JPH03205796A - Transition type plasma torch - Google Patents

Transition type plasma torch

Info

Publication number
JPH03205796A
JPH03205796A JP2000165A JP16590A JPH03205796A JP H03205796 A JPH03205796 A JP H03205796A JP 2000165 A JP2000165 A JP 2000165A JP 16590 A JP16590 A JP 16590A JP H03205796 A JPH03205796 A JP H03205796A
Authority
JP
Japan
Prior art keywords
plasma
magnetic field
torch
cathode
nozzle
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2000165A
Other languages
Japanese (ja)
Inventor
Kazunari Inokuchi
井ノ口 一成
Akio Nagamune
章生 長棟
Isamu Komine
小峯 勇
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Engineering Corp
Original Assignee
NKK Corp
Nippon Kokan Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NKK Corp, Nippon Kokan Ltd filed Critical NKK Corp
Priority to JP2000165A priority Critical patent/JPH03205796A/en
Priority to CA002048654A priority patent/CA2048654A1/en
Priority to PCT/JP1990/001530 priority patent/WO1991010342A1/en
Priority to EP91900350A priority patent/EP0461263B1/en
Priority to DE69032205T priority patent/DE69032205T2/en
Priority to AT91900350T priority patent/ATE164721T1/en
Publication of JPH03205796A publication Critical patent/JPH03205796A/en
Pending legal-status Critical Current

Links

Landscapes

  • Plasma Technology (AREA)
  • Discharge Heating (AREA)

Abstract

PURPOSE:To improve the controllability of a plasma jet, miniaturize a plasma torch, and reduce the breakage of a nozzle or the like by applying the rotary magnetic field to a plasma column from the outside. CONSTITUTION:Multiple pairs of coils 10 are arranged into the structure like the stator winding of an inductor toward a carbon black anode from the tip of a cathode 2 on the outside of a nozzle 3 so that the rotary magnetic field symmetrical with respect to a torch shaft. Multiple pairs of coils 12 are arranged centering the torch shaft, currents with phase differences are fed to them, and the rotary magnetic field is applied to a plasma column. The rotating speed of the rotary magnetic field is controlled by an inverter 11 via the coils 10 and a rotary magnetic field generating power source 12. The high controllability of the plasma column is obtained, a plasma torch is miniaturized, and the operating cost can be reduced.

Description

【発明の詳細な説明】 [産業上の利用分野] この発明は,プラズマジェットを発生させて加熱・溶解
・反応等に用いられる移行式プラズマトーチに関するも
のである. 熱プラズマは超高温、高エネルギー源としてカU熱・溶
解を初め,反応や表面処理等に広く応用されている.特
に,熱プラズマはエネルギー密度が高いので、設備がコ
ンパクトになり,又雰囲気をプラズマ作動ガスによって
自由に制御できることや電流とプラズマ長さを制御する
ことにより投入電力を自在にかつ応答性良く調整できる
特徴がある.これらの特徴を利用して近年製鋼プロセス
においては,レ一ドルやタンデッシュの中の溶鋼をプラ
ズマにより加熱して溶鋼温度を制御したり,精錬反応を
行うことが検討されている.これらの用途において,加
熱効率の点から加熱対象物を対極とする移行式プラズマ
トーチが用いられている. [従来の技術] 従来の移行式プラズマトーチでは,第5図に示すように
,指向性や安定性の観点から,プラズマ作動ガスのトー
チの軸方向の流速を高めて安定な直線状のプラズマジェ
ットを形成するように作られていたが,出願人は、プラ
ズマの本来持っている磁気不安定性を逆に利用した移行
式プラズマトーチを発明し,先に特願平1−28735
号として出願した.この移行式プラズマトーチでは、プ
ラズマジェットを流体的に不安定にして高速に旋回させ
かつ加熱対象物に向かって放射状に広がったプラズマを
形成させ得る.この方法によれば,実質プラズマを増大
させるだけでなくプラズマ柱に対する冷却作用も増し,
発生電圧の増加,加熱面積の増大等の効果が得られる.
かかるプラズマを形成させる方法としては、プラズマ作
動ガスにトーチ軸を中心とする円周方向の速度成分を与
える方法や外部よりプラズマ柱に磁界を印加する方法が
ある. 後者は、印加される磁界とプラズマ柱に流れる電流との
鎖交により生じる電磁力により、プラズマ柱を旋回又は
反転させ磁気的不安定を引き起こすとともにこれを促進
するものである,この方法によれば,上記のプラズマ作
動ガスによる方法に比べてガス消費量が少なくて済み,
制御性に富むという点等で有利である. 具体的には、トーチ軸に対して回転対称な直流磁界を印
加する方法(特願平1−121483)や,陰極酸化防
止も併せて可能にする交流磁界を印加する方法がある. [発明が解決しようとする課題J ところが、プラズマジェットを流体的に不安定にして高
速に旋回させかつ加熱対象物に向かって放射状に広がっ
たプラズマを形成する場合において、直流磁界や交流磁
界を印加する方法を採るのならば,ノズルの外周り等に
コイルをトーチ軸方向に設置しなければならない.この
時,磁束の大部分は、プラズマ柱に流れる電流と同一方
向になってしまい電磁力の形成に有効に寄与しないとい
う問題が生じる.この問題を解決するためは,上記コイ
ルの巻数を増やしたりそこに流す電流を増加させればよ
いが,消費電力の増加やトーチの大型化を招来するため
,総合熱効率の低下,付帯設備例えばコイル冷却装W)
の大型化.設置箇所の物理的制約等の問題が生じてしま
う. これに対して,上記コイルをトーチ軸方向と直交する方
向に設置することで電磁力の形成に有効に寄与する磁束
を増し、コイルの小型化を図ることも可能であるが、プ
ラズマ往の軸対称性の低下は免れ得ない.この軸対称性
の低下は、ノズル等の周辺部材の損傷の危険の増加、加
熱・溶解等の制御性の低下を招くという弊害があるため
,実用上好ましくない. 又、旋回プラズマを得た場合においては,陰極付近に周
囲より圧力の低い領域が生じる.このことは、直流磁界
の印加により旋回プラズマを得た場合に特に顕著である
、 かかる場合には,この領域への外気の巻き込みが起こり
、陰極の酸化消耗の原因となる.更には,ノズル等の損
傷や外気巻込みによる陰極の酸化消耗を生じることなく
,シかも高速に旋回し加熱対象物に向かって放射状に広
がるようなプラズマを形成させるためには,陰極点付近
では固定端的な安定なプラズマとなりトーチ外部では流
体的に不安定なプラズマとなることが望ましい. 本発明は,上記のような問題点を解決すべくなされたも
のであり,プラズマ往についての高い制御性、プラズマ
トーチの小型化及び運転費低減を実現し、或は同時に陰
極の酸化消耗防止を可能にする移行式プラズマトーチを
得ることを目的とする. [課題を解決するための手段] 上記目的達成のため,本発明に係る移行式プラズマトー
チにおいては、プラズマ柱に回転磁界を印加するように
した.又,陰極先端を前記ノズル先端より後退させた.
更には、陰極の周囲に磁性材料製部材を配置するように
した. [作用] 第6図に示すようにプラズマ柱の内部には,陽極(及至
は加熱対象物)からトーチの陰極に向がっていわゆるプ
ラズマ電流(I)が流れている.プラズマ柱は,それが
一旦曲がると,プラズマ電流の作る磁場が凸部で弱まり
凹部で強まるため磁気圧が生じ,その圧力により更に曲
がるという磁気的不安定性(キンク不安定性)を本来的
に有している.プラズマジェットを流体的に不安定にし
て高速に旋回させかつ加熱対象物に向かって放射状に広
がったプラズマを形成させるためには,プラズマのキン
ク不安定性を拘束しているプラズマジェットの有する矯
正力を適当な方法で弱めて旋回プラズマにしてやれば良
い. 今,第2図fa+に示すように,ノズルの外周りに例え
ば誘導機内の固定子巻線の如きコイルの組をilI!!
する.このコイルの組に電流を流すことによって,時刻
tにおける回転磁界( B (t))を得る.この回転
磁界は,前記プラズマ電流と略直交するように鎖交し、
プラズマ柱を曲げる方向の電磁力(F)を生ぜしめる. F=IXB(t)で表される電磁力は、回転磁界が時間
とともに変化する為,プラズマ柱の軸を中心に回転しつ
つ働く.プラズマ柱は,軸対称形から僅かでもずれると
、第2図Cb)に示すように,それ自体のキング不安定
性と上記電磁カとの重畳効果により,流体的に不安定な
状態となる.かかる流体的に不安定なプラズマは、コイ
ル電流及び周波数の調節により、その形状及び発生電圧
がいかようにも変化する.この性質を利用すれば、第3
図18lに示すような安定プラズマ、状態から、第3図
ら》に示すような流体的に不安定なプラズマ状態,即ち
プラズマジェットが高速に旋回しかつ加熱対象物に向か
って放射状に広がった状履にまで運転条件に応じた制御
が可能になる.トーチ軸に対して軸対称形の旋回プラズ
マにすることも容易である.しかも、プラズマ作動ガス
を少なく一定に保った運転が実現できる.又,回転磁界
はプラズマ電流に略直交するように作用するので、コイ
ル電流が小さくても或はコイルの巻数が少なくとも十分
にプラズマ柱の流体的不安定化に資することができる. 旋回プラズマが生じた場合等においては、陰極付近が周
囲より低圧力となり外気の巻き込みにょ偽陰極の酸化消
耗が起こる.これを防止すべく陰極先端を前記ノズル先
端より後退させノズルが陰極の周囲を囲むような構造に
する.これにより陰極の酸化消耗を極力抑えることがで
きる.プラズマトーチは通常銅のような熱・電気伝導度
の高い材料が選ばれることが多い.そしてノズルの周囲
から回転磁界を印加すると,ノズル部に渦電流が生ずる
.この渦電流により生ずる磁界と回転磁界とはトーチ内
部の軸近傍(陰極付近)において相殺し合い、トーチ外
部に比べて著しく小さくなる.この為、陰極点付近では
安定なプラズマが形成され固定端的となる傾向が強い.
特に陰極先端がノズル先端より後退しているためノズル
が陰極の周囲を囲むような構造になっている場合にこの
傾向が強い. しかし,回転磁界の回転速度,トーチ構造,トーチの材
質等によっては,陰極付近の磁界が十分に弱められない
場合がある. かかる場合には又かかる場合に限らず,陰極の周囲に磁
性材料製部材を設置し,外部からの磁界をシールドして
やる.するとトーチ内部ではより安定したプラズマが,
トーチ外部では流体的に不安定したプラズマが形成され
る. [発明の実施例] 第1図は,本発明の一実施例を示す構成説明図である. 電気端子9に接続する陰極2は,熱電子放出型陰極の一
種であるタングステン製電極であり直径2 0 m m
の尖頭状である.陰極材料をカーボンとしても良し,陰
極形状を半球状、断面蒲鉾状にしても良い. 陰極2の背面は、銅で構成されており冷却水8により冷
却されている. ノズル3は,円筒状の銅により構成され,冷却水8によ
り冷却されている.ノズル3と陰極2とは絶縁スペーサ
7により画されている.プラズマ作動ガス4はノズル3
の内部より供給される. 尚、ノズル3は、第5図に示す従来のプラズマトーチ1
1に見られるノズル13のような構造ではない.即ち、
ノズルl3は,安定なプラズマジェット16を形成する
ためにプラズマ作動ガス14を収束させ,そのトーチ軸
方向の速度を高めるような構造であるが、ノズル3では
、その主目的が陰極2の醍化消耗防止を図るために不活
性ガス(アルゴンガス)により陰極2の周囲を包ませる
ことにあるため,陰極2の先端とノズル3との間隔を広
くしてある. ノズル3先端の内壁には,幅1 5 m m .厚さ1
mmの鉄板(図示せず)が全周にわたり埋め込まれてい
る. 陰極3の先端は,ノズル3の先端より5 m m後退さ
せてある. ノズル3の外側には,陰極3の先端からカーボンブロッ
ク製陽極(図示せず)へ向かってトーチ軸に対称な回転
磁界が得られるように.複数組のコイル10を誘導機の
固定子巻線の如き構造で配置する.即ち、複数のコイル
の組をトーチ軸を中心に配置しそれらに位相差のある電
流を流し、プラズマ柱に回転磁界を印加する.本実施例
では三相誘導機の固定子巻線の如き構造(第1図(b)
)で配置し,各コイルの巻数は3oターンである.尚,
上記のように複数のコイルの組を配置して回転磁界を印
加する場合,その回転磁界は,トーチ軸に垂直である必
要はない.或る程度大きな垂直磁界成分があれば本発明
の目的を達しうるのであり,回転磁界がト場合を排除す
る主旨ではない.回転磁界の回転速度は、コイル10と
回転磁界発生用tllW12とを介するインバータ11
により制御した. トーチ1の先端とカーボン製陽極との間隔を200mm
.プラズマ電流を直流900A−プラズマ作動ガス4を
流量3 0 n/sinのアルゴンガスとして、プラズ
マジェット6を発生させた.先ずコイルに電流を流さな
い状態では,安定なプラズマが形成され,発生電圧は1
52V.投入電力は137kWであった. 次いでコイルのu,V,W端子に三相交流電流を流した
ところ、陰極2から陽極へ向かって(従って.加熱対象
5に向かって)広がるようにプラズマが乱れるのが観察
された.この時回転磁界の回転速度は1500rpmで
あった.また、プラズマ柱が乱れ始めたのはノズル3の
先端から約15.mm陽極側であり,その時の発生電圧
は290V.投入電力は261kWであった.ちなみに
,陰極3の先端位置をノズル3の先端位置と同じにした
場合,プラズマ柱は陰極点近傍で既に乱れ始めた. 更に,インバータ11で回転磁界の回転速度を変化させ
たところ、回転速度が増加するにつれて発生電圧は低下
し,逆に回転速度が減少するにつれ発生電圧が増加する
傾向がみられた.又、コイル電流を増加するにつれ発生
電圧が増加し、コイルiJ流を増加するにつれ発生電圧
が低下し安定プラズマの形状となった. 以上の実施例において、コイル電流やその周波数(数H
 z〜数百kHz)を適当に選択・制御することにより
,自在にしかも再現性良く流体的に不安定なプラズマを
形成することができた.特に,トーチ軸対称性の高い広
がりを有するプラズマジェットが得られる. 又、ノズル3先端の内壁に鉄板を埋め込んだ場合とそう
でない場合とを比較したところ.100時間運転の後、
後者と異なり前者では陰極表面の酸化は観察されず,電
極消耗防止の効果もあることも確認された. 回転磁界の採用により,コイルの消費電力は約20W即
ち従来の半分以下となり,高い経済的効果とともに,回
転磁界発生部を従来の直流及至交流磁界方式のそれに比
べ大幅に小型化できることを確認できた. 尚,コイルの設置位置については.回転磁界が常に陰極
先端付近に生ずるような位置である必要はなく,プラズ
マに磁界が鎖交し得る位置であれば同様の効果が得られ
ることは言うまでもない,従って,第4図Calのよう
な誘導機の固定子巻線の如き形状で複数組のコイルをト
ーチ先端近くの外側に設置しても良いし,第41mTo
+のようトーチ先端から外側に磁束が集中する構造のコ
イルの組を設置しても良い.尚,後者の場合,プラズマ
トーチ先端側のコイルを陰極側に向けて湾曲させるか傾
斜させれば、回転磁界がプラズマ電流に直交する位置を
比較的陰極近くに近ずけることができる. 又、上記実施例では.回転磁界を得る為にコイルの組を
ノズル3の外側に配置させているが,ノズル3本体内に
組み込んでも同様の効果が得られる. [発明の効果] 以上のように、本発明によれば、プラズマ柱に外部より
回転磁界を印加するので,流体的に不安定で高速旋回す
るプラズマジェットを加熱対象物に向かって放射状に広
げることができることは勿論,磁界がプラズマ電流に対
して効果的に作用し且つプラズマジェットの軸対称性が
維持される.このため実質プラズマの増大,発生電圧の
増加,加熱面積の増大等といった従来の直流及至交流磁
界の印加により旋回(反転)プラズマを得る技術と等価
な効果を得ることができることは勿論のこと,これに加
えて, ■電磁力の形成効率が向上し,磁気発生部の小型化ひい
てはプラズマトーチの小型化が可能となる. ■ノズル等の損傷が少ない. ■消費電力の低下により,総合熱効率の向上,周辺設備
の大型化防止,或は設置箇所等の物理的問題の解消が可
能となり、ひいては経済性の向上が可能となる. ■より制御性が高くなる. といった効果が得られる. 又、陰極先端をノズル先端より後退させたので陰極の酸
化消耗を防止できる. 更に,陰極の周囲に磁性材料製部材を配置したので、プ
ラズマトーチ内部では安定なプラズマが,プラズマトー
チ外部では流体的に不安定なプラズマが形成される.こ
のため、ノズル等の損傷や陰極酸化消耗を少くできると
ともに、高い制御性にも資し得る.
[Detailed Description of the Invention] [Industrial Application Field] This invention relates to a transfer type plasma torch that generates a plasma jet and is used for heating, melting, reactions, etc. Thermal plasma is an ultra-high-temperature, high-energy source that is widely applied to heating and melting, as well as reactions and surface treatments. In particular, thermal plasma has a high energy density, so the equipment can be made compact, and the atmosphere can be freely controlled by the plasma working gas, and the input power can be adjusted freely and responsively by controlling the current and plasma length. It has characteristics. Taking advantage of these characteristics, in recent years in the steelmaking process, it has been considered to heat the molten steel in a ladle or tundish with plasma to control the molten steel temperature and perform refining reactions. In these applications, transition type plasma torches are used in which the object to be heated is the opposite electrode due to heating efficiency. [Prior art] As shown in Fig. 5, in the conventional transfer type plasma torch, from the viewpoint of directivity and stability, the flow velocity of the plasma working gas in the axial direction of the torch is increased to create a stable linear plasma jet. However, the applicant invented a transfer type plasma torch that takes advantage of the inherent magnetic instability of plasma, and previously filed patent application No. 1-28735.
The application was filed as No. This transfer type plasma torch makes the plasma jet fluidly unstable, allows it to rotate at high speed, and forms plasma that spreads radially toward the object to be heated. This method not only increases the actual plasma but also increases the cooling effect on the plasma column.
Effects such as an increase in generated voltage and an increase in heating area can be obtained.
Methods for forming such a plasma include a method of imparting a velocity component in the circumferential direction around the torch axis to the plasma working gas and a method of applying a magnetic field to the plasma column from the outside. In the latter method, the electromagnetic force generated by the interlinkage between the applied magnetic field and the current flowing through the plasma column causes the plasma column to rotate or reverse, causing and promoting magnetic instability.According to this method, , the gas consumption is smaller than the above method using plasma working gas,
It is advantageous in that it is highly controllable. Specifically, there is a method of applying a DC magnetic field that is rotationally symmetrical to the torch axis (Japanese Patent Application No. 1-121483), and a method of applying an AC magnetic field that also makes it possible to prevent cathode oxidation. [Problem to be solved by the invention J] However, in the case of making a plasma jet fluidly unstable, rotating it at high speed, and forming a plasma that spreads radially toward an object to be heated, it is difficult to apply a DC magnetic field or an AC magnetic field. If this method is adopted, a coil must be installed around the outside of the nozzle in the direction of the torch axis. At this time, a problem arises in that most of the magnetic flux is in the same direction as the current flowing in the plasma column and does not contribute effectively to the formation of electromagnetic force. In order to solve this problem, it would be possible to increase the number of turns in the coil or increase the current flowing through it, but this would lead to an increase in power consumption and an increase in the size of the torch, resulting in a decrease in overall thermal efficiency and ancillary equipment such as coils. Cooling system W)
Increase in size. Problems such as physical restrictions on the installation location may arise. On the other hand, by installing the above-mentioned coil in a direction perpendicular to the torch axis direction, it is possible to increase the magnetic flux that effectively contributes to the formation of electromagnetic force and to downsize the coil. A decrease in symmetry cannot be avoided. This decrease in axial symmetry is not desirable in practice, as it increases the risk of damage to surrounding components such as the nozzle, and reduces controllability of heating, melting, etc. Furthermore, when a swirling plasma is obtained, a region with lower pressure than the surrounding area occurs near the cathode. This is particularly noticeable when swirling plasma is obtained by applying a DC magnetic field. In such cases, outside air is drawn into this region, causing oxidation and wear and tear of the cathode. Furthermore, in order to form a plasma that rotates at high speed and spreads radially toward the object to be heated without damaging the nozzle or oxidizing the cathode due to the entrainment of outside air, it is necessary to It is desirable that the plasma be stable at a fixed end and fluidly unstable outside the torch. The present invention was made to solve the above problems, and achieves high controllability of plasma flow, miniaturization of plasma torch, and reduction in operating cost, and at the same time prevents oxidation consumption of the cathode. The purpose is to obtain a transfer-type plasma torch that makes it possible. [Means for Solving the Problems] In order to achieve the above object, in the transfer type plasma torch according to the present invention, a rotating magnetic field is applied to the plasma column. Also, the cathode tip was moved back from the nozzle tip.
Furthermore, a member made of magnetic material was placed around the cathode. [Operation] As shown in Figure 6, a so-called plasma current (I) flows inside the plasma column from the anode (and the object to be heated) to the cathode of the torch. Once a plasma column bends, the magnetic field created by the plasma current weakens in convex parts and strengthens in concave parts, creating magnetic pressure, which inherently causes it to bend further (kink instability). ing. In order to make the plasma jet fluidly unstable, rotate it at high speed, and form a plasma that spreads radially toward the object to be heated, it is necessary to reduce the correction force of the plasma jet that restrains the kink instability of the plasma. All you have to do is weaken it in an appropriate way and make it into a swirling plasma. Now, as shown in Figure 2, a set of coils, such as stator windings in an induction machine, are placed around the outside of the nozzle. !
do. By passing current through this set of coils, we obtain the rotating magnetic field ( B (t)) at time t. This rotating magnetic field interlinks with the plasma current substantially perpendicularly,
Generates an electromagnetic force (F) that bends the plasma column. The electromagnetic force expressed as F=IXB(t) works while rotating around the axis of the plasma column because the rotating magnetic field changes with time. If the plasma column deviates even slightly from its axial symmetry, it becomes fluidly unstable due to the superimposed effect of its own King instability and the electromagnetic force, as shown in Figure 2 (Cb). The shape and generated voltage of such fluidically unstable plasma can be changed by adjusting the coil current and frequency. Using this property, the third
From the stable plasma state shown in Figure 18l, to the fluidly unstable plasma state shown in Figure 3, etc., in which the plasma jet rotates at high speed and spreads radially toward the heated object This makes it possible to control operations according to operating conditions. It is also easy to create a rotating plasma that is axially symmetrical about the torch axis. Moreover, it is possible to operate with a constant amount of plasma working gas. Furthermore, since the rotating magnetic field acts approximately orthogonally to the plasma current, even if the coil current is small, or at least the number of turns of the coil, it can sufficiently contribute to fluid destabilization of the plasma column. In cases such as when swirling plasma occurs, the pressure near the cathode is lower than the surrounding area, causing outside air to be drawn in and the false cathode to be oxidized and consumed. To prevent this, the cathode tip is set back from the nozzle tip so that the nozzle surrounds the cathode. This makes it possible to minimize oxidative consumption of the cathode. Plasma torches are often made of materials with high thermal and electrical conductivity, such as copper. When a rotating magnetic field is applied from around the nozzle, eddy currents are generated in the nozzle. The magnetic field generated by this eddy current and the rotating magnetic field cancel each other out near the axis (near the cathode) inside the torch, and are significantly smaller than outside the torch. For this reason, a stable plasma is formed near the cathode spot, and there is a strong tendency for the plasma to become fixed-end.
This tendency is particularly strong when the cathode tip is set back from the nozzle tip and the nozzle is structured to surround the cathode. However, depending on the rotation speed of the rotating magnetic field, the structure of the torch, the material of the torch, etc., the magnetic field near the cathode may not be weakened sufficiently. In such cases, and not only in such cases, a member made of magnetic material is installed around the cathode to shield the magnetic field from the outside. Then, a more stable plasma inside the torch,
A fluidically unstable plasma is formed outside the torch. [Embodiment of the Invention] FIG. 1 is a configuration explanatory diagram showing an embodiment of the present invention. The cathode 2 connected to the electric terminal 9 is a tungsten electrode, which is a type of thermionic emission type cathode, and has a diameter of 20 mm.
It has a pointed shape. The cathode material may be carbon, and the cathode shape may be hemispherical or semicylindrical in cross section. The back surface of the cathode 2 is made of copper and is cooled by cooling water 8. The nozzle 3 is made of cylindrical copper and is cooled by cooling water 8. The nozzle 3 and the cathode 2 are separated by an insulating spacer 7. Plasma working gas 4 is supplied to nozzle 3
It is supplied from inside. Note that the nozzle 3 is a conventional plasma torch 1 shown in FIG.
It does not have a structure like the nozzle 13 seen in 1. That is,
The nozzle l3 has a structure that converges the plasma working gas 14 to form a stable plasma jet 16 and increases its speed in the torch axial direction. In order to prevent wear and tear, the cathode 2 is surrounded by inert gas (argon gas), so the distance between the tip of the cathode 2 and the nozzle 3 is widened. The inner wall at the tip of the nozzle 3 has a width of 15 mm. Thickness 1
A steel plate (not shown) with a diameter of mm is embedded all around the circumference. The tip of the cathode 3 is set back 5 mm from the tip of the nozzle 3. On the outside of the nozzle 3, a rotating magnetic field symmetrical about the torch axis is obtained from the tip of the cathode 3 toward the carbon block anode (not shown). A plurality of sets of coils 10 are arranged in a structure similar to the stator winding of an induction machine. That is, a set of multiple coils is arranged around the torch axis, currents with phase differences are passed through them, and a rotating magnetic field is applied to the plasma column. In this example, the structure is similar to the stator winding of a three-phase induction machine (Fig. 1(b)).
), and each coil has 3 turns. still,
When applying a rotating magnetic field by arranging multiple sets of coils as described above, the rotating magnetic field does not need to be perpendicular to the torch axis. The purpose of the present invention can be achieved as long as there is a perpendicular magnetic field component that is large to a certain extent, and the purpose of this invention is not to exclude cases where the rotating magnetic field is present. The rotation speed of the rotating magnetic field is controlled by the inverter 11 via the coil 10 and the rotating magnetic field generating tllW12.
It was controlled by The distance between the tip of torch 1 and the carbon anode is 200 mm.
.. A plasma jet 6 was generated with a plasma current of 900 A DC and a plasma working gas 4 of argon gas at a flow rate of 30 n/sin. First, when no current is applied to the coil, a stable plasma is formed and the generated voltage is 1.
52V. The input power was 137kW. Next, when a three-phase alternating current was applied to the u, V, and W terminals of the coil, it was observed that the plasma was disturbed so as to spread from the cathode 2 toward the anode (therefore, toward the heating object 5). At this time, the rotation speed of the rotating magnetic field was 1500 rpm. Also, the plasma column started to be disturbed at about 15 minutes from the tip of nozzle 3. mm on the anode side, and the generated voltage at that time is 290V. The input power was 261kW. By the way, when the tip position of cathode 3 was made the same as the tip position of nozzle 3, the plasma column already began to be disturbed near the cathode point. Furthermore, when the rotation speed of the rotating magnetic field was changed using the inverter 11, it was found that as the rotation speed increased, the generated voltage decreased, and conversely, as the rotation speed decreased, the generated voltage tended to increase. Furthermore, as the coil current increased, the generated voltage increased, and as the coil iJ current increased, the generated voltage decreased, resulting in a stable plasma shape. In the above embodiments, the coil current and its frequency (several H
By appropriately selecting and controlling the frequency (from z to several hundred kHz), it was possible to form a fluidically unstable plasma freely and with good reproducibility. In particular, a wide plasma jet with high torch axis symmetry can be obtained. We also compared the case where an iron plate was embedded in the inner wall of the tip of nozzle 3 and the case where it was not. After driving for 100 hours,
Unlike the latter, no oxidation of the cathode surface was observed in the former, and it was also confirmed that the former had the effect of preventing electrode wear. By adopting a rotating magnetic field, the power consumption of the coil was reduced to about 20 W, or less than half of the conventional one, and we were able to confirm that it was highly economical and that the rotating magnetic field generator could be significantly smaller than that of conventional DC to AC magnetic field systems. .. Regarding the installation position of the coil. It goes without saying that the position does not have to be such that the rotating magnetic field is always generated near the cathode tip, and that the same effect can be obtained as long as the magnetic field can be linked to the plasma. Multiple sets of coils shaped like the stator windings of an induction machine may be installed outside near the tip of the torch, or the 41st mTo
It is also possible to install a set of coils with a structure in which the magnetic flux concentrates outward from the tip of the torch, as shown in +. In the latter case, by curving or tilting the coil at the tip of the plasma torch toward the cathode, the position where the rotating magnetic field is orthogonal to the plasma current can be brought relatively close to the cathode. Also, in the above embodiment. Although a set of coils is placed outside the nozzle 3 to obtain a rotating magnetic field, the same effect can be obtained by incorporating the coil into the nozzle 3 body. [Effects of the Invention] As described above, according to the present invention, since a rotating magnetic field is applied to the plasma column from the outside, the plasma jet, which is fluidly unstable and rotates at high speed, can be spread radially toward the object to be heated. Of course, the magnetic field acts effectively on the plasma current and maintains the axial symmetry of the plasma jet. Therefore, it goes without saying that it is possible to obtain effects equivalent to the conventional technique of obtaining swirling (inverted) plasma by applying a DC or AC magnetic field, such as an increase in the actual plasma, an increase in the generated voltage, and an increase in the heating area. In addition, ■The efficiency of forming electromagnetic force is improved, making it possible to miniaturize the magnetic generation part and, by extension, the plasma torch. ■Less damage to nozzles, etc. ■Reducing power consumption makes it possible to improve overall thermal efficiency, prevent the size of peripheral equipment, and solve physical problems such as installation locations, which in turn makes it possible to improve economic efficiency. ■More controllability. The following effects can be obtained. In addition, the cathode tip is set back from the nozzle tip, which prevents the cathode from being consumed by oxidation. Furthermore, because a member made of magnetic material is placed around the cathode, a stable plasma is formed inside the plasma torch, and a fluidically unstable plasma is formed outside the plasma torch. Therefore, damage to the nozzle, etc. and cathode oxidation consumption can be reduced, and it also contributes to high controllability.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の一実施例の構成説明図,特に同図To
lはこの実施例における回転磁界発生用のコイルの組の
配置を示す. 第2図は本発明の原理を示す模式図,第3図fatはコ
イルに電流が流れていないときに得られる安定プラズマ
の断面図,第3図伽)はコイルに電流を流して得た回転
磁界により形成される流体的に不安定なプラズマの断面
図,第4図は回転磁界発生部の配置とそれに対応する回
転磁界の発生方法の具体例を示す. 第5図は従来のプラズマトーチの構成説明図,第6図は
キンク不安定の原理説明図である.図における指示符号
は下記の通りである.1,1ツ :プラズマトーチ 2、12:電極(陰極) 3.13:ノズル 4.14=プラズマ作動ガス 5.15:加熱対象物 6.16:プラズマジェット 7.17:絶縁スペーサ 8.18:冷却水 9.19:電気端子 1 O:回転磁界発生コイル 1 l :インパータ 1 2:回転磁界発生用電源. 出 願 人 日本鋼管株式会社 第 図(a) 覧l図(b) Φ 0 第 5 図
FIG. 1 is an explanatory diagram of the configuration of one embodiment of the present invention, especially To
l indicates the arrangement of a set of coils for generating a rotating magnetic field in this example. Figure 2 is a schematic diagram showing the principle of the present invention, Figure 3 (fat) is a cross-sectional view of stable plasma obtained when no current is flowing through the coil, and Figure 3 (Fig. 3) is the rotation obtained when current is flowing through the coil. Figure 4, a cross-sectional view of fluidically unstable plasma formed by a magnetic field, shows a specific example of the arrangement of the rotating magnetic field generator and the corresponding method of generating the rotating magnetic field. Figure 5 is an explanatory diagram of the configuration of a conventional plasma torch, and Figure 6 is an explanatory diagram of the principle of kink instability. The instruction symbols in the figure are as follows. 1, 1: Plasma torch 2, 12: Electrode (cathode) 3.13: Nozzle 4.14 = Plasma working gas 5.15: Heating object 6.16: Plasma jet 7.17: Insulating spacer 8.18: Cooling water 9.19: Electrical terminal 1 O: Rotating magnetic field generating coil 1 l: Imperter 1 2: Power supply for rotating magnetic field generation. Applicant Nippon Steel Tube Co., Ltd. Figure (a) Diagram (b) Φ 0 Figure 5

Claims (3)

【特許請求の範囲】[Claims] (1)ノズルと加熱対象物との間にプラズマジェットを
発生させる移行式プラズマトーチにおいて、 プラズマ柱に外部より回転磁界を印加することを特徴と
する移行式プラズマトーチ。
(1) A transfer type plasma torch that generates a plasma jet between a nozzle and an object to be heated, the transfer type plasma torch being characterized in that a rotating magnetic field is externally applied to the plasma column.
(2)陰極先端が前記ノズル先端より後退していること
を特徴とする請求項(1)記載の移行式プラズマトーチ
(2) The transfer type plasma torch according to claim 1, wherein the cathode tip is set back from the nozzle tip.
(3)陰極の周囲に磁性材料製部材を配置したことを特
徴とする請求項(1)又は(2)記載の移行式プラズマ
トーチ。
(3) The transfer type plasma torch according to claim (1) or (2), characterized in that a member made of a magnetic material is arranged around the cathode.
JP2000165A 1990-01-04 1990-01-04 Transition type plasma torch Pending JPH03205796A (en)

Priority Applications (6)

Application Number Priority Date Filing Date Title
JP2000165A JPH03205796A (en) 1990-01-04 1990-01-04 Transition type plasma torch
CA002048654A CA2048654A1 (en) 1990-01-04 1990-11-22 Transferred plasma-arc torch
PCT/JP1990/001530 WO1991010342A1 (en) 1990-01-04 1990-11-22 Moving plasma torch
EP91900350A EP0461263B1 (en) 1990-01-04 1990-11-22 Plasma torch with instable plasma arc
DE69032205T DE69032205T2 (en) 1990-01-04 1990-11-22 Plasma torch with an unstable plasma arc
AT91900350T ATE164721T1 (en) 1990-01-04 1990-11-22 PLASMA TORCH WITH UNSTABLE OPERATED PLASMA ARC

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000165A JPH03205796A (en) 1990-01-04 1990-01-04 Transition type plasma torch

Publications (1)

Publication Number Publication Date
JPH03205796A true JPH03205796A (en) 1991-09-09

Family

ID=11466422

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000165A Pending JPH03205796A (en) 1990-01-04 1990-01-04 Transition type plasma torch

Country Status (1)

Country Link
JP (1) JPH03205796A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2001043511A1 (en) * 1999-12-13 2001-06-14 Nippon Steel Corporation Transfer-type plasma heating anode
JP2002307160A (en) * 2001-04-11 2002-10-22 Nippon Steel Corp Transferable anode for plasma heating
JP2006292333A (en) * 2005-04-14 2006-10-26 Babcock Hitachi Kk Operation method of plasma type melting furnace and plasma type melting furnace
JP5362133B1 (en) * 2013-02-12 2013-12-11 株式会社金星 Spherical phosphorescent material manufacturing method and plasma torch

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2001043511A1 (en) * 1999-12-13 2001-06-14 Nippon Steel Corporation Transfer-type plasma heating anode
AU762693B2 (en) * 1999-12-13 2003-07-03 Nippon Steel Corporation Transfer-type plasma heating anode
US6649860B2 (en) 1999-12-13 2003-11-18 Nippon Steel Corporation Transfer type plasma heating anode
JP2002307160A (en) * 2001-04-11 2002-10-22 Nippon Steel Corp Transferable anode for plasma heating
JP2006292333A (en) * 2005-04-14 2006-10-26 Babcock Hitachi Kk Operation method of plasma type melting furnace and plasma type melting furnace
JP5362133B1 (en) * 2013-02-12 2013-12-11 株式会社金星 Spherical phosphorescent material manufacturing method and plasma torch
JP2014152282A (en) * 2013-02-12 2014-08-25 Kinboshi Inc Method for manufacturing a spherical phosphorescent material and plasma torch

Similar Documents

Publication Publication Date Title
US4048436A (en) Heat treating
JP2593406B2 (en) Torch equipment for chemical processes
US7459053B2 (en) Flux guide induction heating device and method of inductively heating elongated and nonuniform workpieces
JPS5818969B2 (en) Method and device for induction heating race ring rolling surface
US11905576B2 (en) Compact coil assembly for a vacuum arc remelting system
US3211886A (en) Arc-cleaning and arc-plasma generating apparatus
JPH03149797A (en) Transition type plasma torch
JPH03205796A (en) Transition type plasma torch
US4034250A (en) Plasmatron
US3793468A (en) Furnace apparatus utilizing a resultant magnetic field or fields produced by mutual interaction of at least two independently generated magnetic fields and methods of operating an electric arc furnace
KR102602587B1 (en) Induction Heated Roll Apparatus
KR100421424B1 (en) Narrow Gap Welding Torch Built With Electromagnet
WO1991010342A1 (en) Moving plasma torch
JPH04139384A (en) Moving type plasma torch
JP2861052B2 (en) Transfer type plasma torch
JPH0395900A (en) Migration type plasma torch
US1980447A (en) Arc welding apparatus
JPH03257796A (en) Transition type plasma torch
JPH06302398A (en) Electrode structure for plasma torch
JP2001241858A (en) Guide tube structure for electromagnetic flux concentration
JPH04131694A (en) Shift type plasma torch
JP2019091680A (en) Induction heating roller device
US3530223A (en) Electrode apparatus for use in an arc electrode furnace and magnetic field coils for moving and focusing the arcs therefrom
JP3533552B2 (en) DC arc furnace
JP3025354B2 (en) Method and apparatus for levitation heating of metal lump