JPH0320567A - Hot-air space heater - Google Patents

Hot-air space heater

Info

Publication number
JPH0320567A
JPH0320567A JP15654789A JP15654789A JPH0320567A JP H0320567 A JPH0320567 A JP H0320567A JP 15654789 A JP15654789 A JP 15654789A JP 15654789 A JP15654789 A JP 15654789A JP H0320567 A JPH0320567 A JP H0320567A
Authority
JP
Japan
Prior art keywords
airfoil
adjustable
hot air
combustion
variable
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP15654789A
Other languages
Japanese (ja)
Other versions
JPH0726760B2 (en
Inventor
Mitsuharu Tomioka
冨岡 光春
Tadashi Yamazaki
正 山崎
Toshiji Ishikawa
利治 石川
Kazuto Nakatani
和人 中谷
Akira Oshima
朗 大島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP15654789A priority Critical patent/JPH0726760B2/en
Publication of JPH0320567A publication Critical patent/JPH0320567A/en
Publication of JPH0726760B2 publication Critical patent/JPH0726760B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Direct Air Heating By Heater Or Combustion Gas (AREA)

Abstract

PURPOSE:To extend the reach of warm air so as to expand the comfortable space in ratio in a controlled space by providing a control device whereby an upper adjustable airfoil is slid upward or downward according to the volume of warm air or the heating value and a lower adjustable airfoil makes a slope with the forward end at a low position when the heating is reduced to the weakest. CONSTITUTION:An upper adjustable airfoil 17 is turned to make different angles according to signals from a combustion control; it makes an angle X for 'strong', an angle Y for 'medium', and an angle Z for 'weak' in a linkage with the degree of combustion and the volume of air sent by a convection blower. Since a connecting plate 39 is connected to a pivot 37a of an upper-adjustable-airfoil lever 37 by means of a tensile spring 40, a turn of the upper adjustable airfoil 17 moves the connecting plate 39 downward in a straight-line motion. Then, guided by a lower-end-of-a-slit 39b, a lower-adjustable-airfoil lever 38 turns with turn of a pivot 38a thereon in an interlocking motion with the upper-adjustable-airfoil lever 37. When the combustion and the blowing of air are switched to 'weak', the upper adjustable airfoil 17 makes a steep slope and the lower adjustable airfoil 35 is also raised somewhat so that warm air is made to flow close to the floor.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は温風を用いて室内の暖房を行なう温風暖房機に
関するものである. 従来の技術 一般にこの種温風暖房機、例えばファンヒータは、第1
3図に示すように本体101内に熱発生手段であるバー
ナ102を設け、このバーナ102から燃料ガスを本体
背面に受けた送風機103からの風と混合して温風吹出
口104から吹出し室内を暖房するようになっている.
そして上記温風吹出口104には水平方向のルーパー1
05を多数設けて前記温風を略水平方向へ案内するよう
になっている.発明が解決しようとする!II しかしながら上記温風吹出口104に設けられているル
ーパー105は本体に固定されているため温風の吹出方
向を変えることができず、強暖房時、中暖房時、弱暖房
時において室内の温度分布に大きな差異が生じるという
!lBがあった.すなわち強暖房時は送風機103から
の送風が強いので温風が遠くまで吹出され使用者が通常
使う居住空間(天井とか部屋の隅部を除く空間)ははぼ
均一な温度分布となるが、暖房が中、弱と弱くなるにし
たがって送風機103からの送風量も弱くなり、そのた
めに温風のドラフト作用が相対的に強いものとなって温
風の到達距離が短くなり温風が足元まで届かず、足元が
寒く暖房機附近のみが熱くなり温度分布むらが生じる等
、強、中、弱においてその室内温度分布に大きな違いが
生じ使用者が不快感を感じるような結果となっていた. そこで本発明者は第14図に示すように温風吹出口10
4に回動自在な可変jl 106を設け、この可変翼1
06を温風量に応じて回動させることにより、温度分布
が均一化できるものを考えた.ところがこの場合、可変
翼106を傾斜状として温風を吹出すようにした時に上
記可変翼106の下部に大きな空間107が形威され、
この空間10マが矢印Aのように流れる温風の流れを阻
害し、温風の方向と流速の変更が必ずしも十分に行なわ
れていなかった.特にこれは最弱燃焼温風量とした時に
顕著に表れていた.したがって固定ルール一方式のもの
に比べて快適空間率は役70%と大巾に改善されたが、
今だその快適空間率向上には改善の余地が残されていた
, 本発明はこのような点に鑑みてなしたもので、特に最弱
発熱時における快適空間率の向上を目的としたものであ
る. 11111を解決するための手段 本発明は上記目的を達威するため温風吹出口を有する本
体と、この本体内に設けた熱発生手段ならびにこの熱発
生手段に風を供給して前記温風吹出口に設けた上下二つ
の回助自在な可変舅と、前記各可変翼を回動させる駆動
手段と、この駆動手段を介して前記可変翼のうち上可変
翼を前記温風量あるいは熱発生手段が発生する熱量に応
じて上下に揺動させるとともに下可変翼を最弱発熱時に
その前端側が下方に位直するよう傾斜状とする制御部と
を備えた構威としてある. 作用 本発明は上記構或によって暖房能力の変更に伴って温風
吹出口に設けた可変翼を回動しその傾斜角度を変えて温
風の吹出角度を変えることができるので、温風の到達距
離は暖房能力の変更があっても変わらないものとなり、
室内温度の分布むらは少ないものとなり、より快適な暖
房が可能となる.しかも最弱暖房時には下可変翼も傾斜
状となって上可変翼との間に先細の吹出空間を形或する
ようになるので、温風の流れを円滑にするとともに上可
変翼で向きを変えた上側温風の流れに対して下側温風を
誘引する効果が加わって全体として温風はより遠くまで
到達するようになり、その分快適空間率が向上する. 実施例 以下本発明の実施例を図面を用いて説明すると、1は暖
房機本体、2はこの暖房機本体lの前面に装着した前板
で、@凰吹出口3を有する.4は上記暖房機本体l内に
設けたバーナで、熱発生手段となるものであり、この実
施例では灯油を気化させて燃焼させる気化式バーナが用
いてある.5は上記バーナ4の下部を覆うバーナケース
で、仕切板6に取付けてある.7は上記バーナ4の上部
を覆う燃焼筒で、上部開口にはハニカム状の排ガス浄化
触媒8が設けてある.9は上記燃焼筒7を覆う如く暖房
機本体l内に設けたダクトで、前面下部に開口部lOが
形威してある. 11はこのダクト後部に臨む如く取付
けた対流用送風機で、ファンガ一ド12によって覆われ
ており、暖房機本体1外より吸い込んだ室内空気をダク
ト内に供給し、このダクト9内で燃焼筒7からの燃焼ガ
スと混合させて温風吹出口3より吹出すようになってい
る.14は上記ダクト9の下部開口部lOに設けた吹出
口枠で、両側部を暖房機本体1の両側板1aに取付けた
支持金具A13(第2図参照)にスポット止めしてある
.この吹出口枠14は断面凹状に形成してその底壁に開
口l5を形威し、この開口l5をダクト9の開口部lO
に合致させるとともに、枠縁14aを前記前板2の内面
に対接させてダクト9の開口部10と温風吹出口3とを
連絡している.そして上記吹出口枠開口l5の上辺緑に
は傾斜方向の案内片l6が設けてある. 17は前記ylAW!i吹出口3の上部に位置する如く
吹出口枠14に設けた上可変翼で、その内面側は円弧状
面1日としてある.この可変翼17は第2図に示すよう
にその両端に突設した軸19を暖房機本′体側板laに
取付けた支持金具A13に貫通させて矢印dで示す如く
回動自在としてある. 2Gは上記上可変翼17の軸1
9の一方に設けた連係カムで、二つのビン軸21、22
が設けてある.23は上記上可変翼17を嬬動させる駆
動板で、第1駆動板24と第2駆動板25とからなり、
これらは相互に摺動自在なるように重合し、かつ通常は
一体になって動くように圧縮バネ26を介して連係させ
てある.そして上記駆動板のうち第1駆動板24側に二
つの切欠溝24a、24bを形威してその一方の切欠溝
24aに前記上可変翼17の連係カム20の一方のピン
軸21が嵌合させてある.また上記駆動板のうち第2駆
動板25側に逃げ用切欠部28を形戒するとともに、後
述する駆動用モータとの連係部となる段部29が形威し
てある.30は前記第1,第2駆動板24、25を重合
した状態で上下動自在に支持するガイドである.31は
上記第1、第2駆動#Ii24、25を上下動させる駆
動用モータで、正逆回転可能なステッピングモータで構
威してあり、そのモータ紬には駆動用カム32を取付け
、この駆動用カム32の駆動軸33を前記第2駆動#I
i25の段部29に係当させて連係させてある.34は
第2駆動板25を常に駆動用カム32に係当させるため
の引張バネである. 35は上可変翼l7の下方に配設した下可変翼である.
第3図は支持金具AI3と反対側を示したものであり、
36は支持金具Bであり、上可変翼17の他方には上可
変翼レバー37が設けてあり、下可変翼35には下可変
翼レバー38が設けてある.上可変翼レバー37のビン
軸37aと下可変翼レバーのピン軸38aは、連結板3
9にて連結されている.また、ピン軸37a、38aの
差しこまれる連結板の部分はそれぞれ長穴上39aと長
穴下30bとなっている。40は連結板39の上方と上
可変翼ビン紬37aを連係している引張バネである.4
2は上可変翼レバー37に上方向の力を加えているネジ
リバネ上、43は下可変翼レバー38に同様の力を加え
ているネジリバネ下である.44は連結板39が外れる
のを防ぐための連結板支えである. 一方、第1図に示す45は上記燃焼部及び駆動用モータ
31を制御する制御部で、これは第5図のブロック図で
示すように構或されている.すなわち、46はサーミス
タ等からなる温度検知部、47は室内温度を設定する室
温設定部、48ば温度検知部46からの信号S1と室温
設定部47からの信号S!とを比較してその差に応じて
例えば強、中、弱のような信号S,を出力する比較判定
部、49はこの比較半径部31からの出力信号S,に基
づいてバーナ4の燃焼量と対流用送風機1lの送風量を
制御する燃焼制御部で燃焼量及び送風量を制御する信号
S4を可変翼駆動部5lにも出力するようになっている
.そして可変翼駆動部51は上記信号S4に基づいて上
可変翼17の回転角を制御する信号S,をモータ31に
出力するようになっている. 第6ずは上記燃焼制御部5lの処理状態を示すフローチ
ャートである. まず、ステップ65は運転スイッチの操作を判定するも
ので、スイッチがON操作された場合は次のステップ6
6で室温と設定温度との差に応じた燃焼量の算出を行な
い、次ステップ67で同じく送風機11の回転数算出を
、又次ステップ68でポンプ周波数算出を行ない、それ
らを次ステップ69で燃焼出力として出す.そしてステ
ップ70で燃焼開始を確認した後、前記ステップ66で
算出した燃焼量に応して上可変真角度をステップ71で
算出し、その角度出力をテスップ72で出力し、上可変
H17を所定角度回動させる. なお、ステップ73は運転中か停止中かを判断する分岐
で、運転中の場合はステップ74を飛ばして次ステップ
へと進が、停止中の場合はステップ74を処理した後次
ステップへと移行する.ここで、ステップ74は前記ス
テップ7lで算出されている上可変翼l7の角度を再度
停止位置の角度に設定し直す処理を行うものである.こ
れより、停止時は必ず上可変翼17を停止位置に戻すこ
とができるようになる. 次に上記のように構威した本実施例の動作を説明する. まず、運転開始前、上・下可変寓l7、35は第7図実
線に示すように略垂直方向(この位置を停止位置と称す
)に位置しており、温風吹き出し口2を覆っている. この状態から運転スイッチを投入すると、温度検知部4
6ならびに室温設定部47からの出力に基づいて発する
比較判定部48からの出力S3によって燃焼制御部49
が作動し、制御信号S4を発してあらかじめ定められた
シーケンスに従って燃焼を開始させるとともに対流用温
風機l1を回転させる.そして可変翼駆動部51が信号
SSを発してモータ31を駆動し、上可変翼17を所定
の角度に回転させる. すなわちモータ3lの回転により第2図で示すように駆
動用カム32の駆動軸33が矢印aのように回転し、引
張バネ34で引張られている第2駆動板25ならびにこ
の第2駆動板25に引張バネ26を介して一体化してあ
る第1駆動板24が矢印bのように降下する.これによ
り第1駆動板24の切欠溝24aに嵌合しているピン軸
21を介して連係カム20が矢印Cのように回転し、こ
の連係カム20と軸l9を介して一体の上可変寓17が
矢印dのように回転する.この上可変翼l7の回転角度
は燃焼制御部49からの信号S4によって変わり、強の
時は第7図のX、中の時はY,弱の時はZのように燃焼
量ならびに対流用送風機の送風量に連動して変化する.
その際に、下可変翼35は上可変翼l7と連動して変化
する.すなわち上可変翼l7が回動ずると、連結板39
と上可変翼レバー37のピン軸37aは引張バネ40に
て連結されているので、連結板39は直線運動で、下方
へ下がっていく.それにまり長穴下39bにガイドされ
て、下可変翼レバー38のピン軸38aは回動すること
になり、下可変翼レバー38は上可変翼レバー17と連
動して回動することになる.この際、ネジリバネ下43
により、下可変翼レバーは上方へ引き上げられようとす
るので、ピン軸38aは長穴下39bの常に上方に当接
している.次に下可変翼35が吹出口枠l4と当たり、
第9図に示すように、動きが停止すると、引張バネ40
が伸びていき、上可変翼レバー37のビン軸37aは長
穴上39aの中を摺動ずる.つまり、上・下可変翼レバ
ー37、3Bの長さz. 、itを概略11にしている
ことにより、上可変翼17の動く速さよりも速く下可変
翼35は動き、第7図に示すように、上可変真レバー3
7がXの時には下可変翼レバーはX′の位置にあり、温
風吹出口を最大に開口させる.次に、中の時は上可変翼
はYの位置にあるが、上可変翼レバー37は長穴39a
の中を摺動するだけなので、下可変翼35の位置はX′
と同じ位置にある.弱の時は上可変翼17は2の位置と
なる.この際は、上可変翼レバー37のビン軸37aは
長穴上39aに当接し、連結板39を持ち上げるので、
それにつれ、ネジリバネ43にて常に上方へ付勢されて
いる下可変翼レバー35は、長穴下39bの上方に当接
しつつ、若干持ち上がることになり、Z′の位置になる
(第7図、第lO図). 以上から明らかなように強燃焼・強送風の時は上可変翼
l7が第9図Xのように略水平になっており、下可変翼
35もX′の如く略水平になって上可変翼l7下方の大
きな空間をなくしている.そのため、流速が全体的に増
加しており、第11図X#で示す如く温風は従来のもの
より遠くまで到達し、かつ、快適性を高めることが可能
となる.次に、中燃焼・中送凰の時は第7図Yのように
なり少し下向きに傾斜する.したがって温風の流れは強
の時よりも下向きとなって温風は第11図のY′のよう
になり、従来のものより遠くまで到達するようになる.
また、下可変翼35x′の状熊と同じなので、温風が下
向きに流れ過ぎて、床面の温度が上がることを防止して
いる.同様に弱燃焼・弱送風になると上可変真17は第
10図Zのようにかなり下向きに傾斜するようになり、
それにつれ、下可変翼35もZ′のように多少持ち上が
るので温風は第14図で21のように床面に沿って流れ
るようになる. したがって温風の流速が弱くてドラフトの影響を受けや
すくてもその温風は従来のものに比べるとかなり遠くま
で到達するようになる.特に、下可変翼35の存在によ
り、吹出口3の巾を狭くし、流速増加と共に、上可変翼
17の円弧状面l8への付着効果(コアンダ効果)を高
めること(誘引効果の向上)により、温風が上方へをが
るのを防ぎ、快適性の向上を図っている. 第12図(A) 、CB)は可変翼l枚〈^)、この発
明による可変[2枚の場合(B)の快適空間の比較を示
すが、快適空間が80%にまで向上しており、かつ上方
が暑くなっておらず、「頭寒足熱」のここちよい状態に
なっていることがわかる。
DETAILED DESCRIPTION OF THE INVENTION Field of Industrial Application The present invention relates to a hot air heater that heats a room using hot air. BACKGROUND TECHNOLOGY In general, this kind of hot air heater, for example, a fan heater, has a first
As shown in FIG. 3, a burner 102 as a heat generating means is provided in the main body 101, and fuel gas from the burner 102 is mixed with air from a blower 103 received at the back of the main body and blown out from a hot air outlet 104 to heat the room. It is designed to do so.
The warm air outlet 104 has a horizontal looper 1.
A large number of 05 are provided to guide the warm air in a substantially horizontal direction. Invention tries to solve! II However, since the looper 105 provided at the hot air outlet 104 is fixed to the main body, the direction of hot air blowing cannot be changed, and the temperature distribution in the room is affected during strong heating, medium heating, and weak heating. There is a big difference! There was an IB. In other words, during strong heating, the air from the blower 103 is strong, so the hot air is blown far, and the living space that the user usually uses (excluding the ceiling and corners of the room) has a fairly uniform temperature distribution. As the temperature decreases from medium to low, the amount of air blown from the blower 103 also decreases, and as a result, the drafting effect of the warm air becomes relatively strong, and the distance the hot air reaches becomes shorter, preventing the warm air from reaching the feet. This resulted in large differences in the indoor temperature distribution between high, medium, and low levels, resulting in users feeling uncomfortable, such as when their feet were cold and only the area near the heater became hot, resulting in uneven temperature distribution. Therefore, the inventor has developed a hot air outlet 10 as shown in FIG.
4 is provided with a rotatable variable jl 106, and this variable wing 1
We considered a system that could make the temperature distribution uniform by rotating the 06 according to the amount of hot air. However, in this case, when the variable blades 106 are tilted to blow out hot air, a large space 107 is formed at the bottom of the variable blades 106,
This space of 10 mm obstructed the flow of warm air as shown by arrow A, and the direction and velocity of the hot air were not always changed sufficiently. This was especially noticeable when the weakest combustion hot air volume was used. Therefore, the comfortable space ratio was significantly improved to 70% compared to the one-type fixed rule system.
There still remains room for improvement in improving the comfortable space ratio.The present invention was made in consideration of these points, and is aimed at improving the comfortable space ratio, especially during the time of the lowest heat generation. be. Means for Solving Problems 11111 In order to achieve the above object, the present invention includes a main body having a hot air outlet, a heat generating means provided in the main body, and a method for supplying air to the heat generating means to the hot air outlet. The upper and lower variable blades are provided with two rotatable variable blades, a drive means for rotating each of the variable blades, and the upper variable blade of the variable blades is caused to generate the hot air volume or the heat generation means through the drive means. It is equipped with a control section that swings up and down depending on the amount of heat, and a control section that tilts the lower variable blade so that the front end of the wing is tilted downward when the lowest heat is generated. Effect of the present invention With the above-mentioned structure, as the heating capacity is changed, the variable blade provided at the hot air outlet can be rotated and its inclination angle can be changed to change the hot air blowing angle. remains unchanged even if the heating capacity changes,
There will be less unevenness in the indoor temperature distribution, and more comfortable heating will be possible. Furthermore, when the heating is at its weakest, the lower variable blade also becomes slanted to form a tapered blowout space between it and the upper variable blade, so that the flow of hot air is smoothed and the direction can be changed by the upper variable blade. The effect of attracting the lower warm air to the upper warm air flow allows the warm air to reach farther as a whole, and the comfortable space ratio improves accordingly. EXAMPLES Below, examples of the present invention will be described with reference to the drawings. Reference numeral 1 denotes a main body of the heater, and 2 a front plate attached to the front surface of the main body of the heater, which has an air outlet 3. Reference numeral 4 denotes a burner installed in the heater body 1, which serves as a heat generating means, and in this embodiment, a vaporization type burner that vaporizes and burns kerosene is used. 5 is a burner case that covers the lower part of the burner 4, and is attached to the partition plate 6. Reference numeral 7 denotes a combustion cylinder that covers the upper part of the burner 4, and a honeycomb-shaped exhaust gas purification catalyst 8 is provided in the upper opening. Reference numeral 9 denotes a duct installed inside the heater body l so as to cover the combustion tube 7, and has an opening lO at the lower front surface. Reference numeral 11 denotes a convection blower installed facing the rear of this duct, which is covered by a fan guard 12 and supplies indoor air sucked in from outside the heater body 1 into the duct. The hot air is mixed with combustion gas from the hot air outlet 3 and blown out. Reference numeral 14 designates an air outlet frame provided at the lower opening lO of the duct 9, and its both sides are spot-fixed to support fittings A13 (see FIG. 2) attached to the side plates 1a of the heater main body 1. This air outlet frame 14 is formed to have a concave cross section and has an opening l5 formed in its bottom wall, and this opening l5 is connected to the opening l0 of the duct 9.
The frame edge 14a is brought into contact with the inner surface of the front plate 2 to communicate the opening 10 of the duct 9 and the hot air outlet 3. A guide piece l6 in an inclined direction is provided on the upper green side of the air outlet frame opening l5. 17 is the aforementioned ylAW! i An upper variable blade is provided on the air outlet frame 14 so as to be located above the air outlet 3, and the inner surface thereof has an arcuate surface. As shown in FIG. 2, the variable blade 17 is rotatable as shown by the arrow d by having shafts 19 protruding from both ends thereof passed through a support fitting A13 attached to the side plate la of the main body of the heater. 2G is the axis 1 of the upper variable blade 17
A linking cam provided on one side of the bottle shaft 9 connects the two bottle shafts 21 and 22.
is provided. 23 is a drive plate for moving the upper variable blade 17, which is composed of a first drive plate 24 and a second drive plate 25;
These are superimposed so that they are slidable relative to each other, and are normally linked via a compression spring 26 so that they move as one. Two cutout grooves 24a and 24b are formed on the first drive plate 24 side of the drive plate, and one pin shaft 21 of the linking cam 20 of the upper variable blade 17 is fitted into one of the cutout grooves 24a. I have let you. Furthermore, an escape notch 28 is formed on the second drive plate 25 side of the drive plate, and a step 29 is formed which becomes a linking part with a drive motor to be described later. Reference numeral 30 denotes a guide that supports the first and second driving plates 24 and 25 in a superposed state so as to be vertically movable. Reference numeral 31 denotes a drive motor that moves the first and second drives #Ii 24 and 25 up and down, and is composed of a stepping motor that can rotate in forward and reverse directions. The drive shaft 33 of the cam 32 is connected to the second drive #I.
It is connected to the stepped portion 29 of i25. Reference numeral 34 denotes a tension spring for keeping the second drive plate 25 in constant engagement with the drive cam 32. 35 is a lower variable wing arranged below the upper variable wing l7.
Figure 3 shows the side opposite to the support fitting AI3.
Reference numeral 36 denotes a support fitting B, and an upper variable blade lever 37 is provided on the other side of the upper variable blade 17, and a lower variable blade lever 38 is provided on the lower variable blade 35. The pin shaft 37a of the upper variable blade lever 37 and the pin shaft 38a of the lower variable blade lever are connected to the connecting plate 3.
They are connected at 9. Further, the portions of the connecting plate into which the pin shafts 37a and 38a are inserted are an upper elongated hole 39a and a lower elongated hole 30b, respectively. Reference numeral 40 denotes a tension spring that connects the upper part of the connecting plate 39 and the upper variable wing bin pongee 37a. 4
2 is the upper part of the torsion spring that applies an upward force to the upper variable blade lever 37, and 43 is the lower part of the torsion spring that applies the same force to the lower variable blade lever 38. 44 is a connecting plate support for preventing the connecting plate 39 from coming off. On the other hand, numeral 45 shown in FIG. 1 is a control section for controlling the combustion section and the drive motor 31, and this is constructed as shown in the block diagram of FIG. 5. That is, 46 is a temperature detecting section consisting of a thermistor or the like, 47 is a room temperature setting section for setting the indoor temperature, and 48 is a signal S1 from the temperature detecting section 46 and a signal S! from the room temperature setting section 47. A comparison/judgment section 49 outputs a signal S, such as strong, medium, or weak, depending on the difference, based on the output signal S from the comparison radius section 31. The combustion control section that controls the amount of air blown by the convection blower 1l also outputs a signal S4 that controls the combustion amount and the amount of air blown to the variable blade drive section 5l. The variable blade drive unit 51 outputs a signal S to the motor 31 to control the rotation angle of the upper variable blade 17 based on the signal S4. The sixth part is a flowchart showing the processing status of the combustion control section 5l. First, step 65 is to judge the operation of the operation switch, and if the switch is turned on, the next step 6
In step 6, the amount of combustion is calculated according to the difference between the room temperature and the set temperature, and in the next step 67, the rotation speed of the blower 11 is calculated, and in the next step 68, the pump frequency is calculated, and in the next step 69, the combustion amount is calculated. Output as output. After confirming the start of combustion in step 70, the upper variable true angle is calculated in step 71 according to the combustion amount calculated in step 66, the angular output is outputted in tesp 72, and the upper variable H17 is set at a predetermined angle. Rotate it. Note that step 73 is a branch that determines whether the vehicle is running or stopped; if it is running, it skips step 74 and proceeds to the next step; if it is stopped, it moves to the next step after processing step 74. do. Here, in step 74, the angle of the upper variable blade l7 calculated in step 7l is reset to the angle of the stop position. This makes it possible to always return the upper variable wing 17 to the stop position when stopping. Next, the operation of this embodiment configured as described above will be explained. First, before starting operation, the upper/lower variable levers 17 and 35 are located in a substantially vertical direction (this position is referred to as the stop position) as shown by the solid line in FIG. 7, and cover the hot air outlet 2. .. When the operation switch is turned on from this state, the temperature detection section 4
6 and the output S3 from the comparison/judgment section 48 based on the output from the room temperature setting section 47.
is activated, issues a control signal S4, starts combustion according to a predetermined sequence, and rotates the convection hot air fan l1. Then, the variable blade drive section 51 issues a signal SS to drive the motor 31 to rotate the upper variable blade 17 to a predetermined angle. That is, the rotation of the motor 3l causes the drive shaft 33 of the drive cam 32 to rotate in the direction of arrow a as shown in FIG. The first driving plate 24, which is integrated with the holder via a tension spring 26, descends as shown by arrow b. As a result, the linking cam 20 rotates in the direction of arrow C via the pin shaft 21 fitted in the notched groove 24a of the first drive plate 24, and the linking cam 20 and the shaft 19 are integrally connected to each other. 17 rotates as shown by arrow d. Moreover, the rotation angle of the variable blade l7 changes according to the signal S4 from the combustion control unit 49, and the combustion amount and the convection blower are changed as indicated by X in FIG. 7 when it is strong, Y when it is medium, and Z when it is weak. It changes in conjunction with the air flow rate.
At this time, the lower variable blade 35 changes in conjunction with the upper variable blade l7. That is, when the upper variable blade l7 rotates, the connecting plate 39
Since the pin shaft 37a of the upper variable wing lever 37 is connected by a tension spring 40, the connecting plate 39 moves downward in a straight line. Accordingly, the pin shaft 38a of the lower variable blade lever 38 rotates while being guided by the lower elongated hole 39b, and the lower variable blade lever 38 rotates in conjunction with the upper variable blade lever 17. At this time, the lower torsion spring 43
As a result, the lower variable blade lever tends to be pulled upward, so that the pin shaft 38a is always in contact with the upper part of the lower elongated hole 39b. Next, the lower variable blade 35 hits the outlet frame l4,
As shown in FIG. 9, when the movement stops, the tension spring 40
extends, and the pin shaft 37a of the upper variable blade lever 37 slides in the upper elongated hole 39a. In other words, the length z of the upper and lower variable wing levers 37 and 3B. , it is approximately 11, the lower variable wing 35 moves faster than the moving speed of the upper variable wing 17, and as shown in FIG.
When 7 is X, the lower variable blade lever is at the X' position, opening the hot air outlet to its maximum. Next, when inside, the upper variable blade is in the Y position, but the upper variable blade lever 37 is in the elongated hole 39a.
Since the lower variable wing 35 only slides inside, the position of the lower variable wing 35 is X'
It is in the same position as . When it is weak, the upper variable wing 17 is in position 2. At this time, the pin shaft 37a of the upper variable blade lever 37 comes into contact with the upper elongated hole 39a and lifts the connecting plate 39, so that
As this happens, the lower variable wing lever 35, which is always urged upward by the torsion spring 43, comes into contact with the upper part of the lower elongated hole 39b and is slightly lifted, reaching the position Z' (Fig. 7, Figure lO). As is clear from the above, during strong combustion and strong wind blowing, the upper variable blade l7 becomes approximately horizontal as shown in FIG. The large space below l7 has been eliminated. Therefore, the flow velocity increases overall, and as shown by X# in Figure 11, the warm air can reach farther than in the conventional system, and comfort can be improved. Next, in the case of medium combustion and medium delivery, it becomes as shown in Fig. 7 Y and slopes slightly downward. Therefore, the flow of warm air is more downward than when it is strong, and the hot air becomes like Y' in Figure 11, reaching farther than in the conventional case.
Also, since the lower variable blade 35x' has the same shape as the bear, it prevents warm air from flowing too downward and increasing the temperature of the floor surface. Similarly, when the combustion becomes weak and the air is blown weakly, the upper variable stem 17 becomes inclined considerably downward as shown in FIG. 10Z,
At the same time, the lower variable blade 35 also lifts up a little as indicated by Z', so that the warm air flows along the floor surface as shown at 21 in Fig. 14. Therefore, even if the flow velocity of the hot air is low and it is easily affected by drafts, the hot air can reach much farther than with conventional systems. In particular, the presence of the lower variable blade 35 narrows the width of the outlet 3, increases the flow velocity, and increases the adhesion effect (Coanda effect) to the arcuate surface l8 of the upper variable blade 17 (improves the attraction effect). , which prevents hot air from blowing upward and improves comfort. Figure 12 (A), CB) shows a comparison of the comfortable space between one variable blade (^) and the variable blade according to the present invention (B), which shows that the comfortable space has been improved to 80%. , and the upper part of the body is not hot, indicating that the person is in a comfortable state of ``cold head and feverish feet''.

次に、上記のようにして暖房をおこなっていて運転を停
止させると、可変翼駆動部51は燃焼制御部49からの
出力がなくなってモータ31を元の状態まで回転、すな
わら第2図の矢印aとは反対側へ回転させ、二枚の可変
翼17、35で吹出口3を閉塞する. なお上記実施例の説明では上可変翼17を燃焼量ならび
に対流用送風量の両方と連動して可変させるようにした
が、これは少なくともどちらか一方と連動させればよい
ものであり、又他の具体的な構威も本発明に最適な例と
して示したものであって、本発明の目的・効果を達威す
るものであればどのように構威してもよいものである.
発明の効果 以上のように本発明の温風暖房機は、温風量あるいは熱
発生手段が発生する熱量の変更と連動して、又は手動で
温風吹出口の上・下可変翼を上下方向に回動させるので
、暖房能力の強弱等に関係なく室内の温度分布をほぼ一
定のものとすることができ、不快感の少ない快適な暖房
効果が得られる. 特に下可変翼を弱時には傾斜状態とするので温風の流れ
を円滑にすると同時に上可変翼で向きを変えた温風の流
れを誘引する効果が加わって全体として温風はより遠く
まで到達するようになり、その分弱時における快適空間
率が向上する。
Next, when heating is performed as described above and the operation is stopped, the variable blade drive section 51 loses the output from the combustion control section 49 and rotates the motor 31 to its original state, that is, as shown in FIG. , and close the air outlet 3 with the two variable blades 17 and 35. In the description of the above embodiment, the upper variable vane 17 is variable in conjunction with both the combustion amount and the convection air flow rate, but this can be done by making it variable in conjunction with at least one of them. The specific structure is also shown as an optimal example for the present invention, and any structure may be used as long as it achieves the purpose and effect of the present invention.
Effects of the Invention As described above, the hot air heater of the present invention allows the upper and lower variable blades of the hot air outlet to be rotated in the vertical direction in conjunction with changing the amount of hot air or the amount of heat generated by the heat generating means, or manually. This allows the indoor temperature distribution to be kept almost constant regardless of the strength of the heating capacity, resulting in a comfortable heating effect with less discomfort. In particular, since the lower variable blade is tilted when it is at low speed, the flow of warm air is smoothed, and at the same time, the upper variable blade has the effect of attracting the flow of warm air that has changed direction, making the warm air reach further as a whole. As a result, the comfortable space ratio during low-light conditions improves accordingly.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の一実施例における温風暖房機の断面図
、第2図、第3図同要部の拡大斜視図、第4図は外観斜
視図、第5図は同制御部を示すブロック図、第6図は動
作状態を示すフローチャート、第7図は動作状態を示す
断面図、第8図、第9図、第lO図は卓燃焼状態におけ
る作動状態を示示す断面図、第14図は改良前の温風暖
房機の断面図である.
Fig. 1 is a sectional view of a warm air heater according to an embodiment of the present invention, Figs. 2 and 3 are enlarged perspective views of the same main parts, Fig. 4 is an external perspective view, and Fig. 5 shows the control section. 6 is a flowchart showing the operating state, FIG. 7 is a sectional view showing the operating state, FIGS. 8, 9, and 10 are sectional views showing the operating state in the table combustion state, and FIG. Figure 14 is a cross-sectional view of the hot air heater before improvement.

Claims (1)

【特許請求の範囲】[Claims] 温風吹出口を有する本体と、この本体内に設けた熱発生
手段ならびにこの熱発生手段に風を供給して前記温風吹
出口より温風を吹出させる送風機と、前記温風吹出口に
設けた上下二つの回動自在な可変翼と、前記各可変翼を
回動させる駆動手段と、この駆動手段を介して前記可変
翼のうち上可変翼を前記温風量あるいは熱発生手段が発
生する熱量に応じて上下に揺動させるとともに下可変翼
を最弱発熱時にその前端側が下方に位置するよう傾斜状
とする制御部とを備えた温風暖房機。
A main body having a hot air outlet, a heat generating means provided in the main body, a blower for supplying air to the heat generating means and blowing out warm air from the hot air outlet, and upper and lower two provided at the hot air outlet. a rotatable variable vane, a drive means for rotating each of the variable vanes, and an upper variable vane of the variable vanes through the drive means according to the amount of hot air or the amount of heat generated by the heat generating means. A hot air heater comprising a control unit that swings up and down and tilts the lower variable blade so that its front end side is positioned downward when the lowest heat generation is generated.
JP15654789A 1989-06-19 1989-06-19 Hot air heater Expired - Fee Related JPH0726760B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP15654789A JPH0726760B2 (en) 1989-06-19 1989-06-19 Hot air heater

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP15654789A JPH0726760B2 (en) 1989-06-19 1989-06-19 Hot air heater

Publications (2)

Publication Number Publication Date
JPH0320567A true JPH0320567A (en) 1991-01-29
JPH0726760B2 JPH0726760B2 (en) 1995-03-29

Family

ID=15630182

Family Applications (1)

Application Number Title Priority Date Filing Date
JP15654789A Expired - Fee Related JPH0726760B2 (en) 1989-06-19 1989-06-19 Hot air heater

Country Status (1)

Country Link
JP (1) JPH0726760B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112432244A (en) * 2020-11-11 2021-03-02 青岛海尔空调器有限总公司 Air conditioner electric heating, method and device for controlling air conditioner electric heating and air conditioner

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112432244A (en) * 2020-11-11 2021-03-02 青岛海尔空调器有限总公司 Air conditioner electric heating, method and device for controlling air conditioner electric heating and air conditioner

Also Published As

Publication number Publication date
JPH0726760B2 (en) 1995-03-29

Similar Documents

Publication Publication Date Title
JP5408319B1 (en) Air conditioning indoor unit
KR940003315B1 (en) Hot air heater
JPH0320567A (en) Hot-air space heater
JPH0317463A (en) Hot air heater
JP2671584B2 (en) Hot air heater
JPH0781741B2 (en) Hot air heater
JP2848123B2 (en) Hot air heater
JP2512155B2 (en) Hot air heater
JP4000673B2 (en) Hot air heater
JPH0754202B2 (en) Hot air heater
JPH02154943A (en) Warm air heater
JP3832054B2 (en) Heat dissipation device
JP2671583B2 (en) Hot air heater
KR100218959B1 (en) Blowing direction control device and its control method
JP3832052B2 (en) Hot water heater
JPH02267461A (en) Hot air heater
JPH0762565B2 (en) Hot air heater
JPH0723813B2 (en) Hot air heater
JPH0676860B2 (en) Hot air heater
JPH03144255A (en) Hot air heater
JPH02115658A (en) Air direction variable blade drive controller for hot air room heater
JPH0762564B2 (en) Hot air heater
JP3409504B2 (en) Hot air heater
JP2523791B2 (en) Hot air heater
JPH0756413B2 (en) Hot air heater

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees