JPH03206322A - Hydraulic driving gear for vehicle - Google Patents

Hydraulic driving gear for vehicle

Info

Publication number
JPH03206322A
JPH03206322A JP207290A JP207290A JPH03206322A JP H03206322 A JPH03206322 A JP H03206322A JP 207290 A JP207290 A JP 207290A JP 207290 A JP207290 A JP 207290A JP H03206322 A JPH03206322 A JP H03206322A
Authority
JP
Japan
Prior art keywords
hydraulic motor
pressure oil
hydraulic
flow path
oil
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP207290A
Other languages
Japanese (ja)
Inventor
Akio Takemi
竹味 明生
Kichiji Kajikawa
吉治 梶川
Taketo Mizutani
健人 水谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denso Corp
Original Assignee
NipponDenso Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NipponDenso Co Ltd filed Critical NipponDenso Co Ltd
Priority to JP207290A priority Critical patent/JPH03206322A/en
Publication of JPH03206322A publication Critical patent/JPH03206322A/en
Pending legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01PCOOLING OF MACHINES OR ENGINES IN GENERAL; COOLING OF INTERNAL-COMBUSTION ENGINES
    • F01P7/00Controlling of coolant flow
    • F01P7/02Controlling of coolant flow the coolant being cooling-air
    • F01P7/04Controlling of coolant flow the coolant being cooling-air by varying pump speed, e.g. by changing pump-drive gear ratio
    • F01P7/044Controlling of coolant flow the coolant being cooling-air by varying pump speed, e.g. by changing pump-drive gear ratio using hydraulic drives

Abstract

PURPOSE:To improve efficiency in utilizing pressure oil by driving each oil hydraulic motor in series or parallel connection in accordance with a room- cooling load, in a vehicle provided with the first oil hydraulic motor for driving a refrigerant compressor and the second oil hydraulic motor for driving a cooling fan. CONSTITUTION:The first oil hydraulic motor 3 for driving a refrigerant compressor 32 built in a room-cooling device 31, second oil hydraulic motor 4 for driving a radiator cooling fan 41 and the third oil hydraulic motor 5 for driving an alternator 51 are interposed halfway in a hydraulic circuit 7 in which delivery oil of an oil hydraulic pump 2 driven by an engine 21 is supplied. A flow path selector valve 82 is interposed in the hydraulic circuit 7 to make it possible to form the halfway of the hydraulic circuit 7 into the first route 8 for connecting in series the first and second oil hydraulic motors 3, 4 and the second route 9 for connecting in parallel the first and second oil hydraulic motors 3, 4. The flow path selector valve 82 is selected in accordance with a room cooling load to select the first route 8, when the room cooling load is in a large value, and the second route 9, when the room cooling load is in a small value.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は、油圧ポンプから吐出された圧油を利用して冷
媒圧縮機、冷却ファン等を駆動する車両用油圧駆動装置
に関する. [従来の技術コ 従来より、第6図に示すように、車両用エンジン101
により駆動される油圧ボンプ102から吐出される圧油
によって、冷房装M103の冷媒圧縮機104やラジエ
ー夕用冷却ファン105等の車両補機の駆動軸に連結さ
れた油圧モータ107、108やパワーステアリング装
置106を駆動する従来装置Aが提案されている.この
従来装置Aは、制御回路109によって油圧モータ10
7、108に導かれる圧油量と油圧モータ107、10
8を迂回してバイパス流路110、111に導かれる圧
油量とを調整して、冷媒圧縮機104および冷却ファン
105の回転数を制御していた. また、特開昭62−282110号公報においては、低
エンジン回転数域において油圧回路上で、1つのラジエ
ー夕用冷却ファンの駆動軸に連結された2つの油圧モー
タを直列に連結し、高エンジン回転数域において油圧回
路上で2つの油圧モータを並列に連結した従来装置Bが
提案されている。さらに、この従来装fiBは、制御回
路によって2つの油圧モータに導かれる圧油量と2つの
油圧モータを迂回してバイパス流路に導かれる圧油量と
を調整して、エンジン冷却水温に応じた冷却ファンの回
転数を制御していた. [発明が解決しようとする課題] しかるに、前述の従来装置Aおいては、各バイパス流路
110、111に導かれる圧油のエネルギーが有効に利
用されず無駄に消費されていた。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a hydraulic drive system for a vehicle that drives a refrigerant compressor, cooling fan, etc. using pressure oil discharged from a hydraulic pump. [Conventional Technology] Conventionally, as shown in FIG.
Hydraulic motors 107 and 108 connected to the drive shafts of vehicle auxiliary equipment such as the refrigerant compressor 104 of the cooling system M103 and the radiator cooling fan 105, as well as the power steering A conventional device A for driving the device 106 has been proposed. This conventional device A has a control circuit 109 that controls the hydraulic motor 10.
The amount of pressure oil led to 7, 108 and the hydraulic motor 107, 10
The rotational speed of the refrigerant compressor 104 and the cooling fan 105 was controlled by adjusting the amount of pressure oil guided to the bypass passages 110 and 111 by bypassing the refrigerant compressor 104 and the cooling fan 105. Furthermore, in Japanese Patent Application Laid-Open No. 62-282110, two hydraulic motors connected to the drive shaft of one radiator cooling fan are connected in series on the hydraulic circuit in the low engine speed range, and Conventional device B has been proposed in which two hydraulic motors are connected in parallel on a hydraulic circuit in the rotation speed range. Furthermore, this conventional FIB adjusts the amount of pressure oil guided to the two hydraulic motors by the control circuit and the amount of pressure oil guided to the bypass flow path bypassing the two hydraulic motors, depending on the engine cooling water temperature. The number of rotations of the cooling fan was controlled. [Problems to be Solved by the Invention] However, in the conventional device A described above, the energy of the pressure oil guided to each bypass flow path 110, 111 was not effectively used and was wasted.

また、前述の従来装1FBにおいては、エンジン回転数
が高エンジン回転数域に到達し、圧油量が必要以上に多
い場合、あるいはエンジン回転数が低エンジン回転数域
であってもエンジン冷却水が低温の場合に油圧ポンプか
ら吐出されたほとんどの圧油をバイパス流路に導いて捨
てていた.このため、装置のエネルギー効率が悪くなる
とともに、油温の上昇を招くので大きなオイルクーラが
必要であった。
In addition, in the conventional 1FB described above, when the engine speed reaches the high engine speed range and the amount of pressurized oil is larger than necessary, or even if the engine speed is in the low engine speed range, the engine cooling water When the temperature was low, most of the pressure oil discharged from the hydraulic pump was led to a bypass flow path and discarded. For this reason, the energy efficiency of the device deteriorates and the oil temperature increases, requiring a large oil cooler.

とくに、従来装置Aにおいては、冷媒圧縮機104を駆
動する油圧モータ107の必要動力が装置全体の動力の
大半を占めている。また、第3図に示すように、冷媒圧
縮機104の回転数N6が低下しても油圧モータの駆動
油圧ΔPcはあまり低下しないので、バイパス流路11
0を流れる圧油のエネルギーの損失が大きい。
In particular, in the conventional device A, the power required for the hydraulic motor 107 that drives the refrigerant compressor 104 accounts for most of the power of the entire device. Further, as shown in FIG. 3, even if the rotational speed N6 of the refrigerant compressor 104 decreases, the drive oil pressure ΔPc of the hydraulic motor does not decrease much, so the bypass flow path 11
There is a large loss of energy in the pressure oil flowing through 0.

ところで、冷房装置103に要求される冷房能力は、炎
天下放置した車両に乗り込んで急速に車室内温度を低下
させたい場合と春や秋の通常走行の場合とでは大きく異
なる.このため、冷媒圧縮機104の最低回転数は、最
高回転数の10%程度低下させる必要がある。
By the way, the cooling capacity required of the air conditioner 103 differs greatly depending on whether you want to rapidly lower the temperature inside the vehicle by getting into a vehicle that has been left out in the hot sun, or when you are driving normally in spring or autumn. Therefore, the minimum rotation speed of the refrigerant compressor 104 needs to be lowered by about 10% of the maximum rotation speed.

したがって、冷媒圧縮機104が最低回転数で駆動され
ている時には、油圧ボンプ102から吐出される圧油の
ほとんどがバイパス流路110を流れ、圧油のエネルギ
ーがほとんど利用されず、圧油のエネルギーの損失が非
常に大きい。
Therefore, when the refrigerant compressor 104 is driven at the lowest rotational speed, most of the pressure oil discharged from the hydraulic pump 102 flows through the bypass passage 110, and almost no energy of the pressure oil is used. loss is very large.

本発明は、圧油のエネルギーの損失を低減する車両用油
圧駆動装置の提供を目的とする。
An object of the present invention is to provide a hydraulic drive system for a vehicle that reduces energy loss of pressure oil.

[課題を解決するための手段コ 本発明の車両用油圧駆動装置は、エンジンにより駆動さ
れる油圧ボンブと、冷房装置に組込まれる冷媒圧縮機の
駆動軸に連結され、前記油圧ポンプから吐出された圧油
により駆動される第1油圧モータと、熱交換器に空気を
吹付ける冷却ファンの駆動軸に連結され、前記油圧ポン
プから吐出された圧油により駆動される第2油圧モータ
と、前記第1油圧モータと前記第2油圧モータとを直列
に連結して、前記油圧ボンブから吐出された圧油を前記
第1油圧モータに導いた後に前記第2油圧モータに導く
第1経路、および前記第1油圧モータと前記第2油圧モ
ータとを並列に連結して、前記油圧ポンプから吐出され
た圧油を前記第1油圧モータと前記第2油圧モータとに
別々に導く第2経路を有する油圧回路と、前記冷房装置
の冷房負荷を検出する検出手段を有し、該検出手段によ
り検出された前記冷房負荷に応じて前記第1経路と前記
第2経路とを切換える切換手段と、前記第2経路状態に
したときに、前記第1油圧モータと前記第2油圧モータ
とに導かれる圧油の流量配分を調整する調整手段とを備
えている。
[Means for Solving the Problems] A hydraulic drive system for a vehicle according to the present invention includes a hydraulic bomb driven by an engine and a drive shaft of a refrigerant compressor incorporated in an air conditioner, and a refrigerant compressor discharged from the hydraulic pump. a first hydraulic motor driven by pressure oil; a second hydraulic motor connected to a drive shaft of a cooling fan that blows air to the heat exchanger and driven by pressure oil discharged from the hydraulic pump; a first path in which the first hydraulic motor and the second hydraulic motor are connected in series, and the pressure oil discharged from the hydraulic bomb is guided to the first hydraulic motor and then to the second hydraulic motor; A hydraulic circuit having a second path in which a first hydraulic motor and a second hydraulic motor are connected in parallel to separately guide pressure oil discharged from the hydraulic pump to the first hydraulic motor and the second hydraulic motor. and a switching means having a detection means for detecting a cooling load of the cooling device and switching between the first route and the second route according to the cooling load detected by the detection means, and the second route. and adjusting means for adjusting the flow rate distribution of pressure oil guided to the first hydraulic motor and the second hydraulic motor when the hydraulic motor is in the state.

[作用] 冷房装置の冷房負荷が大きいときには、切換手段によっ
て第1経路に切換えて、冷媒圧縮機の駆動軸に連結され
た第1油圧モータに油圧ポンプから吐出された圧油をす
べて導いて、冷媒圧縮機を高速で回転させる。そして、
第1油圧モータを駆動した圧油を冷却ファンの駆動軸に
連結された第2油圧モータに導く。
[Operation] When the cooling load of the cooling device is large, the switching means switches to the first path and all the pressure oil discharged from the hydraulic pump is guided to the first hydraulic motor connected to the drive shaft of the refrigerant compressor. Rotate the refrigerant compressor at high speed. and,
The pressure oil that drove the first hydraulic motor is guided to a second hydraulic motor connected to the drive shaft of the cooling fan.

冷房装置の冷房負荷が小さいときには、切換手段によっ
て第2経路に切換えて、油圧ポンプから吐出された圧油
を第1油圧モータと第2油圧モータとに別々に導く.こ
の際、調整手段により両モータへの圧油の配分が調整さ
れる.以上によって、冷媒圧縮機を低速で回転させる。
When the cooling load of the cooling device is small, the switching means switches to the second path to guide the pressure oil discharged from the hydraulic pump to the first hydraulic motor and the second hydraulic motor separately. At this time, the distribution of pressure oil to both motors is adjusted by the adjustment means. Through the above steps, the refrigerant compressor is rotated at low speed.

このとき、従来装置では、第1油圧モータを迂回してい
た圧油によって第2油圧モータが駆動されるため、油圧
ポンプから吐出された圧油を無駄に捨てることなく、圧
油のエネルギーを有効に利用する。
At this time, in the conventional device, the second hydraulic motor is driven by the pressure oil that bypassed the first hydraulic motor, so the energy of the pressure oil is effectively used without wasting the pressure oil discharged from the hydraulic pump. Use it for.

[発明の効果] 油圧ポンプから吐出された圧油のエネルギー損失を低減
することができる。
[Effects of the Invention] Energy loss of the pressure oil discharged from the hydraulic pump can be reduced.

[実施例] 本発明の車両用油圧駆動装置を第1図ないし第5図に示
す一実施例に基づき説明する.第1図は本発明を採用し
た自動車用油圧駆動装置を示す. 自動車用油圧駆動装置1は、油圧ボンプ2、第1油圧モ
ータ3、第2油圧モータ4、第3油圧モータ5、パワー
ステアリング装置6および油圧回路7を備えている。
[Embodiment] A hydraulic drive system for a vehicle according to the present invention will be explained based on an embodiment shown in FIGS. 1 to 5. Figure 1 shows an automobile hydraulic drive system that adopts the present invention. The automobile hydraulic drive device 1 includes a hydraulic pump 2, a first hydraulic motor 3, a second hydraulic motor 4, a third hydraulic motor 5, a power steering device 6, and a hydraulic circuit 7.

油圧ポンプ2は、エンジン21により回転駆動され、オ
イルタンク22内の作動油を汲み上げて、その作動油を
油圧回路7内を循環するように圧送する。
The hydraulic pump 2 is rotationally driven by the engine 21, pumps up hydraulic oil in the oil tank 22, and pumps the hydraulic oil so that it circulates within the hydraulic circuit 7.

第1油圧モータ3は、冷房装置31に組込まれる冷媒圧
縮機32の駆動軸に連結され、油圧ボンプ2から吐出さ
れた圧油により回転駆動される.第2油圧モータ4は、
ラジエータ(図示せず)に空気を吹付ける冷却ファン4
1の駆動軸に連結され、第1油圧モータ3と同様に油圧
ポンプ2から吐出された圧油により回転駆動される。こ
の第2油圧モータ4は、第4図に示すように、第2油圧
モータ4の駆動油圧(前後差圧)ΔPtに応じて冷却フ
ァン41の回転数N,を変化させる.第3油圧モータ5
は、オルタネータ51の駆動軸に連結され、第1油圧モ
ータ3と同様に油圧ボンブ2から吐出された圧油により
回転駆動される.パワーステアリング装置6は、公知の
構造で油圧によって運転者の操舵力を軽減するものであ
る。
The first hydraulic motor 3 is connected to a drive shaft of a refrigerant compressor 32 built into the cooling device 31, and is rotationally driven by pressure oil discharged from the hydraulic pump 2. The second hydraulic motor 4 is
Cooling fan 4 blowing air to a radiator (not shown)
The first hydraulic motor 2 is connected to the first drive shaft, and is rotationally driven by the pressure oil discharged from the hydraulic pump 2, like the first hydraulic motor 3. As shown in FIG. 4, the second hydraulic motor 4 changes the rotational speed N of the cooling fan 41 in accordance with the drive oil pressure (differential pressure across the front and back) ΔPt of the second hydraulic motor 4. Third hydraulic motor 5
is connected to the drive shaft of the alternator 51, and similarly to the first hydraulic motor 3, is rotationally driven by the pressure oil discharged from the hydraulic bomb 2. The power steering device 6 has a known structure and uses hydraulic pressure to reduce the steering force of the driver.

油圧回路7は、圧油流路70〜79を有する。The hydraulic circuit 7 has pressure oil passages 70 to 79.

圧油流路70は、油圧ボンプ2の作動によりオイルタン
ク22から汲み上げられた作動油を油圧ボンブ2、容量
制御弁81および第3油圧モータ5を経て圧油流路71
、72、73に導く流路である。圧油流路71は、圧油
流路70から流入した圧油を第1油圧モータ3を経て流
路切換弁82に導く流路である。
The pressure oil passage 70 transports the hydraulic oil pumped up from the oil tank 22 by the operation of the hydraulic pump 2 through the hydraulic bomb 2, the capacity control valve 81, and the third hydraulic motor 5.
, 72, 73. The pressure oil flow path 71 is a flow path that guides the pressure oil that has flowed in from the pressure oil flow path 70 to the flow path switching valve 82 via the first hydraulic motor 3 .

圧油流路72は、圧油流路71より分岐点aで分岐して
流入した圧油を可変絞り弁83を経て流路切換弁82に
導く流路である。圧油流路73は、圧油流路70から流
入した圧油を第1油圧モータ3および第2油圧モータ4
を迂回させてパワステ優先弁84に導く流路である。圧
油流路74は、流路切換弁82から流入した圧油を集合
点bに導く流路である.圧油流路75は、流路切換弁8
2から流入した圧油を第2油圧モータ4を経て集合点b
に導く流路である.圧油流路76は、圧油流路75から
分岐した圧油を第2油圧モータ4を迂回させて、流量制
御弁85を経て集合点bに導く流路である。圧油流路7
7は、集合点bから流入した圧油をバワステ優先弁84
に導く流路である.圧油流路78は、パワステ優先弁8
4から流入した圧油をパワーステアリング装置6に導く
流路である.圧油流路79は、パワーステアリング装置
6から流入した圧油をオイルクーラ86を経てオイルタ
ンク22に導く流路である.また、油圧回路7は、圧油
流路71, 72、74〜76によって構戒される2つ
の経路を有する。それは、第1油圧モータと前記第2油
圧モータとを直列に連結する第1経路8、および第1油
圧モータ3と第2油圧モータ4とを並列に連結する第2
経路9である。
The pressure oil flow path 72 is a flow path that branches off from the pressure oil flow path 71 at a branch point a and guides the flow of pressure oil to the flow path switching valve 82 via the variable throttle valve 83 . The pressure oil passage 73 supplies the pressure oil flowing from the pressure oil passage 70 to the first hydraulic motor 3 and the second hydraulic motor 4.
This is a flow path that detours and leads to the power steering priority valve 84. The pressure oil flow path 74 is a flow path that guides the pressure oil flowing in from the flow path switching valve 82 to the collection point b. The pressure oil passage 75 is connected to the passage switching valve 8
The pressure oil flowing from 2 is passed through the second hydraulic motor 4 to the gathering point b.
It is a flow path that leads to. The pressure oil flow path 76 is a flow path that causes the pressure oil branched from the pressure oil flow path 75 to bypass the second hydraulic motor 4 and leads to the collection point b via the flow rate control valve 85. Pressure oil flow path 7
7 is a power steering priority valve 84 for the pressure oil flowing in from the gathering point b.
It is a flow path that leads to. The pressure oil passage 78 is connected to the power steering priority valve 8
This is a flow path that guides the pressure oil flowing in from 4 to the power steering device 6. The pressure oil flow path 79 is a flow path that guides the pressure oil flowing from the power steering device 6 to the oil tank 22 via the oil cooler 86. Further, the hydraulic circuit 7 has two paths defined by pressure oil channels 71, 72, 74-76. A first path 8 connects the first hydraulic motor and the second hydraulic motor in series, and a second path connects the first hydraulic motor 3 and the second hydraulic motor 4 in parallel.
This is route 9.

第1経路8は、流路切換弁82により切換えられ、分岐
点aで圧油流路70から流入した圧油を圧油流路71.
75、76を経て集合点bで圧油流路77に流出する経
路である. 第2経路9は、流路切換弁82により切換えられ、第1
油圧モータ3を通る一方の経路91と第2油圧モータ4
を通る他方の経路92とを有する.一方の経路91は、
分岐点aで圧油流路70から流入した圧油を圧油流路7
1.74を経て集合点bで圧油流路71に流出する経路
である.他方の経路92は、分岐点aで圧油流路70か
ら流入した圧油を圧油流路72、75、76を経て集合
点bで圧油流路77に流出する経路である。
The first path 8 is switched by a flow path switching valve 82 to transfer the pressure oil flowing from the pressure oil flow path 70 to the pressure oil flow path 71 at a branch point a.
75 and 76, and flows out to the pressure oil passage 77 at the collection point b. The second path 9 is switched by the flow path switching valve 82, and the
One path 91 passing through the hydraulic motor 3 and the second hydraulic motor 4
and the other route 92 passing through. One route 91 is
The pressure oil flowing from the pressure oil flow path 70 at the branch point a is transferred to the pressure oil flow path 7.
1.74 and flows out to the pressure oil flow path 71 at the collection point b. The other path 92 is a path in which the pressure oil that flows from the pressure oil flow path 70 at the branch point a flows out into the pressure oil flow path 77 at the collection point b via the pressure oil flow paths 72, 75, and 76.

容量制御弁81は、通電量に応じて開度を変更して、油
圧ボンプ2の吐出量を制御する弁である。
The capacity control valve 81 is a valve that controls the discharge amount of the hydraulic pump 2 by changing its opening depending on the amount of current supplied.

流路切換弁82は、本発明の切換手段の一部であって、
第1経路8と第2経路9とを切換える弁である.この流
路切換弁82は、通電されるとスプリング87のばね力
に打ち勝って油圧回路7を第l経路8から第2経路9に
切換える.また、流路切換弁82は、通電が停止される
とスプリング87のばわ力により油圧回路7を第2経路
9から第1経路8に切換える. 可変絞り弁83は、本発明の調整手段であって、通電量
に応じて圧油流路72の開口度合を変更して分岐点aと
集合点bとの差圧を調整する弁である。
The flow path switching valve 82 is part of the switching means of the present invention,
This is a valve that switches between the first path 8 and the second path 9. When the flow path switching valve 82 is energized, it overcomes the spring force of the spring 87 and switches the hydraulic circuit 7 from the l-th path 8 to the second path 9. Further, the flow path switching valve 82 switches the hydraulic circuit 7 from the second path 9 to the first path 8 by the elastic force of the spring 87 when the energization is stopped. The variable throttle valve 83 is an adjusting means of the present invention, and is a valve that adjusts the differential pressure between the branch point a and the gathering point b by changing the degree of opening of the pressure oil flow path 72 according to the amount of energization.

つまり、可変絞り弁83は、第1油圧モータ3の駆動油
圧ΔPcと減圧量ΔP.および第2油圧モータ4の駆動
油圧ΔP,を合計したものとが等しくなるように開口度
合を調節して、圧油流路71に流入する圧油量と圧油流
路72に流入する圧油量との配分を変化させる. パワステ優先弁84は、圧油流路71, 72、74〜
76と圧油流路73とを切換える弁である。このパワス
テ優先弁84は、運転者の操舵により圧油流路78内の
油圧が設定値以上に上昇して、圧油路88内のパイロッ
ト圧が所定値以上に上昇した際に、スプリング89のば
ね力に打ち勝って圧油流路73を圧油が流れるように切
換える. 流量制御弁85は、通電量に応じて開弁圧すなわち第2
駆動モータ4の駆動油圧ΔPfを変更することにより第
2油圧モータ4へ流入する圧油量を制御する。
In other words, the variable throttle valve 83 controls the driving pressure ΔPc of the first hydraulic motor 3 and the pressure reduction amount ΔP. The amount of pressure oil flowing into the pressure oil flow path 71 and the amount of pressure oil flowing into the pressure oil flow path 72 are adjusted so that the sum of the drive oil pressure ΔP of the second hydraulic motor 4 becomes equal. Change the amount and distribution. The power steering priority valve 84 is connected to the pressure oil passages 71, 72, 74 to
76 and the pressure oil flow path 73. This power steering priority valve 84 is activated by a spring 89 when the oil pressure in the pressure oil passage 78 increases to a predetermined value or more due to the driver's steering and the pilot pressure in the pressure oil passage 88 increases to a predetermined value or more. Overcoming the spring force, the pressure oil passage 73 is switched so that the pressure oil flows. The flow rate control valve 85 has a valve opening pressure, that is, a second
By changing the drive oil pressure ΔPf of the drive motor 4, the amount of pressure oil flowing into the second hydraulic motor 4 is controlled.

これらの容量制御弁8L流路切換弁82、可変絞り弁8
3および流量制御弁85は、制御回路10によって通電
制御される. この制御回路10は、本発明の切換手段の一部であって
、空調コントロールパネル11,内気センサ12、外気
センサ13、日射センサ14および水温センサ15を具
備している。また、制御回路10は、内気センサ12、
外気センサ13、日射センサ14および水温センサ15
から入力した電気信号に基づいて冷房装置31の冷房負
荷を計算する. 空調コントロールパネル11は、本発明の検出手段であ
って、車室内の温度を設定する室温設定スイッチ(図示
せず)およびブロワ(図示せず)の送風量を調整するプ
ロワスイッチ(図示せず)等が配設されている。内気セ
ンサ12は、本発明の検出手段であって、検出した車室
内の温度を検出して、その検出値を制御回路10に送る
.外気センサ13は、本発明の検出手段であって、検出
した車室外の温度を電気信号に変換して、その電気信号
を制御回路10に送る。日射センサ14は、本発明の検
出手段であって、検出した日射量を電気信号に変換して
、その電気信号を制御回路10に送る.水温センサ15
は、検出したエンジン冷却水温を電気信号に変換して、
その電気信号を制御回路10に送る.第2図は制御回路
10の主要な作動を表すフローチャートである。
These capacity control valves 8L flow path switching valve 82, variable throttle valve 8
3 and the flow rate control valve 85 are energized and controlled by the control circuit 10. This control circuit 10 is part of the switching means of the present invention, and includes an air conditioning control panel 11, an inside air sensor 12, an outside air sensor 13, a solar radiation sensor 14, and a water temperature sensor 15. The control circuit 10 also includes an internal air sensor 12,
Outside air sensor 13, solar radiation sensor 14, and water temperature sensor 15
The cooling load of the cooling device 31 is calculated based on the electrical signal input from the air conditioner. The air conditioning control panel 11 is a detection means of the present invention, and includes a room temperature setting switch (not shown) that sets the temperature inside the vehicle and a blower switch (not shown) that adjusts the air flow rate of a blower (not shown). ) etc. are arranged. The inside air sensor 12 is a detection means of the present invention, and detects the detected temperature inside the vehicle interior, and sends the detected value to the control circuit 10. The outside air sensor 13 is a detection means of the present invention, and converts the detected temperature outside the vehicle interior into an electrical signal, and sends the electrical signal to the control circuit 10. The solar radiation sensor 14 is a detection means of the present invention, and converts the detected amount of solar radiation into an electrical signal and sends the electrical signal to the control circuit 10. Water temperature sensor 15
converts the detected engine coolant temperature into an electrical signal,
The electrical signal is sent to the control circuit 10. FIG. 2 is a flowchart showing the main operations of the control circuit 10.

初めに、ステップS1で、内気センサ12、外気センサ
13、日射センサ14および水温センサ15から電気信
号を入力するとともに、空調コントロールパネル11の
室温設定スイッチ等から設定信号を入力する. ステップS2では、ステップS1で入力した各信号に基
づいて冷房装置31の冷房負荷を計算する。
First, in step S1, electrical signals are input from the inside air sensor 12, outside air sensor 13, solar radiation sensor 14, and water temperature sensor 15, and setting signals are input from the room temperature setting switch of the air conditioning control panel 11, etc. In step S2, the cooling load of the cooling device 31 is calculated based on each signal input in step S1.

ステップS3では、冷房負荷が大きいか否かを判定する
.例えば、必要吹出温度T.。≦10℃の場合に冷房負
荷大であると判定する. なお、必要吹出温度T.oは次式で求められる.T.。
In step S3, it is determined whether the cooling load is large. For example, the required blowing temperature T. . If the temperature is ≦10℃, it is determined that the cooling load is large. In addition, the required blowing temperature T. o is calculated using the following formula. T. .

=K,x’[’,−K,XT, −K.XT.,−Kl,XQ.+C T.:設定温度  T1:車室内温度 T.1車室外温度 Q,:日射量 K.、K,.、K.、K, 、C :定数ステップS3
の判定結果がYESの場合(冷房負荷大)には、ステッ
プS4へ進み、流路切換弁82の通電を停止( OFF
)する. ステップS5では、冷房負荷の大きさに応じて容量制御
弁81の通電量を変化させる。
=K, x'[', -K, XT, -K. XT. , -Kl,XQ. +C T. : Set temperature T1: Vehicle interior temperature T. 1 Vehicle outdoor temperature Q,: Solar radiation K. ,K,. , K. ,K, ,C: constant step S3
If the determination result is YES (cooling load is large), the process advances to step S4, and the flow path switching valve 82 is de-energized (OFF
)do. In step S5, the amount of electricity supplied to the capacity control valve 81 is changed depending on the magnitude of the cooling load.

ステップS6では、冷房負荷の大きさやエンジン冷却水
温に応じて冷却ファン41の回転数を制御する。すなわ
ち、冷房負荷の大きさやエンジン冷却水温に応じて第2
油圧モータ4の駆動油圧ΔP,を変化させるよう流量制
御弁85の通電量を変化させる。
In step S6, the rotation speed of the cooling fan 41 is controlled according to the size of the cooling load and the engine coolant temperature. In other words, the second
The amount of current supplied to the flow rate control valve 85 is changed so as to change the drive oil pressure ΔP of the hydraulic motor 4.

一方、ステップS3の判定結果がNOの場合(冷房負荷
小)には、ステップS7へ進み、流路切換弁82を通電
(ON〉する。
On the other hand, if the determination result in step S3 is NO (cooling load is small), the process proceeds to step S7, and the flow path switching valve 82 is energized (ON>).

ステップS8では、ステップS6と同様に、冷房負荷の
大きさやエンジン冷却水温に応じて第2油圧モータ4の
駆動油圧ΔPtを変化させるよう流量制御弁85の通電
量を変化させる。
In step S8, similarly to step S6, the amount of current applied to the flow rate control valve 85 is changed so as to change the drive oil pressure ΔPt of the second hydraulic motor 4 according to the size of the cooling load and the engine cooling water temperature.

ステップS9では、第1油圧モータ3の駆動油圧ΔPc
と可変絞り弁83の減圧量ΔP1および第2油圧モータ
4の駆動油圧ΔP,を合計したものとが等しくなるよう
に、可変絞り弁83の通電量を変化させる。
In step S9, the drive oil pressure ΔPc of the first hydraulic motor 3
The amount of current applied to the variable throttle valve 83 is changed so that the sum of the pressure reduction amount ΔP1 of the variable throttle valve 83 and the drive oil pressure ΔP of the second hydraulic motor 4 becomes equal.

ステップS10では、冷房負荷の大きさと冷却ファン4
1の回転数N,に応じて容量制御弁81の通電量を変化
させる。すなわち、冷房負荷の大きさと第2油圧モータ
4の駆動油圧ΔPtに応じて容量制御弁81の通電量を
変化させる。
In step S10, the size of the cooling load and the cooling fan 4 are determined.
The amount of current supplied to the capacity control valve 81 is changed depending on the rotation speed N of the engine. That is, the amount of current supplied to the capacity control valve 81 is changed depending on the magnitude of the cooling load and the drive oil pressure ΔPt of the second hydraulic motor 4.

ステップS6、ステップS10の制御の後は、再びステ
ップS1へ戻って制御を繰り返す。
After the control in steps S6 and S10, the process returns to step S1 again to repeat the control.

本実施例の自動車用油圧駆動装置1の作用を第1図ない
し第4図に基づき説明する。
The operation of the automobile hydraulic drive system 1 of this embodiment will be explained based on FIGS. 1 to 4.

内気センサ12、外気センサ13、日射センサ14およ
び水温センサ15、および空調コントロールパネル11
の室温設定スイッチ等から入力した信号に基づいて冷房
装fi31の冷房負荷を計算する。
Inside air sensor 12, outside air sensor 13, solar radiation sensor 14, water temperature sensor 15, and air conditioning control panel 11
The cooling load of the cooling system fi31 is calculated based on the signal input from the room temperature setting switch or the like.

計算した冷房負荷が大きい場合には、流路切換弁82の
通電を停止することによって、油圧回路7を第1経路8
に切換える。
If the calculated cooling load is large, the hydraulic circuit 7 is switched to the first path 8 by stopping the energization of the flow path switching valve 82.
Switch to

したがって、油圧ボンプ2から吐出された全ての圧油は
、第3油圧モータ5に導かれた後に第1油圧モータ3に
導かれる。そして、第1油圧モータ3から流出した圧油
は、流路切換弁82を経て流量制御弁85によって第2
油圧モータ4に流入する圧油量が制御される, このため、冷媒圧縮機32が高速で運転されるため、冷
房装置31によって車室内が急速に冷房される。
Therefore, all the pressure oil discharged from the hydraulic pump 2 is guided to the third hydraulic motor 5 and then to the first hydraulic motor 3. Then, the pressure oil flowing out from the first hydraulic motor 3 passes through the flow path switching valve 82 and is passed through the flow control valve 85 to the second
The amount of pressurized oil flowing into the hydraulic motor 4 is controlled. Therefore, the refrigerant compressor 32 is operated at high speed, so that the interior of the vehicle is rapidly cooled by the cooling device 31.

このとき、冷却ファン41の回転数は、冷房負荷の大き
さやエンジン冷却水温に応じた所定の回転数に制御され
る.すなわち、第4図のグラフに示すように、第2油圧
モータ4に所定の駆動油圧を与えれば冷却ファン41の
回転数が決まる。このため、流量制御弁85の通電量を
制御することによって、所定の駆動油圧に対応する圧油
量よりも多い流量だけ圧油流路76に導いて第2油圧モ
ータ4から迂回させる。
At this time, the rotation speed of the cooling fan 41 is controlled to a predetermined rotation speed depending on the size of the cooling load and the engine coolant temperature. That is, as shown in the graph of FIG. 4, the number of rotations of the cooling fan 41 is determined by applying a predetermined drive oil pressure to the second hydraulic motor 4. Therefore, by controlling the amount of current supplied to the flow rate control valve 85, only a flow amount larger than the amount of pressure oil corresponding to the predetermined drive oil pressure is guided to the pressure oil passage 76 and detoured from the second hydraulic motor 4.

一方、冷房装置31の冷房負荷が小さい場合には、流路
切換弁82を通電するすることによって、油圧回路7を
第2経路9に切換える. したがって、油圧ボンプ2から吐出された圧油は、第3
油圧モータ5に導かれた後に分岐点aで分岐して第1油
圧モータ3と第2油圧モータ4および圧油流路76に別
々に導かれる.このとき、可変絞り弁83の通電量を制
御することによって、分岐点aと集合点bとの差圧を調
整して、第1油圧モータ3に流入する圧油量と圧油流路
75に流入する圧油量との配分を調節する。
On the other hand, when the cooling load of the cooling device 31 is small, the hydraulic circuit 7 is switched to the second path 9 by energizing the flow path switching valve 82. Therefore, the pressure oil discharged from the hydraulic pump 2 is
After being guided to the hydraulic motor 5, it branches at a branch point a and is guided separately to the first hydraulic motor 3, the second hydraulic motor 4, and the pressure oil passage 76. At this time, by controlling the energization amount of the variable throttle valve 83, the differential pressure between the branch point a and the gathering point b is adjusted, and the amount of pressure oil flowing into the first hydraulic motor 3 and the pressure oil flow path 75 are adjusted. Adjust the distribution with the amount of pressure oil flowing in.

このため、冷媒圧縮機32が低速で運転されるため、冷
房装fi31によって車室内が緩やかに冷房される。
Therefore, since the refrigerant compressor 32 is operated at low speed, the interior of the vehicle is slowly cooled by the air conditioner fi31.

また、圧油流路75に流入する圧油量を多くとれば、冷
媒圧縮機32を低速で運転しても、パワーステアリング
装置6に操舵フィーリングを満足させるだけの十分な圧
油量を導くことができる.さらに、第1油圧モータ3と
第2油圧モータ4とに必要な圧油量の合計に等しくなる
ように、冷房負荷の大きさと冷却ファン41の回転数に
応じて容量制御弁81の通電量を制御しても良い.すな
わち、第1油圧モータ3に供給される圧油量Qcと第2
油圧モータ4に供給される圧油量Qfとを第5図のグラ
フに示すように調節することによって圧油流路76を流
れる圧油量を04! /sinとする。
In addition, by increasing the amount of pressure oil flowing into the pressure oil flow path 75, even if the refrigerant compressor 32 is operated at low speed, a sufficient amount of pressure oil is introduced to the power steering device 6 to satisfy the steering feeling. be able to. Further, the amount of current supplied to the capacity control valve 81 is adjusted according to the size of the cooling load and the rotation speed of the cooling fan 41 so that the amount of pressure oil required for the first hydraulic motor 3 and the second hydraulic motor 4 is equal to the total amount. It may be controlled. That is, the amount of pressure oil Qc supplied to the first hydraulic motor 3 and the second
By adjusting the amount of pressure oil Qf supplied to the hydraulic motor 4 as shown in the graph of FIG. 5, the amount of pressure oil flowing through the pressure oil flow path 76 can be adjusted to 04! /sin.

このため、圧油流路76を圧油が流れることによる圧油
のエネルギー損失をなくすことができる。
Therefore, energy loss of the pressure oil due to the pressure oil flowing through the pressure oil passage 76 can be eliminated.

したがって、圧油のエネルギー損失は、可変絞り弁83
で発生するものだけとなる。しかも、可変絞り弁83で
発生する圧油のエネルギー損失は、第1油圧モータ3の
駆動油圧ΔPcと第2油圧モータ4の駆動油圧ΔP,と
の差圧ΔPに圧油流路72の圧油量を掛けたものである
から、従来装fAのバイパス流路108におけるエネル
ギー損失より著しく小さくすることができる。
Therefore, the energy loss of the pressure oil is caused by the variable throttle valve 83
Only those that occur in Moreover, the energy loss of the pressure oil generated in the variable throttle valve 83 is caused by the pressure difference ΔP between the drive oil pressure ΔPc of the first hydraulic motor 3 and the drive oil pressure ΔP of the second hydraulic motor 4, and the pressure oil in the pressure oil passage 72. Since the energy loss is multiplied by the amount, the energy loss can be significantly smaller than the energy loss in the bypass flow path 108 of the conventional fA.

例えば、第1油圧モータ3に必要な圧油量をQ. = 
24! /win 、第1油圧モータ3の駆動油圧ΔP
c=10MPa、第2油圧モータ4に必要な圧油量Qt
 = 64! /win 、第2油圧モータ4の駆動油
圧ΔP,= 5MPa、パワーステアリング装置6の最
小圧油量Q.=8jl/引nとする。
For example, Q. =
24! /win, drive oil pressure ΔP of the first hydraulic motor 3
c=10MPa, amount of pressure oil Qt required for the second hydraulic motor 4
= 64! /win, drive oil pressure ΔP of the second hydraulic motor 4, = 5 MPa, minimum pressure oil amount Q. of the power steering device 6. =8jl/min.

この場合、従来装置Aでは、油圧ポンプの吐出量Qp−
811 /sin 、吐出圧力P. =15MPaとな
り、損失動力L0は次式のように算出される。
In this case, in the conventional device A, the discharge amount Qp-
811/sin, discharge pressure P. = 15 MPa, and the loss power L0 is calculated as shown in the following equation.

Lo = {10X(8−21+5X(8−6)l /
60= 1.2kW 一方、本実施例では、油圧ポンプの吐出量Q,81/s
in 、吐出圧力P.=10MPaとなり、損失動力L
.は次式のように算出される。
Lo = {10X(8-21+5X(8-6)l/
60 = 1.2kW On the other hand, in this example, the discharge amount of the hydraulic pump Q, 81/s
in, discharge pressure P. = 10MPa, and the power loss L
.. is calculated as follows.

L, = ( (10−5)X 6) /60= 0.
5kW したがって、油圧ポンプ2から吐出される圧油のエネル
ギー損失を著しく低減できる。
L, = ((10-5)X 6) /60= 0.
5 kW Therefore, the energy loss of the pressure oil discharged from the hydraulic pump 2 can be significantly reduced.

(変形例) 本実施例では、冷房負荷が小さい時に第1油圧モータと
第2油圧モータとを並列に連結したが、冷媒圧縮機の起
動時に第1油圧モータと第2油圧モータとを並列に連結
して、起動時のサージ圧を低減し、油圧駆動装置の最高
油圧を低下するようにしても良い。この方法おいて、第
1油圧モータと第2油圧モータとを並列に連結して、可
変絞り弁を徐々に絞っていくとサージ圧が小さくなる。
(Modification) In this embodiment, the first hydraulic motor and the second hydraulic motor are connected in parallel when the cooling load is small, but the first hydraulic motor and the second hydraulic motor are connected in parallel when the refrigerant compressor is started. They may be connected to reduce the surge pressure at startup and lower the maximum oil pressure of the hydraulic drive device. In this method, when the first hydraulic motor and the second hydraulic motor are connected in parallel and the variable throttle valve is gradually throttled, the surge pressure is reduced.

また、冷媒圧縮機の起動完了の判定は、冷媒圧縮機の回
転数センサまたは冷媒の圧カセンサ等により行う。
Further, the completion of startup of the refrigerant compressor is determined by a rotation speed sensor of the refrigerant compressor, a refrigerant pressure sensor, or the like.

本実施例では、エンジン作動中に冷房装置が動作を停止
することはないが、圧油流路71に電磁弁を配設して運
転スイッチがオフの時に冷房装置の動作が停止するよう
にしても良い。
In this embodiment, the cooling system does not stop operating while the engine is running, but a solenoid valve is provided in the pressure oil passage 71 so that the cooling system stops operating when the operation switch is turned off. Also good.

本実施例では、冷房負荷の大小を判定するために必要吹
出温度を計算したが、車室内温度と設定温度との温度差
、車室外温度の高低、日射量などまたは組合わせにより
判定しても良い。
In this example, the necessary blowout temperature was calculated in order to determine the size of the cooling load, but it can also be determined based on the temperature difference between the vehicle interior temperature and the set temperature, the height of the vehicle exterior temperature, the amount of solar radiation, etc., or a combination of the following. good.

本実施例では、流路切換弁を通電すると第2経路に切換
えたが、流路切換弁を通電すると第1経路に切換えても
良い。
In this embodiment, when the flow path switching valve is energized, the path is switched to the second path, but when the flow path switching valve is energized, the path is switched to the first path.

本実施例では、冷却ファンをラジエー夕用冷却ファンに
使用したが、冷房装置の冷媒凝縮器その他の熱交換器に
空気を吹付ける冷却ファンに使用しても良い.
In this embodiment, the cooling fan is used as a radiator cooling fan, but it may also be used as a cooling fan that blows air to a refrigerant condenser or other heat exchanger of an air conditioner.

【図面の簡単な説明】[Brief explanation of drawings]

第1図ないし第5図は本発明の一実施例を示す。 第1図は自動車用油圧駆動装置を示す概略図、第2図は
制御回路の主要な作動を表すフローチャートである。 第3図は第l油圧モータの駆動油圧と冷媒圧縮機の回転
数との関係を表すグラフ、第4図は第2油圧モータの駆
動油圧と冷却ファンの回転数との関係を表すグラフ、第
5図は圧油量と冷房負荷との関係を表すグラフである。 第6図は従来装置Aを示す概略図である。 図中 1・・・自動車用油圧駆動装置 2・・・油圧ボンプ3
・・・第1油圧モータ 4・・・第2油圧モータ 7・
・・油圧回路 8・・・第1経路 9・・・第2経路 
10・・・制御回路(切換手段)82・・・流路切換弁
(切換手段)83・・・可変絞り弁(調整手段)
1 to 5 show one embodiment of the present invention. FIG. 1 is a schematic diagram showing a hydraulic drive system for an automobile, and FIG. 2 is a flowchart showing the main operations of the control circuit. Fig. 3 is a graph showing the relationship between the drive oil pressure of the first hydraulic motor and the rotation speed of the refrigerant compressor, and Fig. 4 is a graph showing the relationship between the drive oil pressure of the second hydraulic motor and the rotation speed of the cooling fan. FIG. 5 is a graph showing the relationship between the amount of pressurized oil and the cooling load. FIG. 6 is a schematic diagram showing a conventional device A. In the diagram: 1...Automotive hydraulic drive system 2...Hydraulic pump 3
...First hydraulic motor 4...Second hydraulic motor 7.
...Hydraulic circuit 8...First path 9...Second path
10... Control circuit (switching means) 82... Flow path switching valve (switching means) 83... Variable throttle valve (adjusting means)

Claims (1)

【特許請求の範囲】 1)(a)エンジンにより駆動される油圧ポンプと、(
b)冷房装置に組込まれる冷媒圧縮機の駆動軸に連結さ
れ、前記油圧ポンプから吐出された圧油により駆動され
る第1油圧モータと、 (c)熱交換器に空気を吹付ける冷却ファンの駆動軸に
連結され、前記油圧ポンプから吐出された圧油により駆
動される第2油圧モータと、 (d)前記第1油圧モータと前記第2油圧モータとを直
列に連結して、前記油圧ポンプから吐出された圧油を前
記第1油圧モータに導いた後に前記第2油圧モータに導
く第1経路、 および前記第1油圧モータと前記第2油圧モータとを並
列に連結して、前記油圧ポンプから吐出された圧油を前
記第1油圧モータと前記第2油圧モータとに別々に導く
第2経路 を有する油圧回路と、 (e)前記冷房装置の冷房負荷を検出する検出手段を有
し、 該検出手段により検出された前記冷房負荷に応じて前記
第1経路と前記第2経路とを切換える切換手段と、 (f)前記第2経路状態にしたときに、前記第1油圧モ
ータと前記第2油圧モータとに導かれる圧油の流量配分
を調整する調整手段と を備えた車両用油圧駆動装置。
[Claims] 1) (a) a hydraulic pump driven by an engine;
b) a first hydraulic motor connected to a drive shaft of a refrigerant compressor incorporated in the cooling device and driven by pressure oil discharged from the hydraulic pump; and (c) a cooling fan that blows air to the heat exchanger. a second hydraulic motor connected to a drive shaft and driven by pressure oil discharged from the hydraulic pump; (d) the first hydraulic motor and the second hydraulic motor are connected in series to form the hydraulic pump; a first path that guides pressure oil discharged from the first hydraulic motor to the second hydraulic motor; and a first path that connects the first hydraulic motor and the second hydraulic motor in parallel to the hydraulic pump. a hydraulic circuit having a second path that separately guides pressure oil discharged from the first hydraulic motor and the second hydraulic motor; (e) a detection means for detecting a cooling load of the cooling device; (f) switching means for switching between the first path and the second path in accordance with the cooling load detected by the detection means; 2. A hydraulic drive device for a vehicle, comprising: two hydraulic motors; and an adjusting means for adjusting the flow rate distribution of pressure oil guided to the two hydraulic motors.
JP207290A 1990-01-08 1990-01-08 Hydraulic driving gear for vehicle Pending JPH03206322A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP207290A JPH03206322A (en) 1990-01-08 1990-01-08 Hydraulic driving gear for vehicle

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP207290A JPH03206322A (en) 1990-01-08 1990-01-08 Hydraulic driving gear for vehicle

Publications (1)

Publication Number Publication Date
JPH03206322A true JPH03206322A (en) 1991-09-09

Family

ID=11519139

Family Applications (1)

Application Number Title Priority Date Filing Date
JP207290A Pending JPH03206322A (en) 1990-01-08 1990-01-08 Hydraulic driving gear for vehicle

Country Status (1)

Country Link
JP (1) JPH03206322A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009138884A (en) * 2007-12-10 2009-06-25 Kobelco Cranes Co Ltd Blowing apparatus for coolers
CN105114165A (en) * 2015-07-27 2015-12-02 广西柳工机械股份有限公司 Heat dissipating system of mining dump vehicle

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009138884A (en) * 2007-12-10 2009-06-25 Kobelco Cranes Co Ltd Blowing apparatus for coolers
CN105114165A (en) * 2015-07-27 2015-12-02 广西柳工机械股份有限公司 Heat dissipating system of mining dump vehicle
CN105114165B (en) * 2015-07-27 2017-10-03 广西柳工机械股份有限公司 Quarry tipper cooling system

Similar Documents

Publication Publication Date Title
US6802283B2 (en) Engine cooling system with variable speed fan
US6668766B1 (en) Vehicle engine cooling system with variable speed water pump
US20220390148A1 (en) Heat pump and water heater
JP3237187B2 (en) Air conditioner
US5333679A (en) Climate control system for motor vehicle
US20070157647A1 (en) Cooling system, particularly for a motor vehicle, and method for cooling a heat source
CN111716987A (en) Thermal system, electric or hybrid vehicle and method for operating a thermal system
JPS58108361A (en) Controller for air conditioner for car
JP2002276364A (en) Cooling system for hybrid electric vehicle
US6655164B2 (en) Combined heating and cooling system
US5477700A (en) Air conditioning system which can be used in an electric car
EP0161902A2 (en) Refrigeration circuit
EP3770010A1 (en) Thermal regulation system provided with peltier cell for electric drive vehicles
JPH03206322A (en) Hydraulic driving gear for vehicle
WO2023051746A1 (en) Thermal management system and control method therefor
KR20230015764A (en) Integrated thermal management circuit for vehicle
JPS59122863A (en) Refrigerator for container
KR20220122391A (en) Method for controlling heating of a vehicle thermal management system
KR20220139757A (en) Method for controlling heating of a vehicle thermal management system
JP3686211B2 (en) Air conditioner for automobile
JP3339040B2 (en) Vehicle air conditioner
JPH035246A (en) Hydraulic driving device for vehicle
JPH09317465A (en) Hydraulic drive for cooling fan
KR100853175B1 (en) Cooling and heating system for vehicle
KR100269668B1 (en) Heat pump type air conditioning system for automotive vehicle