JPH03205633A - Magneto-optical recorder - Google Patents

Magneto-optical recorder

Info

Publication number
JPH03205633A
JPH03205633A JP1304273A JP30427389A JPH03205633A JP H03205633 A JPH03205633 A JP H03205633A JP 1304273 A JP1304273 A JP 1304273A JP 30427389 A JP30427389 A JP 30427389A JP H03205633 A JPH03205633 A JP H03205633A
Authority
JP
Japan
Prior art keywords
magneto
optical recording
magnetic field
recording medium
layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP1304273A
Other languages
Japanese (ja)
Inventor
Osamu Ito
修 伊藤
Kunimaro Tanaka
田中 邦麿
Kyosuke Yoshimoto
恭輔 吉本
Koichi Takeuchi
浩一 竹内
Seio Watanabe
渡辺 勢夫
Kazuhiko Tsutsumi
和彦 堤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP1304273A priority Critical patent/JPH03205633A/en
Priority to US07/558,584 priority patent/US5172364A/en
Priority to NL9001725A priority patent/NL9001725A/en
Priority to KR1019900011638A priority patent/KR930008148B1/en
Publication of JPH03205633A publication Critical patent/JPH03205633A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To obtain the high reliable magneto-optical recorder by controlling a AC voltage to be given to an exciting coil in relation to an output signal of a synchronous detection circuit. CONSTITUTION:A detected signal of reflected light in projected light to a magneto-optical recording medium 5 is synchronously detected in relation to the AC voltage V2 of the exciting coil 4 for generating a magnetic field to be given to the magneto-optical recording medium 5, and the AC voltage V2 of the exciting coil 4 is controlled in relation to this synchronously detected signal. By this method, the magnetic field intensity given to the magneto-optical recording medium 5 at the time of recording information is controlled to be always its proper magnetic intensity, and a regenerative signal level at the time of reproducing recorded information is stabilized, and then the accuracy of reproducing the information is promoted and hence the reliability is enhanced.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、光磁気記録装置に関し、更に詳述すれば光磁
気記録媒体の磁界感度に応じた磁界強度を、光磁気記録
媒体に与え得る光磁気記録装置を提案するものである。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Application Field] The present invention relates to a magneto-optical recording device, and more specifically, it is capable of imparting a magnetic field strength to a magneto-optical recording medium in accordance with the magnetic field sensitivity of the magneto-optical recording medium. This paper proposes a magneto-optical recording device.

〔従来の技術〕[Conventional technology]

従来の光磁気記録装置は、それに装填した光磁気記録媒
体に光ビームを投射し、その投射位置に一定強度で発生
させた磁界を与えて、情報を記録するようになっている
A conventional magneto-optical recording device records information by projecting a light beam onto a magneto-optical recording medium loaded therein and applying a magnetic field generated at a constant intensity to the projection position.

一方、光磁気記録媒体は、それに与えられた磁界強度と
記録情報を再生した再生信号とが第4図に示す如く関連
する特性がある。第4図は横軸を光磁気記録媒体に与え
た磁界強度としており、縦軸を再生信号の振幅としてい
る、この第4図から明らかなように適正な磁界強度H.
を与えた場合には再生信号の振幅は最大で得られ、適正
な磁界強度H0から外れるにともない、再生信号の振幅
は漸減する特性となっている。
On the other hand, a magneto-optical recording medium has a characteristic that the strength of a magnetic field applied thereto and a reproduction signal for reproducing recorded information are related as shown in FIG. In FIG. 4, the horizontal axis represents the magnetic field strength applied to the magneto-optical recording medium, and the vertical axis represents the amplitude of the reproduced signal.As is clear from FIG. 4, the appropriate magnetic field strength H.
When the magnetic field strength H0 is given, the maximum amplitude of the reproduced signal is obtained, and as the magnetic field strength deviates from the appropriate magnetic field strength H0, the amplitude of the reproduced signal gradually decreases.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

ところで、光磁気記録媒体の磁界感度はムラがあり、一
定しない。そのため光磁気記録媒体に一定強度の磁界を
与えても磁界感度差により再生信号の振幅が異なること
になる。それにより記録情報を高精度に再生し得ず、信
頼性が高い光磁気記録装置を提供出来ないという問題が
ある。
By the way, the magnetic field sensitivity of a magneto-optical recording medium is uneven and not constant. Therefore, even if a magnetic field of constant strength is applied to the magneto-optical recording medium, the amplitude of the reproduced signal will differ due to the difference in magnetic field sensitivity. This poses a problem in that recorded information cannot be reproduced with high precision and a highly reliable magneto-optical recording device cannot be provided.

本発明は斯かる問題に鑑み、光磁気記録媒体に与えられ
た磁界強度と、記録情報の再生信号の振幅との関連性を
利用して、光磁気記録媒体に与える磁界強度を制御する
ことにより、再生信号の振幅を安定させて信頼性が高い
光磁気記録装置を提供することを目的とする。
In view of such problems, the present invention utilizes the relationship between the magnetic field intensity applied to the magneto-optical recording medium and the amplitude of the reproduction signal of recorded information to control the magnetic field intensity applied to the magneto-optical recording medium. An object of the present invention is to provide a highly reliable magneto-optical recording device that stabilizes the amplitude of a reproduced signal.

〔課題を解決するための手段〕[Means to solve the problem]

本発明に係る光磁気記録装置は、光磁気記録媒体に投射
した光の反射光を検出した信号を、光磁気記録媒体に与
える磁界を発生させる励磁コイルの交流電圧に関連して
同期検波し、その同期検波した信号に関連して励磁コイ
ルの交流電圧を制御する構戒にする。
The magneto-optical recording device according to the present invention performs synchronous detection of a signal detected by the reflected light of the light projected onto the magneto-optical recording medium in relation to an alternating current voltage of an excitation coil that generates a magnetic field applied to the magneto-optical recording medium. The system is designed to control the AC voltage of the excitation coil in relation to the synchronously detected signal.

〔作用〕[Effect]

光磁気記録媒体の反射光を光検出器が検出する。 A photodetector detects the reflected light from the magneto-optical recording medium.

励磁コイルは光磁気記録媒体に磁界を与える。反射光の
検出信号を、励磁コイルの交流電圧に関連して同期検波
する。同期検波した信号に関連して励磁コイルの交流電
圧を制御する。
The excitation coil applies a magnetic field to the magneto-optical recording medium. The detection signal of the reflected light is synchronously detected in relation to the AC voltage of the excitation coil. The AC voltage of the excitation coil is controlled in relation to the synchronously detected signal.

よって、光磁気記録媒体に与えられた磁界の強度が変化
し、再生信号の振幅が一定する。
Therefore, the intensity of the magnetic field applied to the magneto-optical recording medium changes, and the amplitude of the reproduced signal remains constant.

〔実施例〕〔Example〕

以下本発明をその実施例を示す図面により詳述する。 The present invention will be described in detail below with reference to drawings showing embodiments thereof.

第1図は本発明に係る光磁気記録装置の要部の構戒図で
ある。交流電圧vIを発振する発振器1の出力は乗算器
15及び第1の加算アンプ2の一方の入力端子へ入力さ
れる。発振器1の発振周波数は記録信号の周波数より低
く、光磁気記録媒体の磁界感度ムラの周波数より高い、
例えば500H2から500KH2の範囲に選定してあ
る。加算アンプ2の出力電圧v2は、永久磁石3の磁軸
上に位置して光磁気記録媒体5側に配設されている所要
ターン数の励磁コイル4に与えられる.これによりこの
永久磁石3により発生する磁界及び励磁コイル4により
発生する磁界を加算して光磁気記録媒体5に与えるよう
になっている。また永久磁石3の磁極を光磁気記録媒体
5の一面側に対向させて配設している。光磁気記録媒体
5の他面側には、前記永久磁石4と対応する位置に集光
レンズ6及びミラー7を配設している。レーザダイオー
ド8の出射光はレンズ9及びビームスブリッタ10を介
して前記ミラー7で反射させて集光レンズ6を通って光
磁気記録媒体5へ投射されるようになっている。
FIG. 1 is a structural diagram of main parts of a magneto-optical recording device according to the present invention. The output of the oscillator 1 that oscillates the AC voltage vI is input to one input terminal of the multiplier 15 and the first summing amplifier 2. The oscillation frequency of the oscillator 1 is lower than the frequency of the recording signal and higher than the frequency of the magnetic field sensitivity unevenness of the magneto-optical recording medium.
For example, the range is selected from 500H2 to 500KH2. The output voltage v2 of the summing amplifier 2 is applied to an excitation coil 4 having a required number of turns, which is located on the magnetic axis of the permanent magnet 3 and disposed on the magneto-optical recording medium 5 side. Thereby, the magnetic field generated by the permanent magnet 3 and the magnetic field generated by the excitation coil 4 are added together and applied to the magneto-optical recording medium 5. Further, the magnetic pole of the permanent magnet 3 is arranged to face one side of the magneto-optical recording medium 5. On the other side of the magneto-optical recording medium 5, a condenser lens 6 and a mirror 7 are arranged at positions corresponding to the permanent magnets 4. The emitted light from the laser diode 8 passes through a lens 9 and a beam splitter 10, is reflected by the mirror 7, passes through a condenser lens 6, and is projected onto the magneto-optical recording medium 5.

また、前記レーザダイオード8は、記録信号S+1が人
力されるレーザダイオード駆動回路11の出力により駆
動されるようになっている。そして光磁気記録媒体5の
反射光は集光レンズ6,ミラー7及びビームスプリッタ
10を介して光検知器12へ入射するようになっている
。光検知器12の出力は光電変換アンプ13へ入力され
、その出力電圧■3は検波回路14へ人力される。検波
回路14の出力電圧v4は前記乗算器I5へ入力され、
その出力電圧はローパスフィルタ16を介して第2の加
算アンブ17の一方の入力端子へ人力される。この加算
アンブ17の他方の入力端子には基準電源18の基準電
圧■。
Further, the laser diode 8 is driven by the output of a laser diode drive circuit 11 to which the recording signal S+1 is input manually. The reflected light from the magneto-optical recording medium 5 enters the photodetector 12 via the condenser lens 6, mirror 7 and beam splitter 10. The output of the photodetector 12 is input to a photoelectric conversion amplifier 13, and its output voltage (3) is input to a detection circuit 14. The output voltage v4 of the detection circuit 14 is input to the multiplier I5,
The output voltage is input to one input terminal of a second summing amplifier 17 via a low-pass filter 16. The other input terminal of this addition amplifier 17 is connected to the reference voltage ■ of the reference power supply 18 .

が与えられ、加算アンプ17の出力電圧たるバイアス電
圧V3は前記加算アンブ2の他方の入力端子へ人力され
る。そして、検波回路14と乗算器15とローパスフィ
ルタ16とにより同期検波回路を構成している。
is given, and the bias voltage V3, which is the output voltage of the summing amplifier 17, is inputted to the other input terminal of the summing amplifier 2. The detection circuit 14, multiplier 15, and low-pass filter 16 constitute a synchronous detection circuit.

第2図は、励磁コイル4に与えた発振器2の交流電圧波
形と、その再生信号の波形との関係を、第4図に示した
磁界強度に対する再生信号振幅の特性に基づいて示した
説明図である。この図から明らかなように、永久磁石3
と励磁コイル4とにより発生した磁界強度が適正な磁界
強度H0においては、励磁コイル4に与えた交流電圧波
形w1に対して、その再生信号の波形はwI0となり振
幅が小さい2倍の周波麩となって得られる。また適正な
磁界強度H0より大きい(小さい)磁界強度H+(Hz
)では、励磁コイル4に与えた交流電圧波形W,と同位
相の交流電圧波形Wz(VI’+)に対して、その再生
信号の波形はWto (Wz。)となり、交流電圧波形
W z ( W x )と同位相(逆位相)の振幅が稍
大きくなった再生信号波形が得られる。そして、これら
の再生信号波形から、光磁気記録媒体5に与えられた磁
界強度が適正か否かを判別できることになる。
FIG. 2 is an explanatory diagram showing the relationship between the AC voltage waveform of the oscillator 2 applied to the excitation coil 4 and the waveform of the reproduced signal based on the characteristics of the reproduced signal amplitude with respect to the magnetic field strength shown in FIG. 4. It is. As is clear from this figure, permanent magnet 3
At a magnetic field strength H0 where the magnetic field strength generated by the excitation coil 4 is appropriate, the waveform of the reproduced signal becomes wI0 with respect to the AC voltage waveform w1 applied to the excitation coil 4, which is twice the frequency with a smaller amplitude. You can get it. In addition, the magnetic field strength H+ (Hz
), for an AC voltage waveform Wz (VI'+) that has the same phase as the AC voltage waveform W applied to the excitation coil 4, the waveform of the reproduced signal is Wto (Wz.), and the AC voltage waveform W z ( A reproduced signal waveform having a slightly larger amplitude in the same phase (opposite phase) as W x ) is obtained. From these reproduced signal waveforms, it can be determined whether the magnetic field strength applied to the magneto-optical recording medium 5 is appropriate.

次にこのように構威した光磁気記録装置の動作を各部信
号の波形を示す第3図とともに説明する.発振器1を動
作させると、発振器1の発振出力たる交流電圧V,は第
3図(A)に示す正弦波となる。この交流電圧V,は加
算アンプ2に与えられ、その加算アンブ2にはローパス
フィルタ16の出力電圧VFと基準電源18の基準電圧
■。とを加算した加算アンブl7の出力電圧たるバイア
ス電圧v婁が与えられて、加算アンブ2の出力電圧■2
は第3図(B)に示す如くなる。つまり発振出力である
交流電圧vlは、バイアス電圧vIを基準に変化する。
Next, the operation of the magneto-optical recording device configured in this manner will be explained with reference to FIG. 3, which shows the waveforms of the signals at each part. When the oscillator 1 is operated, the alternating current voltage V, which is the oscillation output of the oscillator 1, becomes a sine wave as shown in FIG. 3(A). This alternating current voltage V, is applied to the summing amplifier 2, which receives the output voltage VF of the low-pass filter 16 and the reference voltage (2) of the reference power supply 18. Given the bias voltage v which is the output voltage of addition amp 17 which is the sum of , the output voltage of addition amp 2 becomes
is as shown in FIG. 3(B). That is, the alternating current voltage vl, which is the oscillation output, changes based on the bias voltage vI.

そして加算アンブ2の出力電圧■2が励磁コイル4に与
えられて、励磁コイル4は出力電圧v2に関連して磁界
を発生し、永久磁石3の磁界にバイアス磁界を与えるこ
とになる。
Then, the output voltage 2 of the summing amplifier 2 is applied to the excitation coil 4, which generates a magnetic field in relation to the output voltage v2, and applies a bias magnetic field to the magnetic field of the permanent magnet 3.

ところで、永久磁石3及び励磁コイル4によって発生す
る磁界強度を、第2図に示す適正な磁界強度H0より大
きい磁界強度例えばH,として、記録信号SW4こ関連
してレーザダイオード8を発光させて情報を記録する場
合は、光磁気記録媒体5の反射光を光検知器12が受光
し、それを光電変換した光電変換アンブ13の出力電圧
■,は第3図(C)に示す如く交流電圧vIによる振幅
変調波として得られる.なお、包絡線の内側に示してい
る波形は記録信号S一を示している。そして出力電圧v
3を検波した検波回路14の出力電圧v4は第3図(D
)に実線で示すように、第3図(A)に示す交流電圧■
,の波形と逆位相で得られる。即ち第2図において説明
したように適正な磁界強度H0以上の磁界強度H+を検
出することになる.この出力電圧■4と発振器2の発振
出力たる出力電圧v1とが乗算器15で乗算され、乗算
した乗算器15の出力電圧をローバスフィルタ16を通
すと、ローパスフィルタ16の出力電圧■2は第3図(
E)に実線で示す如く負電圧になる。この出力電圧V,
は加算アンプ17に入力されて、加纂アンプ17が出力
するバイアス電圧V,が減少する。それにより、加算ア
ンブ2の出力電圧vzが減少して、励磁コイル4が発生
するバイアス磁界強度が小さくなる。つまり光磁気記録
媒体5に与えられた磁界強度を小さくすることになる。
By the way, when the magnetic field strength generated by the permanent magnet 3 and the excitation coil 4 is set to H, for example, a magnetic field strength greater than the appropriate magnetic field strength H0 shown in FIG. When recording , the photodetector 12 receives the reflected light from the magneto-optical recording medium 5, and the output voltage . It is obtained as an amplitude modulated wave by . Note that the waveform shown inside the envelope represents the recording signal S1. and the output voltage v
3 (D
), as shown by the solid line in Figure 3 (A), the AC voltage ■
, which is obtained with the opposite phase to the waveform of . That is, as explained in FIG. 2, a magnetic field strength H+ greater than the appropriate magnetic field strength H0 is detected. This output voltage ■4 and the output voltage v1 which is the oscillation output of the oscillator 2 are multiplied by the multiplier 15, and when the multiplied output voltage of the multiplier 15 is passed through the low-pass filter 16, the output voltage ■2 of the low-pass filter 16 is Figure 3 (
The voltage becomes negative as shown by the solid line in E). This output voltage V,
is input to the summing amplifier 17, and the bias voltage V output from the compensating amplifier 17 decreases. As a result, the output voltage vz of the summing amplifier 2 decreases, and the intensity of the bias magnetic field generated by the excitation coil 4 decreases. In other words, the strength of the magnetic field applied to the magneto-optical recording medium 5 is reduced.

また、光磁気記録媒体5に与える磁界の強度が小さい場
合には、前記同様に動作して、検波回路l4の出力電圧
V4は第3図(D)に破線で示すようになり、ローパス
フィルタ16の出力電圧VFは第3図(E)に破線で示
すように正電圧になる.そしてバイアス電圧■萱が上昇
して励磁コイル4が発生するバイアス磁界の強度を大き
くすることになる。
Further, when the strength of the magnetic field applied to the magneto-optical recording medium 5 is small, the operation is similar to that described above, and the output voltage V4 of the detection circuit l4 becomes as shown by the broken line in FIG. 3(D), and the low-pass filter 16 The output voltage VF becomes a positive voltage as shown by the broken line in Figure 3(E). Then, the bias voltage increases and the intensity of the bias magnetic field generated by the excitation coil 4 increases.

更に、光磁気記録媒体5に与える磁界強度が適正である
場合には、検波回路14の出力電圧v4は第3図(D)
に一点鎖線で示すように振幅が小さい2倍の周波数にな
る。そしてローパスフィルタ16の出力電圧VFは0に
なる。
Furthermore, when the magnetic field strength applied to the magneto-optical recording medium 5 is appropriate, the output voltage v4 of the detection circuit 14 is as shown in FIG. 3(D).
As shown by the dashed line, the amplitude becomes twice the frequency with a smaller amplitude. Then, the output voltage VF of the low-pass filter 16 becomes zero.

このようにして光磁気記録媒体5の反射光を受光して、
光電変換して得た信号を、発振器1が出力する交流電圧
により同期検波して得た出力電圧を求めて、それに関連
する電圧を励磁コイル4に与えるフィードバックルーブ
により、励磁コイル4が発生するバイアス磁界を常に適
正な磁界強度H.に制御することになる。それにより光
磁気記録媒体5には、その磁界感度に応じた磁界が与え
られて、記録信号S一による情報を記録する。
In this way, the reflected light from the magneto-optical recording medium 5 is received,
The bias generated by the excitation coil 4 by the feedback loop that synchronously detects the signal obtained by photoelectric conversion using the AC voltage output from the oscillator 1 to obtain the output voltage and supplies the related voltage to the excitation coil 4. Always keep the magnetic field at an appropriate magnetic field strength H. will be controlled. Thereby, a magnetic field corresponding to the magnetic field sensitivity is applied to the magneto-optical recording medium 5, and information based on the recording signal S1 is recorded.

それにより、記録情報を再生した信号のレベルは一定し
、記録情報の再生精度を高めることが出来る。
As a result, the level of the signal for reproducing the recorded information is constant, and the accuracy of reproducing the recorded information can be improved.

なお、本実施例では永久磁石3の磁界にバイアス磁界を
与えたが、基準電源18の基準電圧■。を高くすること
により、励磁コイル4が発生する磁界の強度を大きく出
来、その場合は励磁コイル4のみを用いて所要強度の磁
界を光磁気記録媒体5に与えることが出来る。
In this embodiment, a bias magnetic field is applied to the magnetic field of the permanent magnet 3, but the reference voltage (2) of the reference power supply 18 is applied. By increasing the value, the strength of the magnetic field generated by the excitation coil 4 can be increased, and in this case, a magnetic field of the required strength can be applied to the magneto-optical recording medium 5 using only the excitation coil 4.

また、永久磁石3と励磁コイル4とを併用した場合には
、励磁コイル4の励磁電力は僅かとなり、小形化並びに
消費電力の低減を図ることができるのは勿論である。
Moreover, when the permanent magnet 3 and the excitation coil 4 are used together, the excitation power of the excitation coil 4 becomes small, and of course it is possible to achieve miniaturization and reduction of power consumption.

本実施例において情報を記録する光磁気記録媒体は、そ
れに与えられた磁界強度と記録情報を再生した再生信号
とが第4図に示すように関連する特性を有するが、当社
が既に出願している第5図に示す先願(平戒元年特許願
第119244号)に記載の光磁気記録媒体に情報を記
録する場合は特に効果を発揮する。
The magneto-optical recording medium on which information is recorded in this example has characteristics in which the magnetic field intensity applied to it and the reproduction signal that reproduces the recorded information are related as shown in FIG. This is particularly effective when information is recorded on the magneto-optical recording medium described in the earlier application (Patent Application No. 119244 of Heikai 1) shown in FIG.

第5図はその光磁気記録媒体の拡大断面図である。第5
図において、19は光磁気記録媒体であり、20はガラ
ス又はプラスチックからなる基板である。
FIG. 5 is an enlarged sectional view of the magneto-optical recording medium. Fifth
In the figure, 19 is a magneto-optical recording medium, and 20 is a substrate made of glass or plastic.

21は基板20上に積層された第1磁性層であり、垂直
磁気異方性を有している。
A first magnetic layer 21 is laminated on the substrate 20 and has perpendicular magnetic anisotropy.

22は第1磁性層21に積層された第2磁性層であり、
垂直磁気異方性を有し、前記第1磁性層21と交換力で
結合されており、記録再生時に磁化反転せず磁化が一定
方向の向きに保たれる。
22 is a second magnetic layer laminated on the first magnetic layer 21;
It has perpendicular magnetic anisotropy and is coupled to the first magnetic layer 21 by exchange force, so that the magnetization is maintained in a fixed direction without reversing the magnetization during recording and reproduction.

23は第1磁性層21に記録された情報の内、第1磁性
層21の磁化方向が上向きの部分をこの場合二値化デー
タの“l”として、その領域を示している。
Reference numeral 23 indicates a region of the information recorded in the first magnetic layer 21, in which the magnetization direction of the first magnetic layer 21 is upward, in this case as "l" of the binary data.

第1磁性層21と第2磁性層22とは、T C I <
 T C Z(但し、Tc+, T”czはそれぞれ第
1磁性層21,第2磁性層のキュリー温度)及び室温H
c+>Hw++Hb ,Hcz>Hwt+Hb  (H
c+,Hczはそれぞれ第1磁性層21,第2磁性層の
室温付近における保磁力、HWI+ }Iwzはそれぞ
れ第1磁性層21,第2磁性層の室温付近における交換
結合力、H,は図示しない磁界発生装置が発生する外部
磁界)の関係を有し、例えば希土類金属一遷移金属合金
組威で或形されている。
The first magnetic layer 21 and the second magnetic layer 22 have T C I <
T C Z (however, Tc+, T"cz are the Curie temperatures of the first magnetic layer 21 and the second magnetic layer, respectively) and room temperature H
c+>Hw++Hb , Hcz>Hwt+Hb (H
c+ and Hcz are the coercive forces of the first magnetic layer 21 and the second magnetic layer near room temperature, respectively, HWI+ }Iwz are the exchange coupling forces of the first magnetic layer 21 and the second magnetic layer near room temperature, respectively, and H is not shown. The external magnetic field generated by the magnetic field generator is formed by, for example, a rare earth metal-transition metal alloy composition.

つまり先願の光磁気記録媒体は垂直磁気異方性を有し磁
化方向が反転可能な第1磁性層と、垂直磁気異方性を有
し磁化方向が反転不能な第2磁性層とを少なくとも備え
て積層した光磁気記録媒体であり、情報を記録するとき
に外部磁界の方向を反転させる必要がないから外部磁界
に永久磁石を用いて情報を記録できる。
In other words, the magneto-optical recording medium of the prior application has at least a first magnetic layer that has perpendicular magnetic anisotropy and whose magnetization direction is reversible, and a second magnetic layer that has perpendicular magnetic anisotropy and whose magnetization direction cannot be reversed. It is a magneto-optical recording medium that is laminated with a magnetic field, and there is no need to reverse the direction of the external magnetic field when recording information, so information can be recorded using a permanent magnet in the external magnetic field.

また別に既に出願している平底元年特許願第15491
8号の明細書に記載している光磁気記録媒体に情報を記
録する場合にも効果を発揮する。
In addition, a separate patent application No. 15491 has already been filed.
It is also effective when recording information on the magneto-optical recording medium described in the specification of No. 8.

第6図はその平或元年特許願第154918号の明細書
に記載している磁性層が4層である光磁気記録媒体の拡
大断面図である。
FIG. 6 is an enlarged sectional view of a magneto-optical recording medium having four magnetic layers described in the specification of Patent Application No. 154918 of 1999.

この光磁気記録媒体19は、例えばガラスからなる基板
20上に誘電体層40Aを形威しており、その誘電体層
40A上に記録層40B、記録補助層40C、制御層4
0D、初期化層40E及び保護層40Fをその順序で積
層している。なお、記録層40B (第1層)及び初期
化層40E(第4層)は、前述した第1磁性層21と第
2磁性層22とを有する光磁気記録媒体19の第1磁性
層21及び第2磁性層22と同様の機能がある。
This magneto-optical recording medium 19 has a dielectric layer 40A on a substrate 20 made of glass, for example, and a recording layer 40B, a recording auxiliary layer 40C, and a control layer 4 on the dielectric layer 40A.
0D, initialization layer 40E, and protective layer 40F are laminated in that order. Note that the recording layer 40B (first layer) and the initialization layer 40E (fourth layer) are the first magnetic layer 21 and the magneto-optical recording medium 19 having the first magnetic layer 21 and the second magnetic layer 22 described above. It has the same function as the second magnetic layer 22.

そして、前記各層はスパッター法等により、例えば表1
に示す材質及び厚さで形威されている。
Then, each layer is formed by sputtering or the like, for example, as shown in Table 1.
It is made of materials and thicknesses shown in the table below.

表   1 そしてこれらの磁性層は次のような特徴がある。Table 1 These magnetic layers have the following characteristics.

隣接する磁性層は交換力で結合している。記録層(第1
層)40Bは情報の記録、保持を行う。記録補助層(第
2層)40C、制御層(第3層)40D及び初期化層(
第4層〉40Eは情報を保持する機能を有さす、光変調
グイレクトオーバライトを可能にした付加層であり、初
期化層40Eはレーザ照射による温度上昇に対し、その
温度範囲で副格子磁化の反転はせず、バイアス磁界に反
抗する作用をする。制御層400は初期化層40Eから
の交換力を高温度域で遮断する作用をする。
Adjacent magnetic layers are coupled by exchange forces. Recording layer (first
Layer) 40B records and retains information. Recording auxiliary layer (second layer) 40C, control layer (third layer) 40D and initialization layer (
The fourth layer>40E is an additional layer that has the function of retaining information and enables optical modulation direct overwrite. does not reverse the current, but acts against the bias magnetic field. The control layer 400 functions to block the exchange force from the initialization layer 40E in a high temperature range.

ここで、Telを第i層(但しi=1〜4)のキュリー
温度、HCIを第i層の反転磁界の半分の磁界幅(保磁
力に相当するもの)、HwIを隣接する磁性層からの第
i層が受ける交換力(第i層のループの遷移幅で、第2
層、第3層には第7図に示すような磁化反転に対して定
義する)としている。
Here, Tel is the Curie temperature of the i-th layer (where i = 1 to 4), HCI is the magnetic field width (corresponding to coercive force) half of the reversal magnetic field of the i-th layer, and HwI is the magnetic field width from the adjacent magnetic layer. The exchange force that the i-th layer receives (the transition width of the loop in the i-th layer, the second
The third layer is defined for magnetization reversal as shown in FIG.

第7図は副格子磁化の概念図を示している。ここで第i
層を例えば第3層とすると、その上,下層つまり第2,
第4層及び前記第3層の夫々の磁化の向きは第7図(a
)又は(ロ)の如くなる.また第7図(a)に示すよう
に第i−1層の磁化の向きと、第i+1層の磁化の向き
が互いに離反する方向である場合には第i層の磁化の向
きは第i−1層又は第i+1層へ向く状態になる。一方
、第7図(ロ)に示すように第i−1層の磁化の向きと
第i+1層の磁化の向きが互いに接近する方向である場
合には第i層の磁化の向きは第i+1層又は第i−1層
へ向く状態になる。
FIG. 7 shows a conceptual diagram of sublattice magnetization. Here the i-th
For example, if the layer is the third layer, the upper and lower layers, that is, the second,
The magnetization directions of the fourth layer and the third layer are shown in FIG.
) or (b). Further, as shown in FIG. 7(a), when the direction of magnetization of the i-1th layer and the direction of magnetization of the i+1th layer are in directions that are separated from each other, the direction of magnetization of the i-th layer is The state is such that it faces toward the 1st layer or the i+1th layer. On the other hand, as shown in FIG. 7(b), when the direction of magnetization of the i-1th layer and the direction of magnetization of the i+1th layer approach each other, the direction of magnetization of the i-th layer is Or it will be in a state of facing towards the i-1th layer.

このように定義すると磁化特性は、 Tca>  ( TCOIIP4)> TC!> TC
I>  ( Tco蒙pg)>Tct〉室温     
          ・・・(1)記録層40B   
 : H@+ < Hc+ :〜室温 ・・・(2)H
 w I> H c + ’〜TCI  ・・・(3)
記録補助層40C  : Hwz> Hcz :〜TC
3  ・・・(4)Hwt< Hcz : 〜Tc+ 
 −(5)制御層400    : Hl.l*> H
C3 :〜T.3 ・(6)初期化層408   : 
H..la< Hca :〜動作温度範囲内   ・・
・(7) (但しTcompz. Tcomp=は第2,第4層の
補償温度)であり、(2)式では室温で記録層40Bの
磁化は、記録補助層40Cの磁化反転により反転せず、
(4L (6).(7)式では、記録後に室温で記録補
助層40C、制御層40B及び初期化層40Hの磁化方
向が下向きに揃っていることを示している。
Defined in this way, the magnetization property is Tca>(TCOIIP4)>TC! >TC
I>(Tcopg)>Tct>Room temperature
...(1) Recording layer 40B
: H@+ < Hc+ :~Room temperature...(2)H
wI>Hc+'~TCI...(3)
Recording auxiliary layer 40C: Hwz> Hcz: ~TC
3...(4) Hwt< Hcz: ~Tc+
-(5) Control layer 400: Hl. l*>H
C3:~T. 3.(6) Initialization layer 408:
H. .. la < Hca: ~ within operating temperature range...
・(7) (However, Tcompz. Tcomp= is the compensation temperature of the second and fourth layers), and in equation (2), the magnetization of the recording layer 40B is not reversed at room temperature due to the magnetization reversal of the recording auxiliary layer 40C,
(4L Equations (6) and (7) indicate that the magnetization directions of the recording auxiliary layer 40C, control layer 40B, and initialization layer 40H are aligned downward at room temperature after recording.

そしてこのような光磁気記録媒体においても、情報を記
録するときに、外部磁界の方向を反転させる必要がなく
、外部磁界に永久磁石を用いて情報を記録できる。
Also in such a magneto-optical recording medium, when recording information, there is no need to reverse the direction of the external magnetic field, and information can be recorded using a permanent magnet in the external magnetic field.

しかし、これの光磁気記録媒体は情報を記録するための
最通な磁界強度範囲が狭い。そこで励磁コイルによる磁
界を制御して永久磁石と励磁コイルとによる総合磁界の
強度を制御できる本願発明の光磁気記録装置は、このよ
うな光磁気記録媒体に情報を記録するのに最適である。
However, this magneto-optical recording medium has a narrow range of magnetic field strength for recording information. Therefore, the magneto-optical recording device of the present invention, which can control the magnetic field produced by the excitation coil to control the strength of the total magnetic field produced by the permanent magnet and the excitation coil, is ideal for recording information on such a magneto-optical recording medium.

更に本実施例は記録専用機である光磁気記録装置につい
て説明したが、記録再生の兼用機である光磁気記録再生
装置に適用しても同様の効果が得られる。
Further, although this embodiment has been described with respect to a magneto-optical recording device which is a recording-only device, similar effects can be obtained even if the present invention is applied to a magneto-optical recording and reproducing device which is a dual-purpose device for recording and reproducing.

〔発明の効果〕〔Effect of the invention〕

以上詳述したように、本発明によれば、情報記録時に光
磁気記録媒体に与えられた磁界強度が制御されて常に適
正な磁界強度になし得る.それにより記録情報を再生し
た場合の再生信号のレベルを安定させ得、情報の再生精
度を高め得て信頼性が高い光磁気記録装置を提供出来る
優れた効果を奏する。
As described in detail above, according to the present invention, the magnetic field strength applied to the magneto-optical recording medium during information recording is controlled and can always be maintained at an appropriate magnetic field strength. Thereby, it is possible to stabilize the level of the reproduced signal when reproducing recorded information, improve the accuracy of information reproduction, and provide an excellent effect of providing a highly reliable magneto-optical recording device.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明に係る光磁気記録装置の要部の構成図、
第2図は発振器の交流電圧波形とその再生出力波形との
関係を示す説明図、第3図は各部信号の波形図、第4図
は光磁気記録媒体に与えられた磁界強度と再生信号振幅
との関係を示すグラフ、第5図は光磁気記録媒体の拡大
断面図、第6図は磁性層が4層である光磁気記録媒体の
拡大断面図、第7図は副格子磁化の概念図である。 1・・・発振器 2・・・加算アンプ 3・・・永久磁
石4・・・励磁コイル 5・・・光磁気記録媒体 8・
・・レーザダイオード 10・・・ビームスブリッタ 
12・・・光検知器 13・・・光電変換器 21・・
・第1磁性層 22・・・第2m性層 40B・・・記
録層 40C・・・記録補助層400・・・制御層 4
0E・・・初期化層なお、 図中、 同一符号は同一、 又は相当部分を 示す。
FIG. 1 is a configuration diagram of main parts of a magneto-optical recording device according to the present invention,
Figure 2 is an explanatory diagram showing the relationship between the AC voltage waveform of the oscillator and its reproduced output waveform, Figure 3 is a waveform diagram of various signals, and Figure 4 is the magnetic field strength applied to the magneto-optical recording medium and the reproduced signal amplitude. Figure 5 is an enlarged cross-sectional view of a magneto-optical recording medium, Figure 6 is an enlarged cross-sectional view of a magneto-optical recording medium with four magnetic layers, and Figure 7 is a conceptual diagram of sublattice magnetization. It is. 1... Oscillator 2... Adding amplifier 3... Permanent magnet 4... Excitation coil 5... Magneto-optical recording medium 8.
...Laser diode 10...Beam splitter
12... Photodetector 13... Photoelectric converter 21...
・First magnetic layer 22... Second m-layer 40B... Recording layer 40C... Recording auxiliary layer 400... Control layer 4
0E...Initialization layer In the figures, the same reference numerals indicate the same or equivalent parts.

Claims (1)

【特許請求の範囲】[Claims] (1)光磁気記録媒体に与える磁界を発生する励磁コイ
ルと、該励磁コイルに交流電圧を与える発振器と、前記
光磁気記録媒体からの反射光を検出する光検出器と、該
光検出器の出力信号を前記発振器の交流電圧に関連して
同期検波する同期検波回路とを備え、該同期検波回路の
出力信号に関連して前記励磁コイルに与える交流電圧を
制御すべく構成してあることを特徴とする光磁気記録装
置。
(1) An excitation coil that generates a magnetic field applied to a magneto-optical recording medium, an oscillator that applies an alternating current voltage to the excitation coil, a photodetector that detects reflected light from the magneto-optical recording medium, and a photodetector that detects reflected light from the magneto-optical recording medium. and a synchronous detection circuit that synchronously detects an output signal in relation to the AC voltage of the oscillator, and is configured to control the AC voltage applied to the excitation coil in relation to the output signal of the synchronous detection circuit. Features of magneto-optical recording device.
JP1304273A 1989-08-01 1989-11-21 Magneto-optical recorder Pending JPH03205633A (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP1304273A JPH03205633A (en) 1989-10-17 1989-11-21 Magneto-optical recorder
US07/558,584 US5172364A (en) 1989-08-01 1990-07-26 Magneto-optic recording apparatus with controlled magnetic field generation
NL9001725A NL9001725A (en) 1989-08-01 1990-07-31 METHOD AND APPARATUS FOR RECORDING INFORMATION ON A MAGNETO-OPTICAL INFORMATION RECORDING MEDIUM.
KR1019900011638A KR930008148B1 (en) 1989-08-01 1990-07-31 Optical magnetic recording device

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP27097989 1989-10-17
JP1-270979 1989-10-17
JP1304273A JPH03205633A (en) 1989-10-17 1989-11-21 Magneto-optical recorder

Publications (1)

Publication Number Publication Date
JPH03205633A true JPH03205633A (en) 1991-09-09

Family

ID=26549479

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1304273A Pending JPH03205633A (en) 1989-08-01 1989-11-21 Magneto-optical recorder

Country Status (1)

Country Link
JP (1) JPH03205633A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8570842B1 (en) 2012-06-06 2013-10-29 HGST Netherlands B.V. Tar with write-synchronized laser modulation

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8570842B1 (en) 2012-06-06 2013-10-29 HGST Netherlands B.V. Tar with write-synchronized laser modulation

Similar Documents

Publication Publication Date Title
JP3366973B2 (en) Information recording method for optical recording medium
EP0915462A1 (en) Magneto-optical recording medium, its reproducing method and reproducer
KR20000022390A (en) Mgneto-optical recording medium, its reproducing method and reproducer
JPS6214897B2 (en)
JP2707769B2 (en) Magneto-optical recording medium and magneto-optical recording and reproducing apparatus using the same
JP4080538B2 (en) Method and apparatus for reproducing magneto-optical recording medium
US5172364A (en) Magneto-optic recording apparatus with controlled magnetic field generation
US5164926A (en) Over-write capable magnetooptical recording medium with four magnetic layered structure dispensing with external initializing field
US5959942A (en) Method and apparatus for reading a magneto-optical recording medium with asymmetrical edges
JP2528821B2 (en) Optical information processing device
JP3519293B2 (en) Magneto-optical recording medium, reproducing method of magneto-optical recording medium, magneto-optical recording and reproducing apparatus
JPH03205633A (en) Magneto-optical recorder
US5339298A (en) Over-write capable magnetooptical recording method with widened power margin, and magnetooptical recording apparatus used in this method
JPH11144341A (en) Magnetooptic data recording and reproducing device and magnetooptic recording medium
JP3538727B2 (en) Magneto-optical recording medium
US5883863A (en) Magneto-optical reading method and apparatus and magneto-optical recording medium used for execution of the method
US5272684A (en) Information recording method and information recording apparatus for magneto-optic recording information medium
US20030107956A1 (en) Magneto-optical recording medium having different magnetic domain radii in recording layer and reproduction layer
KR950003184B1 (en) Magneto-optical recording medium
JP2638465B2 (en) Optical information recording / reproducing method
US6483783B1 (en) Magneto-optical disk apparatus capable of accurately enlarging and reproducing a magnetic domain and method of reproducing the same
JPH1074344A (en) Reproducing device for magneto-optical data recording
JPH0673191B2 (en) Semiconductor laser drive device
JP2648084B2 (en) Semiconductor laser driver
JP2576623B2 (en) Magneto-optical overwrite device