JPH03206377A - Noise reducing construction for piston type compressor - Google Patents

Noise reducing construction for piston type compressor

Info

Publication number
JPH03206377A
JPH03206377A JP34350889A JP34350889A JPH03206377A JP H03206377 A JPH03206377 A JP H03206377A JP 34350889 A JP34350889 A JP 34350889A JP 34350889 A JP34350889 A JP 34350889A JP H03206377 A JPH03206377 A JP H03206377A
Authority
JP
Japan
Prior art keywords
discharge
piston
refrigerant gas
compression chamber
ports
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP34350889A
Other languages
Japanese (ja)
Other versions
JP3013370B2 (en
Inventor
Shinichi Suzuki
新一 鈴木
Kenji Takenaka
健二 竹中
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Industries Corp
Original Assignee
Toyoda Automatic Loom Works Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyoda Automatic Loom Works Ltd filed Critical Toyoda Automatic Loom Works Ltd
Priority to JP1343508A priority Critical patent/JP3013370B2/en
Publication of JPH03206377A publication Critical patent/JPH03206377A/en
Application granted granted Critical
Publication of JP3013370B2 publication Critical patent/JP3013370B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Compressor (AREA)

Abstract

PURPOSE:To smoothly discharge refrigerant gas and avoid over compression to reduce noise by forming discharge introducing grooves connecting to discharge ports on the surfaces of the compression chamber side of valve plates in which suction ports and discharge ports are provided. CONSTITUTION:By reciprocating a duplex piston 5 in a pair of front and rear cylinder bores 1a, 2a of a pair of front and rear cylinder blocks 1, 2 due to rotation of a swash plate 3 fixedly secured on a rotating shaft 4, refrigerant gas sucked from suction ports 9a, 13a is compressed and hereafter discharged from discharged ports 9b, 13b. In such swash plate type compressor, in the face territory on the piston side of respective valve plates 9, 13, fan shaped discharge introducing grooves 9c, 13c penetrating valve forming plates 10, 14 and a converging to discharge ports 9b, 13b are formed. Further, these discharged introducing grooves 9c, 13c are provided with inclination which gradually increase their depth facing to the discharge ports 9b, 13b.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は、ピストンの復動動作により吸入室からバルブ
プレート上の吸入ポートを介して圧縮室へ冷媒ガスを吸
入すると共に、ピストンの往動動作により圧縮室からバ
ルブプレート上の吐出ポートを介して吐出室へ冷媒ガス
を吐出する・ピストン式圧縮機における騒音低減構造に
関するものである。
Detailed Description of the Invention [Industrial Field of Application] The present invention is capable of sucking refrigerant gas from a suction chamber into a compression chamber through a suction port on a valve plate by the backward movement of a piston, and also by the forward movement of a piston. This invention relates to a noise reduction structure in a piston type compressor that discharges refrigerant gas from a compression chamber to a discharge chamber through a discharge port on a valve plate upon operation.

[従来の技術] この種のピストン式圧縮機では、上死点位置のピストン
のヘッド端面と圧縮室の形成端壁との間隙、即ちトップ
クリアランスを可及的に小さくして体積効率を高め、こ
の体積効率向上によって圧縮機の性能向上が図られてい
る。その反面、組み付け誤差を考慮した上で体積効率を
極限まで向上すると圧縮室内の圧力が吐出圧よりも高く
なるオーバーコンブレッション現象が生じ、騒音がひど
くなる。
[Prior Art] In this type of piston compressor, the gap between the head end surface of the piston at the top dead center position and the end wall forming the compression chamber, that is, the top clearance, is made as small as possible to increase volumetric efficiency. This improvement in volumetric efficiency is intended to improve the performance of the compressor. On the other hand, if the volumetric efficiency is maximized while taking assembly errors into consideration, an overcompression phenomenon occurs in which the pressure inside the compression chamber becomes higher than the discharge pressure, resulting in increased noise.

オーバーコンブレッションによるこのような騒音増加を
回避するために特開昭6 0−2 0 9 6 74号
公報では、ピストンのヘッド端面上における吐出ポート
との対向領域から離れた領域に凹部を穿つ対策が図られ
ている。ピストンか上死点位置におけるピストンのヘッ
ド端面上の圧力分布では吐出ポートとの対向領域から離
れた領域で圧力上昇が著しく、このような異常な圧力上
昇領域に前記のような凹部を穿つことによって異常な圧
力上昇を抑制することができる。
In order to avoid such an increase in noise due to over-compression, Japanese Patent Application Laid-Open No. 60-209674 proposes a countermeasure in which a recess is bored in an area on the end face of the piston head away from the area facing the discharge port. is planned. In the pressure distribution on the end face of the piston's head when the piston is at the top dead center position, the pressure rises significantly in the area away from the area facing the discharge port, and by drilling the above-mentioned recess in such an abnormal pressure rise area, Abnormal pressure rise can be suppressed.

[発明が解決しようとする課題] 異常な圧力上昇領域に凹部を穿つ構造は圧縮室から吐出
ポートを介して吐出室へ逃げ難い領域の冶媒ガスに逃げ
道を付与するものであるが、ピストンヘット端面上の凹
部には圧縮室内の冷媒ガスの流出を妨げる作用もある。
[Problems to be Solved by the Invention] A structure in which a concave portion is bored in an area of abnormal pressure increase provides an escape route for the medium gas in an area where it is difficult to escape from the compression chamber to the discharge chamber via the discharge port. The recess on the end face also has the function of preventing the refrigerant gas from flowing out within the compression chamber.

そのため、圧縮室から吐出ポートを介した吐出作用の円
滑性が僅かとはいえども妨げられ、これが僅かとはいえ
ども騒音の増加に繋がる。
Therefore, the smoothness of the discharge action from the compression chamber through the discharge port is hindered, even if only slightly, and this leads to an increase in noise, albeit slightly.

本発明は前記従来の騒音対策よりもさらに騒音抑制を向
上し得るピストン式圧縮機における騒音低減構造を提供
することを目的とするものである。
An object of the present invention is to provide a noise reduction structure for a piston compressor that can further improve noise suppression than the conventional noise countermeasures.

[課題を解決するための手段] そのために本発明では、圧縮室を区画形成するバルブプ
レートの圧縮室側の面上には前記バルブプレート上の吐
出ポートへ接続する吐出誘導溝を設けた。
[Means for Solving the Problems] For this purpose, in the present invention, a discharge guide groove connected to a discharge port on the valve plate is provided on the compression chamber side surface of a valve plate that partitions and forms a compression chamber.

[作用] 圧縮行程時のピストンの移動によって圧縮室の冷媒ガス
が圧縮室から吐出ポートを経由して流出するが、圧縮室
内におけるバルブプレート近傍の領域では冷媒ガス流が
バルブプレート面に沿うように吐出ポートへ向かう。そ
のため圧縮室内におけるバルブプレート近傍領域では吐
出ポートから遠い領域ほど冷媒ガスの流れが悪くなるが
、このような冷媒ガスの流れが悪くなる領域から吐出ポ
ートへ向かう吐出誘導溝をバルブプレート上に凹設する
ことによって吐出ポートから離れた領域から吐出ポート
へ向かう冷媒ガス流もスムーズになる。従って、ピスト
ンが上死点位置における吐出作用の円滑化及びオーバー
コンブレッション回避が共に達成される。
[Function] Due to the movement of the piston during the compression stroke, refrigerant gas in the compression chamber flows out from the compression chamber via the discharge port, but in the region near the valve plate in the compression chamber, the refrigerant gas flow follows the valve plate surface. Head to the discharge port. Therefore, in the area near the valve plate in the compression chamber, the flow of refrigerant gas becomes worse in the area farther from the discharge port, but a discharge guide groove is recessed on the valve plate that goes from the area where the flow of refrigerant gas is poor to the discharge port. By doing so, the refrigerant gas flow from the area away from the discharge port toward the discharge port is also smoothed. Therefore, smooth discharge action and avoidance of over-compression are both achieved when the piston is at the top dead center position.

[実施例] 以下、本発明を斜板式圧縮機に具体化した一実施例を第
1〜4図に基づいて説明する。
[Example] Hereinafter, an example in which the present invention is embodied in a swash plate compressor will be described based on FIGS. 1 to 4.

第1図に示すように締付接合された前後一対のシリンダ
ブロック1,2には斜板3を固着した回転軸4が支持さ
れており、回転軸4を中心とする等間隔角度位置には複
数のシリンダボアla,2aが形或されている。前後で
対となるシリンダボアla,2a内には両頭ピストン5
が往復動可能に収容されており、両頭ピストン5と斜板
3との間にはシュー6が介在されている。従って、斜板
3が回転することによって両頭ピストン5がシリンダホ
アla,2a内を前後動ずる。
As shown in FIG. 1, a rotating shaft 4 to which a swash plate 3 is fixed is supported by a pair of front and rear cylinder blocks 1 and 2 that are tightly joined together. A plurality of cylinder bores la, 2a are formed. A double-headed piston 5 is installed in the cylinder bores la and 2a that form a pair at the front and rear.
is housed in a reciprocating manner, and a shoe 6 is interposed between the double-headed piston 5 and the swash plate 3. Therefore, as the swash plate 3 rotates, the double-headed piston 5 moves back and forth within the cylinder bores la, 2a.

シリンダブロック1の端面にはハウジング8がバルブプ
レート9及び一対の弁形成プレート10,11を介して
接合されており、シリンダブロック2の端面にもハウジ
ングl2がバルブプレート13及び一対の弁形成プレー
トl4,15を介して接合されている。両ハウジング8
,12内には吸入室8a,12a及び吐出室8b.12
bが形戊されている。吸入室8a,12aはバルブプレ
ート9,13上の吸入ポー}9a,13aを介してシリ
ンダボアla,2aに接続しており、吐出室8b,12
bはバルブプレート9.13上の吐出ポート9b.13
bを介してシリンダボアla,2aに接続している。
A housing 8 is joined to the end face of the cylinder block 1 via a valve plate 9 and a pair of valve forming plates 10, 11, and a housing 12 is joined to the end face of the cylinder block 2 via a valve plate 13 and a pair of valve forming plates l4. , 15. Both housings 8
, 12 include suction chambers 8a, 12a and discharge chambers 8b. 12
b is shaped. The suction chambers 8a, 12a are connected to the cylinder bores la, 2a via suction ports 9a, 13a on the valve plates 9, 13, and the discharge chambers 8b, 12
b is the discharge port 9b.b on the valve plate 9.13. 13
It is connected to cylinder bores la and 2a via b.

吸入ポート9a,13aは弁形戊プレート10,14上
の吸入弁10a,14aによって開閉され、吐出ポート
9b,13bは弁形或プレート11,l5上の吐出弁1
 1 a +  1 5 aによって開閉される。両頭
ピストン5のヘッド端面5a側の復勤行程時には吸入室
8a内の冷媒ガスが吸入弁10aを押し退けてヘッド端
面5aとバルブプレート9との間の圧縮室P1内へ吸入
される。そして、両頭ピストン5のヘッド端面5a側の
往動行程時には圧縮室P1内の冷媒ガスが吐出弁11a
を押し退けて吐出室8bへ吐出される。
The suction ports 9a, 13a are opened and closed by the suction valves 10a, 14a on the valve-shaped plates 10, 14, and the discharge ports 9b, 13b are opened and closed by the discharge valves 10a, 14a on the valve-shaped plates 11, 15.
It is opened and closed by 1 a + 1 5 a. During the return stroke on the head end surface 5a side of the double-headed piston 5, the refrigerant gas in the suction chamber 8a pushes aside the suction valve 10a and is sucked into the compression chamber P1 between the head end surface 5a and the valve plate 9. During the forward stroke of the double-headed piston 5 on the head end surface 5a side, the refrigerant gas in the compression chamber P1 is discharged from the discharge valve 11a.
is pushed away and discharged into the discharge chamber 8b.

両頭ピストン5の他方のヘッド端面5bとバルブプレー
ト13との間の圧縮室P2側においても同様の吸入及び
吐出が行われる。
Similar suction and discharge are performed on the compression chamber P2 side between the other head end surface 5b of the double-headed piston 5 and the valve plate 13.

両頭ピストン5のヘッド端面5aに対応するバルブプレ
ート9の面領域には吐出誘導溝9Cが凹設されている。
A discharge guide groove 9C is recessed in a surface area of the valve plate 9 corresponding to the head end surface 5a of the double-headed piston 5.

第2図に示すようにこの吐出誘導溝9Cは弁形成プレー
ト10を貫通して吐出ポー}9bに収束する扇形状に形
戊されており、第3図に示すように吐出誘導溝9Cには
末端側から吐出ポート9b側に向かうにつれて徐々に深
くなる傾斜か付けられている。
As shown in FIG. 2, the discharge guide groove 9C is shaped like a fan that passes through the annuloplasty plate 10 and converges on the discharge port 9b.As shown in FIG. A slope is formed that gradually becomes deeper from the distal end toward the discharge port 9b.

第1図ではピストンヘッド端面5aが下死点位置にあり
、ピストンヘッド端面5bが上死点位置にある。ピスト
ンヘッド端面5aがバルブプレート9に向かう行程にな
ると、圧縮室P1内の冷媒ガスが吐出弁11aを押し退
けて吐出室8bへ流出して行く。ピストンヘッド端面5
aと弁形或プレート10との間隔がトップクリアランス
に近づくと圧縮室P1内の圧力が急激に高まってゆくが
、圧縮室P1内の圧縮された冷媒ガスが吐出ポート9b
からスムーズに流出しないとオーバーコンブレーショッ
ンが生じる。
In FIG. 1, the piston head end surface 5a is at the bottom dead center position, and the piston head end surface 5b is at the top dead center position. When the piston head end face 5a moves toward the valve plate 9, the refrigerant gas in the compression chamber P1 pushes away the discharge valve 11a and flows out into the discharge chamber 8b. Piston head end face 5
When the distance between a and the valve-shaped plate 10 approaches the top clearance, the pressure in the compression chamber P1 increases rapidly, but the compressed refrigerant gas in the compression chamber P1 flows through the discharge port 9b.
If it does not flow smoothly, overcombination will occur.

ピストンヘッド端面5aがトップクリアランスに近づい
た状態では圧縮室P1内の冷媒ガスの流れ方向が大幅に
制約され、圧縮室P1内の冷媒ガスはバルブプレート9
に沿って吐出ポート9bに向かうことになる。しかしな
がら、ピストンヘット端面5aに対向するバルブプレー
ト9の面領域上の吐出誘導溝9cが圧縮室P1内の高圧
冷媒ガスを吐出ポー1−9bへ誘導し、吐出ポート9b
から離れた吸入ポート9a側の領域から吐出ポート9b
へ向かう冷媒ガスの流れがスムーズになる。
When the piston head end surface 5a approaches the top clearance, the flow direction of the refrigerant gas in the compression chamber P1 is significantly restricted, and the refrigerant gas in the compression chamber P1 is directed toward the valve plate 9.
along the direction toward the discharge port 9b. However, the discharge guide groove 9c on the surface area of the valve plate 9 facing the piston head end surface 5a guides the high pressure refrigerant gas in the compression chamber P1 to the discharge port 1-9b, and
From the area on the suction port 9a side away from the discharge port 9b
The flow of refrigerant gas towards will be smoother.

従って、扇形状の吐出誘導溝9Cの末端側の領域におけ
る過圧縮によるオーバーコンブレッションは無くなり、
オーバーコンブレッションに起因する騒音が抑制される
。しかも、冷媒ガス流の円滑化はピストンヘッド端面上
の凹部に余分な冷媒ガスをため込む従来の騒音低減構造
に比して僅かとはいえども騒音抑制の上で優れている。
Therefore, overcondensation due to overcompression in the distal region of the fan-shaped discharge guide groove 9C is eliminated.
Noise caused by over-compression is suppressed. Furthermore, the smooth flow of refrigerant gas is superior in terms of noise suppression, even if only slightly, compared to the conventional noise reduction structure in which excess refrigerant gas is stored in a recess on the end face of the piston head.

第4図のグラフの鎖線で示す曲線Dはオーバーコンブレ
ッション対策の施されていない場合の圧縮室P1内にお
ける圧力曲線であり、実線で示す曲線Eは本実施例の吐
出誘導溝9Cを設けた場合の圧力曲線である。鎖線で示
す圧力曲線Dの突出部分がオーバーコンブレッション状
態を表し、複数のピストンにおける圧力曲線Dの時間的
繋がり、即ち過圧縮の繰り返しが大きな騒音を生む。こ
の過圧縮部分を解消すれば騒音を抑制することができ、
本実施例の吐出誘導溝9c.13cが冷媒ガスの流れを
円滑化しつつこの過圧縮回避をもたらす。
The curve D shown by the chain line in the graph of FIG. 4 is the pressure curve in the compression chamber P1 when no countermeasure against overcompression is taken, and the curve E shown by the solid line is the pressure curve in the case where the discharge guide groove 9C of this embodiment is provided. This is the pressure curve for the case. The protruding portion of the pressure curve D indicated by the chain line represents an overcompression state, and the temporal connection of the pressure curves D in the plurality of pistons, that is, the repetition of overcompression, produces a large noise. By eliminating this overcompression part, noise can be suppressed.
Discharge guide groove 9c of this embodiment. 13c provides this avoidance of overcompression while smoothing the flow of refrigerant gas.

なお、吐出誘導溝の形状としては例えば第5図(a),
  (b)に示すように吐出ポート9bを包囲するよう
な扇形状の吐出誘導溝9dも可能である。
Note that the shape of the discharge guide groove is, for example, as shown in FIG. 5(a).
As shown in (b), a fan-shaped discharge guide groove 9d that surrounds the discharge port 9b is also possible.

又、第6図(a),(b)に示すように直線形状の吐出
誘導溝9e、第7図に示すように三叉状の吐出誘導溝9
fの採用も可能であり、さらには深さをどこも一定とし
た吐出誘導溝の採用も可能である。
Further, as shown in FIGS. 6(a) and (b), there are linear discharge guide grooves 9e, and as shown in FIG. 7, there are three-pronged discharge guide grooves 9.
It is also possible to adopt a discharge guide groove having a constant depth everywhere.

[発明の効果] 以上詳述したように本発明は、吐出ポートに接続する吐
出誘導溝をバルブプレート上に設けたので、ピストンヘ
ッド端面が上死点位置に近づいたときにも吐出ポートか
ら離れた領域の冷媒ガスも吐出誘導溝に誘導されて吐出
ポートに向かって円屑に流れ、これにより過圧縮を生じ
易い領域の冷媒ガスを円滑に吐出ポートへ誘導して騒音
に繋がるオーバーコンブレッションを回避し得るという
優れた効果を奏する。
[Effects of the Invention] As detailed above, in the present invention, the discharge guide groove connected to the discharge port is provided on the valve plate, so that even when the end face of the piston head approaches the top dead center position, it does not separate from the discharge port. The refrigerant gas in the area where the overcompression occurs is also guided by the discharge guide groove and flows toward the discharge port, thereby smoothly guiding the refrigerant gas in the area where overcompression is likely to occur to the discharge port, thereby preventing overcompression that can lead to noise. It has the excellent effect of being evasive.

【図面の簡単な説明】[Brief explanation of drawings]

第1〜4図は本発明を具体化したー実施例を示し、第1
図は圧縮機全体の側断面図、第2図は第1図のA−A線
断面図、第3図は第2図のB−B線拡大断面図、第4図
は圧縮室内の圧力を示すグラフ、第5図(a)は別例を
示す縦断面図、第5図(b)は第5図(a)のC−C線
拡大断面図、第6図(a)は別例を示す縦断面図、第6
図(b)は第6図(a)のD−D線拡大断面図、第7図
はさらに別例を示す縦断面図である。 ピストンヘッド端面5a,5b、バルブプレート9,l
3、吐出ポート9b,13b,吐出誘導溝9c,13c
、圧縮室PI,P2。
1 to 4 show embodiments embodying the present invention;
The figure is a side sectional view of the entire compressor, Figure 2 is a sectional view taken along the line A-A in Figure 1, Figure 3 is an enlarged sectional view taken along the line B-B in Figure 2, and Figure 4 shows the pressure inside the compression chamber. 5(a) is a longitudinal sectional view showing another example, FIG. 5(b) is an enlarged sectional view taken along the line C-C of FIG. 5(a), and FIG. 6(a) is an another example. Longitudinal sectional view shown, No. 6
FIG. 6(b) is an enlarged sectional view taken along the line DD in FIG. 6(a), and FIG. 7 is a vertical sectional view showing another example. Piston head end surfaces 5a, 5b, valve plates 9, l
3. Discharge ports 9b, 13b, discharge guide grooves 9c, 13c
, compression chamber PI, P2.

Claims (1)

【特許請求の範囲】[Claims] 1 ピストンの復動動作によりバルブプレート上の吸入
ポートを介して圧縮室へ冷媒ガスを吸入すると共に、ピ
ストンの往動動作により圧縮室からバルブプレート上の
吐出ポートを介して冷媒ガスを吐出するピストン式圧縮
機において、前記バルブプレートの圧縮室側の面上には
前記吐出ポートへ接続する吐出誘導溝を設けたピストン
式圧縮機における騒音低減構造。
1 A piston that sucks refrigerant gas into the compression chamber through the suction port on the valve plate by the backward movement of the piston, and discharges refrigerant gas from the compression chamber through the discharge port on the valve plate by the forward movement of the piston. A noise reduction structure in a piston type compressor, wherein a discharge guide groove connected to the discharge port is provided on the compression chamber side surface of the valve plate.
JP1343508A 1989-12-30 1989-12-30 Noise reduction structure in piston type compressor Expired - Fee Related JP3013370B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1343508A JP3013370B2 (en) 1989-12-30 1989-12-30 Noise reduction structure in piston type compressor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1343508A JP3013370B2 (en) 1989-12-30 1989-12-30 Noise reduction structure in piston type compressor

Publications (2)

Publication Number Publication Date
JPH03206377A true JPH03206377A (en) 1991-09-09
JP3013370B2 JP3013370B2 (en) 2000-02-28

Family

ID=18362058

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1343508A Expired - Fee Related JP3013370B2 (en) 1989-12-30 1989-12-30 Noise reduction structure in piston type compressor

Country Status (1)

Country Link
JP (1) JP3013370B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103671079A (en) * 2013-10-25 2014-03-26 厦门科际精密器材有限公司 Air pump with improved air tightness

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103671079A (en) * 2013-10-25 2014-03-26 厦门科际精密器材有限公司 Air pump with improved air tightness
CN103671079B (en) * 2013-10-25 2016-02-03 厦门科际精密器材有限公司 A kind of tightness improved type air pump

Also Published As

Publication number Publication date
JP3013370B2 (en) 2000-02-28

Similar Documents

Publication Publication Date Title
US5288212A (en) Cylinder head of hermetic reciprocating compressor
JPH087099Y2 (en) Noise reduction structure in compressor
KR100917449B1 (en) Compressor
JP2527097B2 (en) Piston compressor
JPH03206377A (en) Noise reducing construction for piston type compressor
JP3893352B2 (en) Cylinder assembly and hermetic compressor using the same
JP2006029322A (en) Hermetic compressor
ITTO20000615A1 (en) VALVE UNIT FOR A HERMETIC COMPRESSOR IN PARTICULAR FOR THE INPUT OF THE REFRIGERANT.
JPH0474547B2 (en)
JPH09280168A (en) Piston type compressor
JP2527057B2 (en) Noise reduction structure for piston type compressor
KR100455487B1 (en) Double acting compressor
JPS6338554B2 (en)
JP3783313B2 (en) Swash plate compressor
KR100719936B1 (en) Swash plate type compressor
JPH05231308A (en) Structure of seal in piston type compressor
KR100273739B1 (en) Valve device of a hermetic compressor
KR100922214B1 (en) Valve plate for hermetic compressor
JP3111683B2 (en) Rotary shaft seal structure of swash plate compressor
JP2578119Y2 (en) Hydraulic motor
JPH0618072Y2 (en) Discharge valve mechanism in compressor
JPH04339191A (en) Rotary compressor
JPH09273478A (en) Piston type compressor
JPH064378U (en) Valve structure in compressor
JPH02161182A (en) Suction valve mechanism for compressor

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees