度制御装置の
タイミングチヤート図、第6図は温度センサの等
価回路図である。 16……交流電源、21……ヒータ、22……
電力制御素子、24……非接地側電極線、25…
…接地側電極線、26……感温素子、32……抵
抗、33……抵抗、34……トランジスタ、38
……論理積回路、39……抵抗分、40……容量
分、41……断線故障部の抵抗分、42……断線
故障部の容量分、A……回路電源、B……温度セ
ンサ、C……温度検出回路、D……断線検出回
路、E……ゼロクロスパルス発生回路、F……温
度制御回路。
FIG. 1 is a structural diagram of a temperature sensor, FIG. 2 is a temperature characteristic diagram of the temperature sensor, FIG. 3 is a conventional temperature control device, and FIG. 4 is a temperature control device according to an embodiment of the present invention. 5 is a timing chart of the temperature control device in FIG. 4, and FIG. 6 is an equivalent circuit diagram of the temperature sensor. 16... AC power supply, 21... Heater, 22...
Power control element, 24... Non-grounding side electrode wire, 25...
...Ground side electrode wire, 26...Temperature sensing element, 32...Resistor, 33...Resistor, 34...Transistor, 38
...Logic product circuit, 39...Resistance component, 40...Capacitance component, 41...Resistance component of disconnection failure section, 42...Capacitance component of disconnection failure section, A...Circuit power supply, B...Temperature sensor, C...Temperature detection circuit, D...Disconnection detection circuit, E...Zero cross pulse generation circuit, F...Temperature control circuit.

Claims (1)

【特許請求の範囲】 1 回路電源のマイナス側を交流電源の一方に接
地し、前記交流電源の接地側に接続した第1の電
極線と交流電源の非接地側に接続した第2の電極
線との間に感温素子が介在してなる温度センサ
と、前記温度センサの信号を検出する温度検出回
路と、前記温度センサの第2の電極線の断線故障
を検出する断線検出回路と、前記交流電源と同期
したパルスを発生するパルス発生回路と、前記断
線検出回路の出力と前記パルス発生回路の出力を
比較する比較回路と、前記温度検出回路の出力と
前記比較回路の出力を比較し交流電源に接続され
たヒータの通電を制御する電力制御素子へ制御信
号を出力する制御回路とを備え、前記断線検出回
路は、前記温度センサの非断線時と断線時とで位
相が異なる信号を検出し、ヒータの通電を遮断す
る構成とした温度制御装置。 2 温度センサの第2の電極線の一端を交流電源
の非接地側に抵抗を介して接続し、他端を接地側
に第1の抵抗と第2の抵抗を介して接続し、前記
第1の抵抗と第2の抵抗の接続点の信号電圧を、
エミツタが接地側に接続されコレクタが回路電源
のプラス側に抵抗等を介して接続されたトランジ
スタのベース電圧とし、前記トランジスタのコレ
クタの信号で断線故障を検出する構成とした特許
請求の範囲第1項記載の温度制御装置。 3 パルス発生回路は、断線検出回路の出力と比
較する出力を交流電源のゼロボルト電圧で発生す
るゼロクロスパルスで構成した特許請求の範囲第
1項記載の温度制御装置。
[Scope of Claims] 1. A negative side of the circuit power source is grounded to one side of the AC power source, and a first electrode wire connected to the ground side of the AC power source and a second electrode wire connected to the non-grounded side of the AC power source. a temperature sensor having a temperature sensing element interposed between the temperature sensor, a temperature detection circuit for detecting a signal of the temperature sensor, a disconnection detection circuit for detecting a disconnection failure of a second electrode wire of the temperature sensor; a pulse generation circuit that generates pulses synchronized with an AC power supply; a comparison circuit that compares the output of the disconnection detection circuit with the output of the pulse generation circuit; and a comparison circuit that compares the output of the temperature detection circuit with the output of the comparison circuit and a control circuit that outputs a control signal to a power control element that controls energization of a heater connected to a power source, and the disconnection detection circuit detects a signal that has a different phase when the temperature sensor is not disconnected and when the temperature sensor is disconnected. Temperature control device configured to cut off power to the heater. 2 Connect one end of the second electrode wire of the temperature sensor to the non-grounded side of the AC power source via a resistor, connect the other end to the grounded side via the first resistor and the second resistor, and The signal voltage at the connection point between the resistor and the second resistor is
Claim 1: The emitter is connected to the ground side, and the collector is connected to the positive side of the circuit power supply via a resistor, etc. as the base voltage of a transistor, and a disconnection fault is detected by a signal from the collector of the transistor. Temperature control device as described in section. 3. The temperature control device according to claim 1, wherein the pulse generation circuit is configured with a zero-cross pulse generated at zero volt voltage of an AC power source as an output to be compared with the output of the disconnection detection circuit.
JP62183A 1983-01-06 1983-01-06 Temperature controller Granted JPS59125415A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62183A JPS59125415A (en) 1983-01-06 1983-01-06 Temperature controller

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62183A JPS59125415A (en) 1983-01-06 1983-01-06 Temperature controller

Publications (2)

Publication Number Publication Date
JPS59125415A JPS59125415A (en) 1984-07-19
JPH0320768B2 true JPH0320768B2 (en) 1991-03-20

Family

ID=11478795

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62183A Granted JPS59125415A (en) 1983-01-06 1983-01-06 Temperature controller

Country Status (1)

Country Link
JP (1) JPS59125415A (en)

Also Published As

Publication number Publication date
JPS59125415A (en) 1984-07-19

Similar Documents

Publication Publication Date Title
KR100845693B1 (en) Temperature control circuit
JPH01108615A (en) Temperature controller
KR100659187B1 (en) Safe temperature controller
JPH0320768B2 (en)
JP2532364B2 (en) Temperature control device
JPS6138487B2 (en)
JPS62222311A (en) Temperature controller
JPH0353300Y2 (en)
JP2517004B2 (en) Temperature control device
JP3293173B2 (en) Temperature control device
JPS6138491B2 (en)
JP2599371B2 (en) Fail safe device
JP3119350B2 (en) Disconnection alarm
JPS6194122A (en) Temperature controller
JPH0353297Y2 (en)
JPS6047602B2 (en) temperature control device
JPS615319A (en) Temperature controller
JP3540002B2 (en) Temperature control device
JPS6319019A (en) Fail safe device
JPS6138489B2 (en)
JPS6324313A (en) Fail-safe circuit for temperature controller
JP2583942B2 (en) Temperature control device
JPH02112191A (en) Multi-faceted heat-sensitive heat generator
JP2891914B2 (en) Positive-side terminal connection circuit and heater
JP2659760B2 (en) Heater device