JPH03205717A - Vacuum down detecting apparatus for vacuum valve switchgear - Google Patents

Vacuum down detecting apparatus for vacuum valve switchgear

Info

Publication number
JPH03205717A
JPH03205717A JP5105590A JP5105590A JPH03205717A JP H03205717 A JPH03205717 A JP H03205717A JP 5105590 A JP5105590 A JP 5105590A JP 5105590 A JP5105590 A JP 5105590A JP H03205717 A JPH03205717 A JP H03205717A
Authority
JP
Japan
Prior art keywords
vacuum
vacuum valve
degree
ignition
signal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP5105590A
Other languages
Japanese (ja)
Other versions
JP2611479B2 (en
Inventor
Hiromi Iwai
岩井 弘美
Noboru Usui
昇 臼井
Yujiro Yagi
八木 裕治郎
Kazuo Shibata
柴田 和郎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fuji Electric Co Ltd
Original Assignee
Fuji Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Electric Co Ltd filed Critical Fuji Electric Co Ltd
Priority to JP5105590A priority Critical patent/JP2611479B2/en
Publication of JPH03205717A publication Critical patent/JPH03205717A/en
Application granted granted Critical
Publication of JP2611479B2 publication Critical patent/JP2611479B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Abstract

PURPOSE:To detect vacuum down presicely in early stage by determining that vacuum down is caused when multirecurring arc current is not detected while receiving an output signal of a multirecurring arc surge detecting sensor installed in vacuum valves and a switching control signal of the vacuum valve switchgear. CONSTITUTION:Vacuum down of a vacuum valve 1 of a vacuum valve switchgear 21 connected to an A.C. power source system is detected according to whether there is multirecurring arc surge caused by current cutting or high frequency extinguishing phenomena. There are installed multirecurring arc surge detecting sensors 23 installed correspondingly to vacuum valves 1 of each phase and a determining part 30 which determines vacuum down in the vacuum valves 1 and puts out a signal when a multirecurring arc current is not detected during switching operation of the vacuum valves 1 while receiving each output signal of the multirecurring arc surge detecting sensors 23 and a switching control signal of a vacuum valve switchgear 21. In this way, vacuum down is detected in early stage before withstand voltage between poles of vacuum valves loweres greatly.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 この発明は、真空バルブを用いた真空遮断器,真空開閉
器等の開閉装置において、真空バルブの真空度の低下を
多重再発弧サージを検出することによって検知する真空
度低下検出装置に関する.〔従来の技術〕      
         啄真空遮断器,真空開閉器は他の遮
断器の消弧室に相当する部分に、高度に脱ガス.排気さ
れた完全密封形の真空バルブが使用されている.真空は
理想的な絶縁媒体であるが真空が劣化した場合はその機
能を発揮することができないため、真空パルブの真空度
が真空遮断器,真空開閉器の信頼性に対し大きなウェイ
トを占めている.そこで、真空バルブの製造時に高い信
頼性を確保するため材料の選定,購入,加工精度および
脱ガス処置など製造工程の管理,および性能確認試験.
検査など材料の入手から製品出荷まで厳密な品質管理が
実施されている.特に真空バルブの真空度管理は最も重
要であり、全敗について綿密なる管理が実施されている
. 第8図は真空バルブの真空度の低下要因の原理的説明図
であり、製造時に封じられた真空バルブは104〜10
−’Torr程度の高真空に保持されるが真空バルブを
構威している真空容器や電極,導体の内部に残存してい
るガス分子がそれらの表面より徐々に放出される内部ガ
ス放出と真空バルブの構戒材料や接合部分のわずかな欠
陥孔より外部から空気が徐々に侵入してくるスローリー
クとによって徐々に低下する.このうち、ガス放出が原
因となるものは飽和値をもつ曲線的な変化であり、一方
スローリークによるものは孔の大きさに応じた直線的な
変化である.従って、全体としての変化はこれらを重ね
合わせたトータルガスとして示される.真空バルブの真
空寿命の管理のためには、これらの劣化要因に対して適
切な方法をとる必要がある. 第9図は真空度の低下を直接検出するセンサを設けた従
来の真空バルブを示す概略断面図であり、真空バルブ1
は円筒状の絶縁容器5と、その一方端に結合された金属
製の端板4Aによって支持された固定接触子2と、絶縁
容器の他方端に結合した端板4Bおよび金属ベロー6に
より支持された可動接触子3を主要構威要素とし、可動
接触子3を図示しない操作器によって駆動することによ
り、負荷電流または充電電流の開閉機能を有する遮断器
や開閉器が構威される.また、真空バルブlの内部には
絶縁容器5の内側に同心状に金属シールド7が設けられ
、電流遮断時のアークによって生じた金属蒸気が絶縁容
器5の内壁に付着して絶縁性能が低下することを防止す
るよう構威される. 10は真空度センサとしての例え
ばマグネトロン素子であり、端板4Aに気密に取り付け
られて真空バルブ内の真空度を検出する.ところが、こ
の方式は、真空バルブと真空度センサとの気密結合部に
新たなスローリークを生ずる欠点があり、真空パルブの
{8 $1性を損なう欠点がある.また既設の真空バル
ブに後加工で真空度センサを取り付けることはほとんど
不可能である. 第10図は真空バルブの内部圧力と極間の交流フランシ
オーバ電圧との関係を示す特性線図であり、真空バルブ
内の真空度が10−”Torrオーダに近づく程度に低
下するとフランシオーバ電圧が低下しはじめ、10−”
から10−’ Torrオーダで下限値(1G−’ K
Vオーダ)を示し、10●Torrオーダ以上ではフラ
ンシオーバ電圧は徐々に上昇して大気圧空気中のフラン
シオーバ電圧にまで回復する.真空バルブでは一般に真
空度が10−”Torrオーダにまで低下すると、電力
系統の電圧に耐えられなくなり、開極状態では接触子極
間または電源系統に接続された接触子と金属シールド間
に異常放電が発生し、閉極状態では一対の接触子と金属
シールドとの間に異常放電が発生する.そこで従来技術
においても上述の特性に着ロし、異常放電を真空バルブ
の外部から電気的に検出することにより、真空度の低下
を間接的に検知する方式の真空度低下の検出装置が幾つ
か知られている. 第11図は第1の従来技術を示す構或図であり、交流電
力系統l1と負荷系統12との間に設けられた遮断器,
開閉器等の真空バルブ1には、その負荷側に避雷器13
,CR形サージアブソーバ14等が設けられ、極間の異
常放電による放電電流■3が流れることに着目し、避雷
器l3またはサージアブソーバ14の接地線側に電流セ
ンサ15を設け、開極時に発生する放電電流を検出する
ことにより、真空度の低下を検知するよう構威されてい
る.第12図は第2の従来技術を示す構戚図であり、真
空バルブ1の極間異常放電100に付随して発生する高
周波ノイズを、真空バルブの電源系統側に高圧コンデン
サ16を介して接続された高周波ノイズの検出器l7で
検出するよう構威されている.第13図は第3の従来技
術を示す構戒図であり、開極時,閉極時に金属シールド
7と接触子との間に発生する異常放電101sによって
上昇する金属シールド7の電位を、絶縁容器5を貫通し
て引き出された金属シールドの外部端子7^に高圧コン
デンサl6を介して分圧コンデンサl8を接続し、分圧
コンデンサl8の電位を電圧検出器19で測定するよう
構威されている. 第14図は第4の従来技術を示す構威図であり、第3の
従来技術と同様に発生する異常放電101sによる金属
シールド7の電位上昇を、絶縁容器5の外面との間に間
隙を保持して配された電位センサ20で検出するよう構
威されている. 〔発明が解決しようとする課題〕 第1の従来技術においては、避雷器やサージアブソーバ
を利用して異常放電を検出できるが、遮断時または投入
時の異常電圧によって生ずる放電電流と異常放電100
によって生ずる放電電流とを弁別するための弁別回路を
電流センサ15の出力側に設ける必要があり、検出回路
が複雑化するという問題がある. 第2の従来技術では、極間で異常放電が発生すると直ち
にアーク放電に移行してしまうことが実験的に検証され
ており、極間のアークドロップが小さいために、検出さ
れる高周波ノイズの電荷量が数PCと極めて小さく、信
頼性の高い検出ができにくいという問題があり、かつ高
周波ノイズ検出用の高圧コンデンサ16を真空バルブご
とに設ける必要があり装置が大型化するという問題があ
る.また、第3の従来技術は第2の従来技術と同様に高
圧コンデンサ16を必要とし、かつ絶縁容器を貫通して
外部端子を設けなければならず、真空度の維持性能に悪
影響を及ぼす危険性がある.第4の従来技術では、金属
シールドと電位センサとの結合キャバシタンスが小さい
ために、他相の真空バルブ等との間に静電容量結合が生
じやすく、検出結果の判定精度が低く、誤判定を犯しや
すい欠点がある. さらに、上述の四つの従来技術には共通に、真空バルブ
の極間の耐電圧性能が系統の常規対地電圧に耐えない程
に低下しないと異常放電が発生せず、したがって異常放
電が検出された時点では真空バルブは耐電圧性能を失っ
てしまっているという欠点がある. この発明の目的は、真空バルブの真空度低下を、真空バ
ルブがその極間電圧に耐えない程低下しない状態で早期
かつ精度よく検出することにある.〔課題を解決するた
めの手段〕 上記課題を解決するために、この発明によれば、交流電
力系統に接続された真空バルブ形開閉装厘の真空バルブ
の真空度低下を前記真空バルブが電流裁断現象.高周波
消弧現象に基づいて発する多重再発弧サージの有無によ
って検知するものであって、各相真空バルブそれぞれに
対応して設けられた前記多重再発弧サージの検出センサ
と、この多重再発弧サージの検出センサそれぞれの出力
信号と前記真空バルブ形開閉装置の開閉制御信号とを受
け前記真空バルブの開閉動作時間中に前記多重再発弧電
流が検出されなかったとき当咳真空バルブに真空度の低
下が生じたものと判断して信号を発する判断部とを備え
るものとし、また検出センサが電,流センサ,電圧セン
サのいずれかからなり、各相真空バルブの絶縁容器の外
周側に絶縁支持されてなるもの,あるいは各相真空バル
ブがそれぞれ接地導電層を有する電力ケーブルを介して
負荷側に接続され、前記接地導電層の接地線側に検出セ
ンサが配されてなるものを含むものとする.〔作用〕 真空パルブは真空の持つ強力な消弧力によって空気遮断
器やガス遮断器では見られない電流遮断現象や高周波消
弧現象が存在し、これに伴なって開閉サージとしての持
続時間の長い多重再発弧サージが発生する.ところが、
これらの現象は真空度が10−”Torrオーダに低下
すると不安定になり、極間耐電圧が低下しはじめる10
−” Torrに近づくとほとんど発生しなくなる. 前記手段は上述の現象を真空度低下の検知に利用するよ
う構威されたものである.すなわち、通常貞荷回路のイ
ンダクタンスおよび標遊キャパシタンスの共振によって
決まる100KHzから数MHzの振動周波数を持つ多
重再発弧サージの検出センサとして、高周波電流センサ
または高周波電圧センサを開閉装lの各相真空バルブに
対応して設け、多重再発弧サージを検出し、判断部が真
空バルブの開動作時間内,および閉動作時間内に多重再
発弧信号が検出されるか否かを判断し、信号が検出され
なかったとき真空度低下の報知信号を発するよう構威し
たことにより、真空度の低下を多重再発弧サージの発生
が不安定になる10−’ Torrに近い10−’ T
orrオーダ.いいかえれば真空バルブの極間耐電圧が
大幅に低下する以前に早期に検出することができる. また、多重再発弧サージはその振幅が数KVで他の遮断
器のそれの数倍程度大きく,かつその持続時間も1■S
程度で他の遮断器のそれのlO倍程度長いので、真空バ
ルブの開閉に伴って生ずる極間の先行放電や再発弧サー
ジと容易に弁別できるので、判断部にこの弁別機能を持
たせることにより、多重再発弧サージの検出精度を高め
ることができる.さらに、電流センサとしてのロゴウス
キーコイル.または電圧センサとしての分圧器を真空バ
ルブの絶縁容器の外周側,または負荷側電力ケープルの
接地線側に設けるよう構威すれば、絶縁容器の対地静電
容量または電力ケーブルの対地静電容量を高圧コンデン
サに兼用して検出センサを小形かつ安価に形或できる. 〔実施例〕 以下この発明を実施例に基づいて説明する.第1図はこ
の発明の実施例になる真空バルブ形開閉装置の真空度低
下検出装置を示す概略構威図であり、検出センサとして
電流センサを用いた場合を例に示したものである.図に
おいて、開閉装置21の各相真空バルブIU, IV.
 1一等lはそれぞれ固定接触子2側が三和交流電力系
統1lに接続され、可動接触子3側が外部負荷l2に接
続されており、制御部(操作部)22によって開閉制御
される.多重再発弧サージの検出センサとしての電流セ
ンサ23U. 23V. 23−はロゴウスキーコイル
として形威され、各相真空バルブに対応してその負荷側
に近接された図示しないプソシング等の外周側に絶縁支
持される.また、ロゴウスキーコイルは各相真空バルブ
の電源側に設けてもよい. 30は判断部であり、例えば、開閉装ffi21の制御
部22が発する開制御信号22T.閉lIl1II信号
22Cを受け、接点の開閉動作の開始時点に同期したト
リガパルス25Sを発するトリガパルス発生回路25と
、トリガパルス25Sを受けてオン状態となり、電流セ
ンサの検出信号23Sを整流した信号の時間積分値が設
定信号313が指定したレベルを超えたとき多重再発弧
パルスが発生したものと判断してパルス信号263を発
するノイズ弁別回路26と、接点の開閉動作時間中にパ
ルス信号26Sが発生しなかったときオン信号27Sを
発する無信号検出回路27と、オン信号27Sを検知し
たとき真空バルブに真空度の低下が発生したものを判断
して、その報知信号29を各相真空バルブ別に出力する
真空度低下検出回路28とを備え、報知信号29により
各相真空バルブ10, IV, 1%1のいずれに真空
度の低下が発生したかを特定できるよう構威される. 第2図は前述の実施例における検出センサの異なる配設
状態を示す要部の断面図であり、電流センサとしてのロ
ゴウスキーコイル23は、ら旋状に巻かれたコイルを真
空バルブ1の絶縁容器5を外周を包囲するよう環状に形
威され、wA緑容器5に絶縁支持される。また、絶縁容
器5の外周面には必要に応じて接地導電層5^を形威し
、ロゴウスキーコイル23に及ぼす交流電界の影響を排
除する.また、多重再発弧サージの検出センサを電圧セ
ンサとする場合、接地導電層5Aを高周波特性のよい例
えばセラQ7クコンデンサを介して接地し、このセラξ
ツクコンデンサを検出コンデンサとして多重再発弧サー
ジ電圧を検出するよう構戒すれば、真空バルブ1の充電
部分が接地導電層5Aに対して持つキャパシタンスを分
圧用のコンデンサに兼用して小型かつ安価な電圧センサ
を得ることができる. 次に上述のように構威された真空度低下検出装置の原理
および動作を説明する。第3図は真空アーク放電の維持
または裁断特性を銅電極の場合を例に示す特性線図であ
り、銅電極の場合10ないし30A程度の範囲に真空ア
ークの維持が不安定になる領域が存在し、不安定領域よ
り大きな電流領域では真空アークが安定に維持され、不
安定領域の下限値電流を裁断電流ioと呼び、Io以下
の電流領域では真空アークを維持できない.これが真空
バルブで電流遮断現象や高周波消弧現象が発生する原因
である.なお、裁断電流1oの値は電極材料によっても
大きく変化するが、裁断電流1oの値は真空度によって
も大幅に変化し、第10図に破線で示すように10−”
Torrオーダにまで真空度が低下すると電流裁断現象
はほとんど見られなくなる.この発明は、この電流裁断
現象の真空度依存性を利用することにより、極間のフラ
ンシオーバ電圧が大幅に低下する程に真空度が低下しな
いうちに真空度の低下を検知しようとするものである.
ところで、誘導負荷に接続された真空バルブ形開閉装置
を投入するか、あるいは電流零点直前で接点を開離した
場合、接点間距M(極間距離)が小さいために極間にか
かる電圧に耐えきれず、先行放電や再発弧が生じ.負荷
回路のLC共振による過渡振動が誘発される.また、こ
の過渡振動によって電流零点が形威される. 第4図は気中遮断器の電流裁断現象に基づく再発弧サー
ジの発生状況を示す波形図であり、気中遮断器またはガ
ス遮断器などの消弧力の弱い遮断器では過渡振動に基づ
く電流零点が生じてもこれを遮断できず、アークが維持
され、商用周波電流iの次の電流零点で遮断する.また
、投入時には続弧状態で接点が閉合する.このように消
弧力の弱い遮断器では、先行放電や再発弧サージを遮断
してしまうことがないので、後述する多重再発弧サージ
を生ずることがなく、したがって発生する開閉サージの
持続時間も0.1ms以下と短い.第5図は消弧性ガス
の再発弧サージの発生状況を示す波形図であり、消弧力
の高い真空バルブは先行放電または再発弧に伴って生ず
る通常100KHzから数MHzの過度振動を数サイク
ル程度で遮断してしまい、これに伴って負荷側にLC共
振が誘発され、これが原因で接点間の電圧e一が再び立
ち上がり再発弧が繰り返される.これが多重再発弧サー
ジの発生メカニズムであり、その持続時間は図に示すよ
うに通常10程度と長く、かつその振幅も第4図に示す
気中遮断器の再発弧サージのそれの数倍と大きく、例え
ばIOKV近くに達する.また、真空バルブの真空度が
10−”Torrオーダにまで低下すると多重再発弧サ
ージの発生が認められなくなり、前述の気中遮断器にお
ける先行放電や再発弧サージの発生状層に近づくので、
多重再発弧サージの有無により真空バルブの真空度の低
下を知ることが可能になる. 第6図は前述の実施例の動作を示すタイムチャートであ
り、第1図に示す真空度低下検出装直の構威図と対応さ
せながらその動作を説明する.図において、制御部22
から時刻hにおいて真空バルブの開極動作指令信号22
Tが出され、これよりΔt,時間遅れたtオ時点で接点
の開離が始まり、開極動作時間T,を経過したt#時点
で接点が開き切ったと仮定する.制御部22から制御信
号22Tを受けたトリガバルス発生回路25はΔ1.時
間遅れたt.時点(接点の開離開始時点)に同期したト
リガパルス25Sを発生し、例えばフリンプフロソブ回
路等の記憶回路で構成される無信号検出回路27がオン
状態となるHレベルの信号275を出力する.各相真空
バルブの真空度が正常値であれば多重再発弧パルス23
5がノイズ弁別回路26に向けて出力される.これを受
けたノイズ弁別回路26は、例えば積分回路,量子化回
路等によって多重再発弧パルス235を整流した上で時
間積分し、その積分値Vtが設定信号31Sのしきい値
レベルv3を超えたときパルス信号26Sが出力される
.したがって時間積分値Viの小さい再発弧パルスと時
間積分値Vtの大きい多重再発弧パルスとが弁別され、
多重再発弧パルスのみがパルス信号26Sに変換される
.パルス慣号26Sはリセント信号として無信号検出回
路27に入力され、これによりHレベルの信号27Sは
Lレベルに戻る.信号273を受ける真空度低下検出回
路28は信号27Sが開極動作時間T1以上持続したと
きオン状態となって報知信号29を発する例えばタイマ
ースイッチ回路であってよく、図の場合多重再発弧サー
ジが検出されてHレベルの信号27Sの持続時間がT,
以下となるため、報知償号29は出力されない. 次に時刻tl1で投入動作inn信号22Cが出力され
、これよりΔ1.遅れた接点の閉動作時間Txの初期t
lmでトリガパルス255が発生したと仮定する.この
とき、各相真空バルブの真空度が正常であれば、開動作
時と同様に判断部30が動作するので、報知信号29は
発生しない.ところが、各相真空バルブの一つの真空度
が10−”Torrオーダにまで低下し、多重再発弧サ
ージが発生せず、検出信号23Sとして先行放電パルス
のみが時刻taxで検出されたと仮定する.この場合、
先行放電パルスの時間積分値Vtが小さく、設定信号3
1のしきい値レベルVs以下なので、ノイズ弁別回路2
6はパルス信号26Sを発生せず、したがって無信号検
出回If}27の出力信号27SはHレベルを接点が閉
威する時刻t目以後も持続する.その結果、真空度低下
検出回路28はt.時点以後も持続するHレベルの信号
を検知してオン状態となり、真空度の低下を報知する各
相別の信号29U.29V.29−のいずれかを出力す
る.なお、真空度の低下が10−’Torrオーダに低
下すると、真空バルブの開閉の繰り返しに対して多重再
発弧サージが検出されたりしなかったりし、真空度が1
0−”Torrに近づくとともに多重再発弧サージがほ
とんど発生しなくなる.したがって、多重再発弧サージ
が不規則に発生する時点で真空バルブを交換することに
より、耐電圧性能が低下することによるトラブルを未然
に防止することができる.なお、上述の実施例において
判断部の権威は回路の詳細までを限定するものではなく
、例えばノイズ弁別回路において検出信号を単に整流し
その絶対値が大きいことを利用して設定信号と比較する
構戒としてもよく、あるいはマイクロプロセッサを用い
てディジタル信号処理を行う構成としてもよい. 第7図はこの発明の異なる実施例を示す概略構威図であ
り、真空バルブ形開閉装置2lの各相真空バルブIU,
 1ν,1討がそれぞれ接地導電層44を有する電力ケ
ーブル42U.42V.42Wを介して外部負荷12ニ
導電接続され、各相ケーブルの接地線45それぞれに多
重再発弧サージ電流検出用の電流センサとしてのロゴウ
スキーコイル43U.43V.43−が設けられた点が
前述の実施例と異なっており、各相ケーブルの対地充電
電流中に含まれるサージ電流威分をロゴウスキーコイル
が検出してその検出信号42一を判断部30に向けて出
力する.このように構威した場合には、電力ケーブルの
対地静電容量をサージ検出用の高圧コンデンサに兼用で
き、したがってロゴウスキーコイルの絶縁支持構造を大
幅に簡素化できるので、検出装置を小形かつ安価に形成
できる利点が得られる.なお、多重再発弧サージ電圧を
検出しようとする場合、接地導電層44に一端が接地さ
れたサージ検出用のコンデンサを接続することにより容
易に検出することができる.〔発明の効果〕 この発明は前述のように、各相真空バルブの開閉時に発
生する多重再発弧サージの検出センサを各相真空バルブ
に対応して設け、判断部によって多重再発弧パルスが検
出されなかったとき、真空バルブの真空度が低下したも
のと判断して報知信号を発するよう構威した.その結果
、真空バルブの真空度が10−’Torrオーダにまで
低下すると多重再発弧サージが発生しなくなるという性
質を利用し、真空バルブの耐電圧が大幅に低下する以前
に真空度の低下を各相真空バルブ別に早期に検知するこ
とが可能になる.したがって、異常放電を検出する従来
の技術において、真空バルブに必要な耐電圧性能を維持
できない程に真空度が低下しないと検知できないという
欠点が排除され、真空バルブとして必要な耐電圧性能を
保持した状態で真空度の低下を検出できる真空バルブ形
開閉装置の真空度低下検出装置を提供することができる
.また、真空バルブの絶縁容器を絶縁支持材に兼用して
電流センサまたは電圧センサを設けるか、あるいは負荷
側の電力ケーブル各相対地静電容量を高圧コンデンサに
兼用して接地線側に電流センサまたは電圧センサを設け
るよう構威すれば、多重再発弧サージの検出センサの絶
縁が大幅に簡素化され、したがって検出センサを小型か
つ安価に形威できる利点が得られる.
[Detailed Description of the Invention] [Field of Industrial Application] This invention detects a decrease in the degree of vacuum of a vacuum valve and multiple re-ignition surges in a switching device such as a vacuum circuit breaker or a vacuum switch using a vacuum valve. This article relates to a device for detecting a decrease in the degree of vacuum. [Conventional technology]
Taku vacuum circuit breakers and vacuum switches have highly degassed parts that correspond to the arc extinguishing chambers of other circuit breakers. A completely sealed vacuum valve is used. Vacuum is an ideal insulating medium, but if the vacuum deteriorates, it cannot perform its function, so the degree of vacuum of the vacuum valve plays a large role in the reliability of vacuum circuit breakers and vacuum switches. .. Therefore, in order to ensure high reliability when manufacturing vacuum valves, we control the manufacturing process such as material selection, purchasing, processing accuracy and degassing treatment, and perform performance confirmation tests.
Strict quality control is implemented from inspection and other procurement of materials to product shipment. In particular, the control of the vacuum level of the vacuum valve is the most important, and thorough management is carried out to prevent complete failure. Figure 8 is a principle explanatory diagram of the factors that reduce the degree of vacuum in a vacuum valve.
-Internal gas release and vacuum in which gas molecules remaining inside the vacuum vessel, electrodes, and conductors that make up the vacuum valve are gradually released from their surfaces, although they are maintained at a high vacuum of about Torr. It gradually decreases due to slow leakage, where air gradually enters from the outside through small holes in the valve's construction materials and joints. Among these, the one caused by gas release is a curved change with a saturation value, while the one caused by slow leak is a linear change depending on the pore size. Therefore, the overall change is shown as the total gas by superimposing these. In order to manage the vacuum life of a vacuum valve, it is necessary to take appropriate measures to address these deterioration factors. FIG. 9 is a schematic cross-sectional view showing a conventional vacuum valve equipped with a sensor that directly detects a decrease in the degree of vacuum.
is supported by a cylindrical insulating container 5, a fixed contact 2 supported by a metal end plate 4A connected to one end thereof, and an end plate 4B and a metal bellows 6 connected to the other end of the insulating container. By using the movable contactor 3 as a main structural element and driving the movable contactor 3 by an operation device (not shown), a circuit breaker or a switch having the function of switching a load current or a charging current is constructed. Further, inside the vacuum valve l, a metal shield 7 is provided concentrically inside the insulating container 5, and metal vapor generated by an arc when the current is cut off adheres to the inner wall of the insulating container 5, reducing insulation performance. It is designed to prevent this from happening. Reference numeral 10 denotes a magnetron element as a vacuum sensor, which is airtightly attached to the end plate 4A and detects the vacuum inside the vacuum valve. However, this method has the disadvantage that a new slow leak occurs at the airtight joint between the vacuum valve and the vacuum sensor, which impairs the $1 performance of the vacuum valve. Furthermore, it is almost impossible to attach a vacuum sensor to an existing vacuum valve by post-processing. FIG. 10 is a characteristic diagram showing the relationship between the internal pressure of the vacuum valve and the alternating current Franciover voltage between the poles. When the degree of vacuum inside the vacuum valve decreases to an extent approaching the 10-" Torr order, the Franciover voltage increases. Started to drop, 10-”
to the lower limit value (1G-'K) on the order of 10-' Torr
V order), and above the order of 10 Torr, the franchisee voltage gradually increases and recovers to the franchisee voltage in atmospheric pressure air. In general, when the degree of vacuum in a vacuum valve drops to the order of 10-'' Torr, it becomes unable to withstand the voltage of the power system, and in the open state, abnormal discharge occurs between the contact poles or between the contact connected to the power system and the metal shield. occurs, and in the closed state, an abnormal discharge occurs between the pair of contacts and the metal shield. Therefore, the conventional technology also has the above characteristics and detects the abnormal discharge electrically from the outside of the vacuum valve. There are several known devices for detecting a decrease in the degree of vacuum that indirectly detect the decrease in the degree of vacuum by detecting the decrease in the degree of vacuum. A circuit breaker provided between l1 and the load system 12,
A vacuum valve 1 such as a switch has a lightning arrester 13 on its load side.
, CR type surge absorber 14, etc. are provided, and paying attention to the fact that a discharge current (3) flows due to abnormal discharge between poles, a current sensor 15 is installed on the ground wire side of the lightning arrester l3 or surge absorber 14, and the current sensor 15 is installed on the ground wire side of the surge arrester l3 or surge absorber 14 to detect the discharge current that occurs when the poles are opened. It is designed to detect a decrease in the degree of vacuum by detecting the discharge current. FIG. 12 is a structural diagram showing the second prior art, in which high-frequency noise generated along with an abnormal discharge 100 between electrodes of the vacuum valve 1 is connected to the power supply system side of the vacuum valve via a high-voltage capacitor 16. The detector 17 is configured to detect the high frequency noise generated by the noise. FIG. 13 is a structural diagram showing the third prior art, in which the electric potential of the metal shield 7 that increases due to the abnormal discharge 101s that occurs between the metal shield 7 and the contact during opening and closing is insulated. A voltage dividing capacitor l8 is connected to the external terminal 7^ of the metal shield drawn out through the container 5 via a high voltage capacitor l6, and the voltage detector 19 is configured to measure the potential of the voltage dividing capacitor l8. There is. FIG. 14 is a configuration diagram showing a fourth conventional technique, in which the potential rise of the metal shield 7 due to the abnormal discharge 101s that occurs similarly to the third conventional technique is suppressed by providing a gap between the metal shield 7 and the outer surface of the insulating container 5. It is configured to be detected by a potential sensor 20 that is held and arranged. [Problems to be Solved by the Invention] In the first prior art, abnormal discharge can be detected using a lightning arrester or a surge absorber, but the discharge current and abnormal discharge 100 caused by abnormal voltage at cut-off or turn-on are detected.
It is necessary to provide a discrimination circuit on the output side of the current sensor 15 to discriminate between the discharge current and the discharge current generated by the current sensor, which causes a problem that the detection circuit becomes complicated. In the second conventional technology, it has been experimentally verified that when an abnormal discharge occurs between the poles, it immediately changes to an arc discharge, and because the arc drop between the poles is small, the detected high-frequency noise charge is There is a problem in that the amount is extremely small, only a few PCs, making it difficult to perform highly reliable detection.Also, it is necessary to provide a high-voltage capacitor 16 for high-frequency noise detection for each vacuum valve, which increases the size of the device. Furthermore, like the second conventional technique, the third conventional technique requires a high-voltage capacitor 16, and an external terminal must be provided by penetrating the insulating container, which poses a risk of adversely affecting the performance of maintaining the degree of vacuum. There is. In the fourth conventional technology, since the coupling capacitance between the metal shield and the potential sensor is small, capacitance coupling easily occurs between the vacuum valve of the other phase, etc., and the judgment accuracy of the detection result is low, leading to erroneous judgments. There are flaws that are easy to make. Furthermore, the above-mentioned four conventional technologies have a common feature that abnormal discharge does not occur unless the withstand voltage performance between the poles of the vacuum valve decreases to the extent that it cannot withstand the normal ground voltage of the grid, and therefore abnormal discharge is detected. At this point, vacuum valves have the disadvantage that they have lost their ability to withstand voltage. An object of this invention is to detect a decrease in the degree of vacuum in a vacuum valve at an early stage and with high accuracy without decreasing the degree of vacuum to the extent that the vacuum valve cannot withstand the voltage between its electrodes. [Means for Solving the Problems] In order to solve the above problems, according to the present invention, the vacuum valve reduces the vacuum degree of the vacuum valve of the vacuum valve type switchgear connected to the AC power system by cutting the current. phenomenon. The system detects multiple re-ignition surges based on the presence or absence of multiple re-ignition surges generated based on a high-frequency arc-extinguishing phenomenon. When the multiple re-ignition current is not detected during the opening/closing operation time of the vacuum valve in response to the output signals of the respective detection sensors and the opening/closing control signal of the vacuum valve type switching device, a decrease in the degree of vacuum is detected in the vacuum valve. It shall be equipped with a determination section that determines that a phenomenon has occurred and issues a signal, and the detection sensor is composed of either a current sensor, a current sensor, or a voltage sensor, and is insulated and supported on the outer periphery of the insulating container of each phase vacuum valve. It also includes those in which each phase vacuum valve is connected to the load side via a power cable having a ground conductive layer, and a detection sensor is arranged on the ground line side of the ground conductive layer. [Operation] Due to the strong arc-extinguishing power of vacuum, vacuum valves have current interruption phenomena and high-frequency arc extinguishing phenomena that cannot be seen in air circuit breakers or gas circuit breakers. Long multiple re-ignition surges occur. However,
These phenomena become unstable when the degree of vacuum decreases to the order of 10 Torr, and the withstand voltage between electrodes begins to decrease.
-" Torr, it almost never occurs. The above-mentioned means are designed to utilize the above-mentioned phenomenon for detecting a decrease in the degree of vacuum. That is, it is usually caused by the resonance of the inductance and free capacitance of the load circuit. As a detection sensor for multiple re-ignition surges with a determined vibration frequency of 100 KHz to several MHz, a high-frequency current sensor or high-frequency voltage sensor is installed corresponding to each phase vacuum valve of the opening/closing equipment 1 to detect and judge multiple re-ignition surges. The section determines whether multiple re-ignition signals are detected within the opening and closing time of the vacuum valve, and when no signal is detected, it issues an alarm signal indicating a decrease in the degree of vacuum. As a result, the decrease in the degree of vacuum causes the generation of multiple re-ignition surges to become unstable at 10-' T, which is close to 10-' Torr.
orr order. In other words, it is possible to detect this at an early stage before the vacuum valve's interelectrode withstand voltage drops significantly. In addition, the amplitude of multiple re-ignition surges is several KV, which is several times larger than that of other circuit breakers, and the duration is also 1 S.
It is about 10 times longer than other circuit breakers in terms of length, so it can be easily distinguished from the preceding discharge between the poles and the re-ignition surge that occurs when the vacuum valve opens and closes. , it is possible to improve the detection accuracy of multiple re-ignition surges. Furthermore, the Rogowski coil is used as a current sensor. Alternatively, by installing a voltage divider as a voltage sensor on the outer periphery of the insulating container of the vacuum valve or on the ground wire side of the load-side power cable, the ground capacitance of the insulating container or the ground capacitance of the power cable can be reduced. It can also be used as a high-voltage capacitor to make the detection sensor small and inexpensive. [Example] This invention will be explained below based on an example. FIG. 1 is a schematic diagram showing a vacuum level drop detection device for a vacuum valve type switchgear according to an embodiment of the present invention, and shows an example in which a current sensor is used as the detection sensor. In the figure, each phase vacuum valve IU, IV.
The fixed contact 2 side of each of the 1st class 1 is connected to the Sanwa AC power system 11, and the movable contact 3 side is connected to the external load 12, and opening/closing is controlled by a control section (operation section) 22. Current sensor 23U as a multiple re-ignition surge detection sensor. 23V. 23- is in the form of a Rogowski coil, and is insulated and supported on the outer periphery of a psossing device (not shown) located close to the load side of each phase vacuum valve. Additionally, the Rogowski coil may be installed on the power supply side of each phase vacuum valve. Reference numeral 30 denotes a determining section, which receives, for example, an opening control signal 22T. A trigger pulse generation circuit 25 receives the closing lIl1II signal 22C and emits a trigger pulse 25S synchronized with the start point of the opening/closing operation of the contact, and a signal that is turned on in response to the trigger pulse 25S and rectifies the detection signal 23S of the current sensor. A noise discrimination circuit 26 determines that multiple re-ignition pulses have occurred when the time integral value exceeds the level specified by the setting signal 313 and emits a pulse signal 263, and a pulse signal 26S is generated during the opening/closing operation time of the contact. There is a no-signal detection circuit 27 that issues an ON signal 27S when the ON signal 27S is not detected, and a no-signal detection circuit 27 that determines whether a decrease in the degree of vacuum has occurred in the vacuum valve when the ON signal 27S is detected, and outputs the notification signal 29 for each phase vacuum valve. The system is equipped with a vacuum degree drop detection circuit 28 to detect a decrease in the degree of vacuum, and is configured to be able to specify which of the phase vacuum valves 10, IV, and 1%1 a decrease in the degree of vacuum has occurred based on the notification signal 29. FIG. 2 is a sectional view of a main part showing different arrangement states of the detection sensor in the above-mentioned embodiment. It is formed into an annular shape so as to surround the outer periphery of the insulating container 5, and is insulated and supported by the wA green container 5. Further, a ground conductive layer 5^ is formed on the outer peripheral surface of the insulating container 5 as necessary to eliminate the influence of the alternating current electric field on the Rogowski coil 23. In addition, when the multiple re-ignition surge detection sensor is a voltage sensor, the ground conductive layer 5A is grounded via a Cera Q7 capacitor having good high frequency characteristics, for example, and this Cera ξ
If we use a power capacitor as a detection capacitor to detect multiple re-ignition surge voltages, the capacitance that the charging part of the vacuum valve 1 has with respect to the ground conductive layer 5A can be used as a voltage dividing capacitor to generate a small and inexpensive voltage. You can get a sensor. Next, the principle and operation of the vacuum level drop detection device constructed as described above will be explained. Figure 3 is a characteristic diagram showing the maintenance or cutting characteristics of vacuum arc discharge using copper electrodes as an example. In the case of copper electrodes, there is a region where maintenance of vacuum arc becomes unstable in the range of about 10 to 30A. However, in a current region larger than the unstable region, the vacuum arc is maintained stably, and the lower limit current in the unstable region is called the cutting current io, and in the current region below Io, the vacuum arc cannot be maintained. This is the cause of current interruption phenomena and high frequency arc extinguishing phenomena in vacuum valves. Note that the value of the cutting current 1o varies greatly depending on the electrode material, but the value of the cutting current 1o also varies greatly depending on the degree of vacuum, and as shown by the broken line in FIG.
When the degree of vacuum decreases to the Torr order, the current cutting phenomenon is almost no longer observed. This invention attempts to detect a decrease in the degree of vacuum before the degree of vacuum decreases to the extent that the franchisee voltage between the poles decreases significantly by utilizing the vacuum degree dependence of this current cutting phenomenon. be.
By the way, if a vacuum valve type switchgear connected to an inductive load is turned on or the contacts are opened just before the current zero point, the distance M between the contacts (distance between the poles) is small and the voltage applied between the poles cannot be withstood. As a result, preliminary discharge and re-ignition occur. Transient vibrations are induced by LC resonance in the load circuit. This transient oscillation also creates a current zero point. Figure 4 is a waveform diagram showing the occurrence of a re-surge due to the current cutting phenomenon of an air circuit breaker. Even if a zero point occurs, it cannot be interrupted, the arc is maintained, and it is interrupted at the next current zero point of the commercial frequency current i. Also, when the switch is turned on, the contact closes in a continuous arc state. In this way, a circuit breaker with a weak arc-extinguishing force does not cut off a preceding discharge or a re-striking surge, so multiple re-striking surges, which will be described later, do not occur, and therefore the duration of the opening/closing surge that occurs is also zero. .It is short, less than 1ms. Figure 5 is a waveform diagram showing the occurrence of a re-sparking surge of the arc-extinguishing gas.A vacuum bulb with high arc-extinguishing power can withstand several cycles of transient vibrations, usually from 100 KHz to several MHz, that occur with preceding discharge or re-sparking. This causes LC resonance to be induced on the load side, which causes the voltage between the contacts to rise again, causing repeated re-ignition. This is the mechanism by which multiple re-triggering surges occur.As shown in the figure, their duration is usually as long as about 10, and their amplitude is several times larger than that of the re-triggering surge of an air circuit breaker as shown in Figure 4. , for example, reaches near IOKV. Furthermore, when the degree of vacuum of the vacuum valve decreases to the order of 10-'' Torr, the occurrence of multiple re-ignition surges is no longer recognized, and the situation approaches that of the preceding discharge and re-ignition surge in the air circuit breaker described above.
It is possible to detect a decrease in the vacuum level of the vacuum valve by the presence or absence of multiple re-ignition surges. FIG. 6 is a time chart showing the operation of the above-mentioned embodiment, and its operation will be explained in conjunction with the structural diagram of the vacuum drop detection system shown in FIG. In the figure, the control unit 22
From time h to time h, the vacuum valve opening operation command signal 22
It is assumed that the contact starts opening at time t0, which is delayed by Δt, and is fully opened at time t#, when the opening operation time T has elapsed. The trigger pulse generation circuit 25 receiving the control signal 22T from the control section 22 generates Δ1. Time delayed t. A trigger pulse 25S is generated in synchronization with the point in time (the point in time when the contact starts to open), and a signal 275 at H level is outputted, which turns on the no-signal detection circuit 27, which is constituted by a memory circuit such as a flimp-frosov circuit. If the vacuum degree of each phase vacuum valve is a normal value, multiple re-ignition pulses 23
5 is output to the noise discrimination circuit 26. Upon receiving this, the noise discrimination circuit 26 rectifies the multiple re-ignition pulse 235 using, for example, an integrating circuit, a quantizing circuit, etc., and then integrates it over time, and when the integrated value Vt exceeds the threshold level v3 of the setting signal 31S. When the pulse signal 26S is output. Therefore, a re-ignition pulse with a small time integral value Vi and a multiple re-ignition pulse with a large time integral value Vt are discriminated.
Only multiple re-ignition pulses are converted into pulse signal 26S. The pulse signal 26S is input as a recent signal to the no-signal detection circuit 27, thereby causing the H level signal 27S to return to the L level. The vacuum degree drop detection circuit 28 that receives the signal 273 may be, for example, a timer switch circuit that turns on and issues the notification signal 29 when the signal 27S continues for the opening operation time T1 or more. The duration of the detected H level signal 27S is T,
As the result is as follows, the notification number 29 is not output. Next, at time tl1, the closing operation inn signal 22C is output, and from this, Δ1. Initial time t of closing operation time Tx of delayed contact
Assume that trigger pulse 255 occurs at lm. At this time, if the degree of vacuum of each phase vacuum valve is normal, the determination unit 30 operates in the same manner as in the opening operation, so the notification signal 29 is not generated. However, it is assumed that the degree of vacuum of one of the vacuum valves of each phase has decreased to the order of 10-'' Torr, multiple re-ignition surges have not occurred, and only the preceding discharge pulse has been detected as the detection signal 23S at time tax. case,
The time integral value Vt of the preceding discharge pulse is small, and the setting signal 3
Since it is below the threshold level Vs of 1, the noise discrimination circuit 2
6 does not generate the pulse signal 26S, so the output signal 27S of the no-signal detection circuit If}27 continues even after the time t when the contact closes the H level. As a result, the vacuum level drop detection circuit 28 detects t. The signal 29U. for each phase is turned on by detecting an H level signal that continues even after the point in time, and notifies the decrease in the degree of vacuum. 29V. Output either of 29-. Note that when the degree of vacuum decreases to the order of 10-'Torr, multiple re-ignition surges may or may not be detected due to repeated opening and closing of the vacuum valve, and the degree of vacuum may decrease to 10-' Torr.
Multiple re-ignition surges almost no longer occur as they approach 0-''Torr. Therefore, by replacing the vacuum valve when multiple re-ignition surges occur irregularly, you can prevent problems caused by a decline in withstand voltage performance. Note that in the above-described embodiment, the authority of the judgment section does not limit the details of the circuit; for example, in the noise discrimination circuit, the detection signal is simply rectified and the fact that its absolute value is large is utilized. It is also possible to use a configuration in which the digital signal is compared with a set signal using a microprocessor, or a configuration in which digital signal processing is performed using a microprocessor. Each phase vacuum valve IU of the opening/closing device 2l,
1v and 1v each have a ground conductive layer 44, and the power cable 42U. 42V. A Rogowski coil 43U.42W is conductively connected to the external load 12 through the grounding wire 45 of each phase cable, and serves as a current sensor for detecting multiple re-ignition surge currents. 43V. 43- is provided, and the Rogowski coil detects the surge current included in the ground charging current of each phase cable, and the detection signal 42- is sent to the judgment unit 30. Output to. In this configuration, the ground capacitance of the power cable can be used as a high-voltage capacitor for surge detection, and the insulating support structure of the Rogowski coil can be greatly simplified, making the detection device smaller and smaller. It has the advantage of being inexpensive to form. Note that when attempting to detect multiple re-ignition surge voltages, it can be easily detected by connecting a surge detection capacitor whose one end is grounded to the ground conductive layer 44. [Effects of the Invention] As described above, in this invention, a sensor for detecting multiple re-ignition surges that occurs when each phase vacuum valve is opened/closed is provided corresponding to each phase vacuum valve, and multiple re-ignition pulses are detected by the determination section. When it did not, it was determined that the vacuum level of the vacuum valve had decreased and an alarm signal was issued. As a result, by utilizing the property that multiple re-ignition surges no longer occur when the vacuum level of the vacuum valve decreases to the order of 10-' Torr, we have succeeded in reducing the vacuum level before the withstand voltage of the vacuum valve significantly decreases. This enables early detection of each phase vacuum valve. This eliminates the drawback of conventional technology for detecting abnormal discharges, which is that they cannot be detected unless the degree of vacuum drops to such an extent that the withstand voltage performance required for a vacuum bulb cannot be maintained. It is possible to provide a vacuum level drop detection device for a vacuum valve type opening/closing device that can detect a vacuum level drop in the state. In addition, the insulating container of the vacuum valve can also be used as an insulating support material to provide a current sensor or voltage sensor, or the relative ground capacitance of each power cable on the load side can also be used as a high-voltage capacitor and a current sensor or voltage sensor can be installed on the ground wire side. If a voltage sensor is provided, the insulation of the detection sensor for multiple re-ignition surges will be greatly simplified, and the advantage will be that the detection sensor can be made small and inexpensive.

【図面の簡単な説明】[Brief explanation of drawings]

第1図はこの発明の実施例である真空バルブ形開閉vt
宣の真空度低下検出装直を示す概略構威図、第2図は実
施例における電流センサの配設状態を示す要部の断面図
、第3図は発明の原理を説明するための真空アークの維
持電流特性線図、第4図は気中遮断器の再発弧サージの
発生状態を示す波形図、第5図は真空バルブの多重再発
弧サージの発生状態を示す波形図、第6図は実施例の動
作を示すタイムチャート、第7図はこの発明の異なる実
施例を示す概略構威図、第8図は真空バルブの真空度低
下要因を示す特性線図、第9図は真空度センサを設けた
従来の真空バルブの断面図、第10図は真空バルブの真
空度と交流フランシオーバ電圧との関係を示す特性線図
、第11図は第1の従来技術を示す構成図、第12図は
第2の従来技術を示す構成図、第13図は第3の従来技
術を示す構或図、第14図は第4の従来技術を示す構威
図である.1:真空ハルプ、Ill, IV, IN 
:各相真空ハルブ、2.3:接触子(接点)  5:絶
縁容器、7:金属シールド、11:交流電力系統、12
:外部負荷、21:開閉装置、22:制御部、15.2
3.43 :電流セン(検出センサ) 30:判断部、 42:電力ケープ ノレ、 44:接地導電層、 45:接地線. て1一 第3図 jA+団 第5回 片N C B斗収(置緋1生) 第F3図 89図 涜き芝バ′ル7゛円@F圧カ(Toけ)′$10図 第11切 〕l5イ3tシJ 某14朋
Figure 1 shows a vacuum valve type opening/closing VT which is an embodiment of this invention.
Fig. 2 is a cross-sectional view of the main parts showing the arrangement of the current sensor in the embodiment, Fig. 3 is a vacuum arc diagram for explaining the principle of the invention. 4 is a waveform diagram showing the generation state of re-ignition surge of an air circuit breaker, Figure 5 is a waveform diagram showing the occurrence state of multiple re-ignition surge of vacuum valve, and Figure 6 is a waveform diagram showing the occurrence state of multiple re-ignition surge of vacuum valve. A time chart showing the operation of the embodiment, Fig. 7 is a schematic diagram showing a different embodiment of the present invention, Fig. 8 is a characteristic line diagram showing factors for reducing the vacuum level of the vacuum valve, and Fig. 9 is a vacuum sensor. 10 is a characteristic line diagram showing the relationship between the degree of vacuum of the vacuum valve and the AC Franciover voltage. FIG. 11 is a configuration diagram showing the first conventional technique. FIG. 13 is a block diagram showing the second conventional technique, FIG. 13 is a block diagram showing the third conventional technique, and FIG. 14 is a block diagram showing the fourth conventional technique. 1: Vacuum Halp, Ill, IV, IN
: Vacuum hull for each phase, 2.3: Contactor (contact) 5: Insulating container, 7: Metal shield, 11: AC power system, 12
: External load, 21: Switchgear, 22: Control unit, 15.2
3.43: Current sensor (detection sensor) 30: Judgment section, 42: Power cape, 44: Ground conductive layer, 45: Ground wire. 11 Figure 3 j A + group 5th piece N C B Tou (Okihi 1st grade) Figure F3 Figure 89 Sacred grass bar 7゛ yen @F pressure (Toke) '$10 Figure 11 cut] l5i3tshiJ certain 14tomo

Claims (1)

【特許請求の範囲】 1)交流電力系統に接続された真空バルブ形開閉装置の
真空バルブの真空度低下を前記真空バルブが電流裁断現
象、高周波消弧現象に基づいて発する多重再発弧サージ
の有無によって検知するものであって、各相真空バルブ
それぞれに対応して設けられた前記多重再発弧サージの
検出センサと、この多重再発弧サージの検出センサそれ
ぞれの出力信号と前記真空バルブ形開閉装置の開閉制御
信号とを受け前記真空バルブの開閉動作時間中に前記多
重再発弧電流が検出されなかったとき当該真空バルブに
真空度の低下が生じたものと判断して信号を発する判断
部とを備えたことを特徴とする真空バルブ形開閉装置の
真空度低下検出装置。 2)検出センサが電流センサ、電圧センサのいずれかか
らなり、各相真空バルブの絶縁容器の外周側に絶縁支持
されてなることを特徴とする請求項1記載の真空バルブ
形開閉装置の真空度低下検出装置。 3)各相真空バルブがそれぞれ接地導電層を有する電力
ケーブルを介して負荷側に接続され、前記接地導電層の
接地線側に検出センサが配されてなることを特徴とする
請求項1または請求項2記載の真空バルブ形開閉装置の
真空度低下検出装置。
[Scope of Claims] 1) Presence or absence of multiple re-ignition surges generated by the vacuum valve based on a current cutting phenomenon and a high frequency arc extinguishing phenomenon to reduce the degree of vacuum in a vacuum valve of a vacuum valve type switchgear connected to an AC power system. The multiple re-ignition surge detection sensor provided corresponding to each phase vacuum valve, the output signal of each of the multiple re-ignition surge detection sensors, and the output signal of the multiple re-ignition surge detection sensor and the vacuum valve type switching device. and a determination unit that receives the opening/closing control signal and determines that a decrease in the degree of vacuum has occurred in the vacuum valve and issues a signal when the multiple re-ignition current is not detected during the opening/closing operation time of the vacuum valve. A device for detecting a decrease in the degree of vacuum of a vacuum valve type switching device, characterized by the following. 2) The degree of vacuum of the vacuum valve type switchgear according to claim 1, wherein the detection sensor comprises either a current sensor or a voltage sensor, and is insulated and supported on the outer periphery of an insulating container of each phase vacuum valve. Drop detection device. 3) Each phase vacuum valve is connected to the load side via a power cable having a ground conductive layer, and a detection sensor is arranged on the ground line side of the ground conductive layer. Item 2. A vacuum degree drop detection device for a vacuum valve type opening/closing device according to item 2.
JP5105590A 1989-10-19 1990-03-02 Vacuum valve switchgear Expired - Fee Related JP2611479B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5105590A JP2611479B2 (en) 1989-10-19 1990-03-02 Vacuum valve switchgear

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP1-272151 1989-10-19
JP27215189 1989-10-19
JP5105590A JP2611479B2 (en) 1989-10-19 1990-03-02 Vacuum valve switchgear

Publications (2)

Publication Number Publication Date
JPH03205717A true JPH03205717A (en) 1991-09-09
JP2611479B2 JP2611479B2 (en) 1997-05-21

Family

ID=26391576

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5105590A Expired - Fee Related JP2611479B2 (en) 1989-10-19 1990-03-02 Vacuum valve switchgear

Country Status (1)

Country Link
JP (1) JP2611479B2 (en)

Also Published As

Publication number Publication date
JP2611479B2 (en) 1997-05-21

Similar Documents

Publication Publication Date Title
US4547769A (en) Vacuum monitor device and method for vacuum interrupter
US4163130A (en) Vacuum interrupter with pressure monitoring means
KR970007512B1 (en) Method and apparatus for detecting a reduction in the degree of vacuum of vcuum valve while in operation
JP4169024B2 (en) Vacuum switchgear
EP2883068B1 (en) Apparatus for online monitoring of medium and high voltage circuit breaker
JP6704907B2 (en) Vacuum isolation switch, switch assembly and test method enabling vacuum test
KR20030051595A (en) Method and device for monitoring vacuum degree in vacuum circuit breaker
CA1208337A (en) Vacuum monitor for vacuum interrupter
JPH03205717A (en) Vacuum down detecting apparatus for vacuum valve switchgear
KR920008836B1 (en) Vacuum monitor for vacuum interrupter
JP2885233B2 (en) Vacuum drop detector for vacuum valve type switchgear
JP2002082138A (en) Lightning detection sensor and distribution line service entrance device
JP2705266B2 (en) Vacuum valve switchgear
JPS63186512A (en) Grounding device for compact switchgear
JPH09196997A (en) Simulated partial-discharge generator
Liu et al. Parasitic arcing in EHV circuit breakers
US2819446A (en) Circuit for testing high capacity power circuit breakers
Surges et al. Simultaneous measurement of high and low frequency pre-breakdown currents on HV vacuum interrupters
JPH0433093B2 (en)
JPH0470568A (en) Surge voltage sensor
JPH043612B2 (en)
JPS61294725A (en) Vacuum drop detector for vacuum interruptor
JPS59175524A (en) Vacuum degree monitor of vacuum breaker
JPH0531246B2 (en)
JPH02168520A (en) Circuit breaker for electric power

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees