JPH03205481A - Dc plasma display pannel - Google Patents

Dc plasma display pannel

Info

Publication number
JPH03205481A
JPH03205481A JP27779389A JP27779389A JPH03205481A JP H03205481 A JPH03205481 A JP H03205481A JP 27779389 A JP27779389 A JP 27779389A JP 27779389 A JP27779389 A JP 27779389A JP H03205481 A JPH03205481 A JP H03205481A
Authority
JP
Japan
Prior art keywords
phosphor
brightness
pdp
amount
activation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP27779389A
Other languages
Japanese (ja)
Inventor
Hiroshi Sumoto
須本 啓史
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nichia Chemical Industries Ltd
Original Assignee
Nichia Chemical Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nichia Chemical Industries Ltd filed Critical Nichia Chemical Industries Ltd
Priority to JP27779389A priority Critical patent/JPH03205481A/en
Publication of JPH03205481A publication Critical patent/JPH03205481A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To improve the luminance by applying a Zn2SiO4:Mn, As phosphor containing a specified amount of As and for activation to a DC plasma display pannel. CONSTITUTION:A base phosphor (i) comprising Zn2SiO4 is activated with As (ii) in an amount below 0.003wt.% based on component (i) and Mn (iii) in an amount of 0.05-2.0wt.% based on component (i) to give a Zn2SiO4:Mn, As phosphor. This phosphor is applied to a DC plasma display pannel.

Description

【発明の詳細な説明】 [産業上の利用分野コ 本発明は、気体放電により放射する真空紫外線によって
陽極に塗布された蛍光体を励起し、発光するプラズマデ
ィスプ!ノイバネル(PDP)に関し、更に詳しくは、
内部にZn2S i 04: Mn,As蛍光体が塗布
された直流型プラズマディスプレイパネルに関する。
[Detailed Description of the Invention] [Industrial Application Fields] The present invention is a plasma display that emits light by exciting a phosphor coated on an anode with vacuum ultraviolet rays emitted by a gas discharge! For more information on Neuvanel (PDP), please visit
This invention relates to a DC plasma display panel coated with Zn2S i 04:Mn,As phosphor inside.

[従来の技術とその問題点コ 近年、フラットディスプレイパネルの開発が盛んに行わ
れている。その中でも直流型FDPは表示容量や表示画
面の品質の優位性、応答の速度、階調表示等に優れ、振
動、衝撃に強く、軽量てしかも大画面向きであるがため
にラップトップ型パソコンに導入することが実用化され
ている。
[Conventional technology and its problems] In recent years, flat display panels have been actively developed. Among them, DC type FDPs are superior in display capacity, display screen quality, response speed, gradation display, etc., are resistant to vibration and shock, are lightweight, and are suitable for large screens, so they are often used in laptop computers. It has been put into practical use.

直流型PDPの代表的なものを第1図を用いて説明する
。第l図一aはPDPの表示パネルの構造模型の斜視図
でありアノード1、カソード2を構成する2電極からな
り2枚のガラス板状にマトリックス状に整列配置して個
々の表示ドッ1・を形成している。前面ガラス3例のア
ノード電極は、蒸着した透明導電膜をエッチングして形
成し、背面ガラス側4の、カソード電極は厚膜印刷て形
成されている。また厚膜印刷によって広い視野角が得ら
れるような隔壁5を設け、夫々の表示ドットを分離独立
させている。また第1図一bは第1図−aの断面構造を
示す図で隔壁5て囲まれた放電空間6の内部にはXe−
He,  Xe−A.r等の混合ガスが封入されており
 蛍光体7がアノードlに塗布されている。
A typical DC type PDP will be explained with reference to FIG. FIG. 1a is a perspective view of a structural model of a PDP display panel, which consists of two electrodes constituting an anode 1 and a cathode 2, arranged in a matrix on two glass plates, and each display dot 1. is formed. The anode electrodes on the three front glasses are formed by etching the deposited transparent conductive film, and the cathode electrodes on the back glass side 4 are formed by thick film printing. Further, a partition wall 5 is provided so that a wide viewing angle can be obtained by thick film printing, and each display dot is separated and independent. FIG. 1b is a diagram showing the cross-sectional structure of FIG. 1-a.
He, Xe-A. A mixed gas such as R is sealed in the anode L, and a phosphor 7 is applied to the anode L.

従来のPDPは、ほとんどが前記PDPの放電空間にN
e−Ar等の混合ガスを封入しNeのグロー放電による
発光を利用した橙色モノクロタイプである。一方アノー
ドに蛍光体を塗布しXeのグロー放電により放射する1
47nmの真空紫外線を利用して蛍光体を励起し、その
発光を利用したモノクロタイプ、あるいはマルチカラー
タイブのPDPは未だ試作段階で実用化までには至って
いない。
Most conventional PDPs have N in the discharge space of the PDP.
It is an orange monochrome type that is filled with a mixed gas such as e-Ar and utilizes light emission by glow discharge of Ne. On the other hand, phosphor is applied to the anode and emitted by Xe glow discharge1
Monochrome or multicolor PDPs that use 47 nm vacuum ultraviolet light to excite phosphors and utilize the resulting light emission are still in the prototype stage and have not yet been put into practical use.

しかしその中でも実用化されつつある緑色モノクロタイ
ブのPDPは従来から知られたCRT用およびランプ用
蛍光体χあるZ n2s i O,l: MnのMn付
活量をPDP用に最適化されたものが塗布されて成って
いる。そのMn量は同じく蛍光体母体に対し約1.6重
量%であり、また文献にもFDPに用いるZ n2s 
i O4: Mn蛍光体のMn最適量は0.  06 
g  a tm/m.o Iであると開示されている。
However, green monochrome PDPs, which are now being put into practical use, are made by optimizing the Mn activation amount of Mn for conventional CRT and lamp phosphors. is coated with. The amount of Mn is also about 1.6% by weight based on the phosphor matrix, and the literature also states that Zn2s used for FDP
i O4: The optimum amount of Mn in the Mn phosphor is 0. 06
g a tm/m. o I is disclosed.

 (J.Koike et. at.:J.EIect
orochem.Soc.,126[6],1008(
1.979))これをMnの蛍光体母体に対する重量%
に換算すると約1.5重量%となる。
(J. Koike et. at.: J. EIect
orochem. Soc. , 126[6], 1008(
1.979)) This is expressed as the weight percent of Mn based on the phosphor matrix.
When converted to 1.5% by weight, it is approximately 1.5% by weight.

従来のPDPの輝度を単位発光面当りの明るさ(点輝度
)で表すと前者橙色モノクロPDPの場合は80cd/
rn2、後者緑色モノクロPDPは110cd/m2で
あり、どちらも実用範囲ではあるが、バックライト付液
晶ディスプレイと比較すれば消費電力比の輝度は必ずし
も高くなく熱損失を低減するためにも、さらに輝度の高
い緑色蛍光体を用いたPDPが強く望まれている。
The brightness of conventional PDPs is expressed in terms of brightness per unit light emitting surface (point brightness), and in the case of the former orange monochrome PDP, it is 80 cd/
rn2, the latter green monochrome PDP is 110 cd/m2, both of which are within the practical range, but compared to backlit LCD displays, the brightness in terms of power consumption ratio is not necessarily high, and in order to reduce heat loss, the brightness must be further increased. A PDP using a green phosphor with high brightness is strongly desired.

従って本発明は上記事情を鑑み、PDPの緑色成分に用
いる輝度のより高い蛍光体を最適に用いることによって
従来よりも明るいPDPを提供するためのものである。
Therefore, in view of the above circumstances, the present invention is intended to provide a brighter PDP than the conventional one by optimally using a higher luminance phosphor for the green component of the PDP.

[問題点を解決するための手段コ Z n2s i 04: Mn,  A s蛍光体はC
RT用の緑色発光蛍光体のP39として知られ、主とし
て残光特性を必要とするコンピュータディスプレイ用緑
色発光蛍光体として用いられている。同様に前記Z n
2s i O,l: Mn蛍光体(P1)も用いられる
がP39はP1よりも輝度は低いが、残光が長いという
特性を有しているがために専らP39が用いられてきた
。しかし本発明者は当業者にとって輝度が低いと考えら
れていたP39蛍光体のAs付活量をPDP用に最適化
すると、以外にもP1を最適化した従来のPDPよりも
輝度が高くなることを新たに見い出し本発明を成すに至
った。
[Means for solving the problem Z n2s i 04: Mn, A s phosphor is C
It is known as P39, a green-emitting phosphor for RT, and is mainly used as a green-emitting phosphor for computer displays that require afterglow properties. Similarly, the above Z n
2s i O,l: Mn phosphor (P1) is also used, but P39 has a lower brightness than P1 but has a longer afterglow, so P39 has been used exclusively. However, the present inventor found that by optimizing the As activation amount of P39 phosphor for PDP, which was considered to have low brightness by those skilled in the art, the brightness was higher than that of conventional PDP with P1 optimized. This new discovery led to the present invention.

まずAs濃度と蛍光体の発光輝度の関係を調べるために
ZnpSiO4: Mn,As蛍光体中のASo付活量
を蛍光体母体(Z n2s i 04)に対し数々変化
させたものを多数作成した。なおMn付活量は、従来の
P39蛍光体に多く適用されている0.13重量%と一
定にした。P39蛍光体の粉体の相対輝度は電子線励起
の場合も253.7nm励起の場合も変化はないため、
簡便な253.7nmで励起した際のそれら蛍光体の粉
体の相対輝度をAsを付活させない蛍光体の輝度を10
0%として第2図−aに示す。
First, in order to investigate the relationship between the As concentration and the emission brightness of the phosphor, a large number of ZnpSiO4:Mn,As phosphors were prepared in which the amount of ASo activation was varied from that of the phosphor matrix (Z n2s i 04). The Mn activation amount was kept constant at 0.13% by weight, which is often applied to conventional P39 phosphors. Since the relative brightness of the P39 phosphor powder does not change when excited with an electron beam or when excited with 253.7 nm,
The relative brightness of these phosphor powders when excited at a simple wavelength of 253.7 nm is 10.
It is shown in FIG. 2-a as 0%.

またFDPに前記蛍光体を実装して発光させ、その点輝
度を測定した。その結果を第2図−bに示す。
Further, the phosphor was mounted on an FDP to cause it to emit light, and its point brightness was measured. The results are shown in Figure 2-b.

これらの結果を見ても解るように253.7nm励起の
場合はAsO付活量が多くなるにしたがって相対輝度は
減少しているが、その蛍光体をPDPに実装した際Xe
による147nm励起の場合ではAsの付活量に対する
点輝度にピークがあり明らかにAsを付活したことによ
って輝度の上昇が見られたことが解る。しかもAsを付
活させると輝度は低下すると信じられていた当業者にと
っては、僅か0.002重量%付活させただけで40%
以上の輝度の増加が見られるという思いがけない結果を
得た。
As can be seen from these results, in the case of 253.7 nm excitation, the relative brightness decreases as the amount of AsO activation increases, but when the phosphor is mounted on a PDP, the Xe
In the case of 147 nm excitation, there is a peak in point brightness with respect to the amount of As activation, and it can be seen that the brightness clearly increased due to the activation of As. Moreover, for those skilled in the art who believed that activating As would reduce the brightness, activating only 0.002% by weight was enough to reduce the brightness by 40%.
We obtained an unexpected result in which an increase in brightness was observed.

次に、前述したようにZ n2s i 04: Mn蛍
光体にAsを付活させると残光時間が増大することが知
られている。PDPの場合も同様に用途に応じて適当な
残光が必要であり、通常10%残光時間は5 O m.
 s以下が適当である。そのためAsを付活することに
よってできた蛍光体がPDPに適用できる残光時間を有
していなければならない。
Next, as mentioned above, it is known that activating As in the Z n2s i 04:Mn phosphor increases the afterglow time. Similarly, in the case of PDP, an appropriate afterglow is required depending on the application, and the 10% afterglow time is usually 5 Om.
S or less is appropriate. Therefore, the phosphor made by activating As must have an afterglow time that can be applied to PDPs.

よって前記蛍光体をFDPに実装した際の残光時間を調
べた結果を第3図に示す。
Therefore, FIG. 3 shows the results of examining the afterglow time when the phosphor was mounted on an FDP.

Asの付活量が増加するにしたがって残光時間は直線的
に増加しているが実用範囲であるAsの付活量は0.0
03重量%以下であることが解る。
As the activation amount of As increases, the afterglow time increases linearly, but the activation amount of As, which is in the practical range, is 0.0.
It can be seen that the amount is less than 0.03% by weight.

これらの結果よりAsの付活量が蛍光体母体に対し0.
0005〜0.003重量%の範囲に調整されたZn2
SiO4: Mn,As蛍光体をFDPに用いる方がよ
り好ましい。
These results show that the activation amount of As is 0.0 with respect to the phosphor matrix.
Zn2 adjusted to a range of 0005 to 0.003% by weight
It is more preferable to use SiO4:Mn,As phosphor for FDP.

なおZ n2s i Oa: Mn,  A s蛍光体
のMn付活量は、同しく母体に対して通常0.05〜2
.0重量%の範囲で付活されているが、Mnがこの範囲
で付活された蛍光体に関してのAsの付活量の効果は第
2図−b1  第3図に示した結果とほぼ同等であった
Note that the Mn activation amount of the Z n2s i Oa: Mn, As phosphor is generally 0.05 to 2 with respect to the matrix.
.. Although Mn was activated in the range of 0% by weight, the effect of the activation amount of As on the phosphor activated in this range is almost the same as the results shown in Figure 2-b1 and Figure 3. there were.

[作用コ 本発明のFDPは前述したようにその緑色成分として用
いるZn2S j 04: Mn,As蛍光体のAs付
活量を最適値にすることによって従来のPDPよりも4
0%以上明るいFDPとなった。
[Function] As mentioned above, the FDP of the present invention has a brightness higher than the conventional PDP by setting the As activation amount of the Zn2S j 04:Mn,As phosphor used as the green component to an optimum value.
The FDP became brighter than 0%.

[実施例1コ Mn付活量、As付活量が蛍光体母体に対しそれぞれ0
.  5重量%、0.002重量%であるZn2s i
 04: Mn 9 0 gに12.5重量%PVA水
溶液160gとオクタノール1 m l、20%重クロ
ム酸アンモニウム水溶液3mlを混合して蛍光体スラリ
ーを形成した。そしてそのスラリーをロールコート法を
用いアノードに膜厚15μmで塗布した。
[Example 1] The Mn activation amount and the As activation amount were each 0 relative to the phosphor matrix.
.. Zn2s i which is 5 wt%, 0.002 wt%
04: 90 g of Mn, 160 g of a 12.5% by weight PVA aqueous solution, 1 ml of octanol, and 3 ml of a 20% ammonium dichromate aqueous solution were mixed to form a phosphor slurry. The slurry was then applied to the anode in a film thickness of 15 μm using a roll coating method.

次にバインダーを焼成した後パネル封着を行いHe99
%、Xel%の混合ガスを封入し、Hgによるゲッタフ
ラッシュ後、Hg拡散を行い本発明のPDPを得た。比
較例としてMn1.6重量%のみが付活したZ n2s
 i O4: Mn蛍光体90gを用い同様にしてPD
Pを製造した。
Next, after firing the binder, the panel was sealed and He99
%, Xel% was sealed, and after getter flash with Hg, Hg was diffused to obtain a PDP of the present invention. As a comparative example, Zn2s activated with only 1.6% by weight of Mn
iO4: PD in the same manner using 90g of Mn phosphor
P was produced.

そしてそれらのPDPを点灯しその点輝度を測定したと
ころ、本発明のPDPは140cd/m2、従来のそれ
は110cd/rn2であった。
When those PDPs were turned on and their point luminance was measured, the PDP of the present invention had a luminance of 140 cd/m2, and that of the conventional PDP had a luminance of 110 cd/rn2.

[実施例2] Mn付活量、As付活量が蛍光体母体に対しそれぞれ1
.  0重量%、0.001重量%であるZn2s i
 Oa: Mn 9 0 gを実施例1と同様にして蛍
光体スラリーを形成した。そしてそのスラリーをパネル
のアノードに膜厚15μmで塗布した。
[Example 2] The Mn activation amount and the As activation amount were each 1 for the phosphor matrix.
.. Zn2s i which is 0 wt%, 0.001 wt%
Oa: A phosphor slurry was formed using 90 g of Mn in the same manner as in Example 1. The slurry was then applied to the anode of the panel to a thickness of 15 μm.

後は実施例1と同様にして本発明のFDPを得た。The rest was carried out in the same manner as in Example 1 to obtain an FDP of the present invention.

このPDPo点輝度を測定したところ130cd / 
m 2であった。
When I measured the brightness of this PDPo point, it was 130cd/
It was m2.

[発明の効果] 本発明のPDPに用いる蛍光体は従来のP39蛍光体と
その組成は同じであるが、P39蛍光体にはAsO付活
量が母体に対し0.003重量%以下で実用化されたも
のはなく、しかも従来のP39をそのままFDPに適用
しただけでは本発明は成されなかった。従って本発明は
ASを付活させることによって輝度が低下すると信じら
れていたP39蛍光体のAs付活量を最適化することに
よって従来では想像もできなかった輝度の向上という効
果をもたらした。
[Effects of the invention] The phosphor used in the PDP of the present invention has the same composition as the conventional P39 phosphor, but the P39 phosphor has an AsO activation amount of 0.003% by weight or less based on the base material for practical use. However, the present invention could not be accomplished by simply applying the conventional P39 to the FDP. Therefore, the present invention has brought about a hitherto unimaginable effect of improving brightness by optimizing the amount of As activation of the P39 phosphor, which was believed to reduce brightness by activating AS.

また本発明に用いる蛍光体は緑色モノクロのPDPだけ
でなくマルチカラーPDPに用いても白色成分の輝度が
向上するためより明るいFDPとなる。
Further, even when the phosphor used in the present invention is used not only in a green monochrome PDP but also in a multicolor PDP, the brightness of the white component is improved, resulting in a brighter FDP.

【図面の簡単な説明】[Brief explanation of drawings]

第l図一a及び第1図−bは夫々代表的直流型プラズマ
ディスプレイの表示パネルの構造模型の斜視図及び断面
図、第2図−aは本発明に係るFDPに用いられるZn
2S i O4: Mn,As蛍光体のAs付活量と相
対輝度の関係を表す図、第2図−bも同じ< Z n2
s i 04: Mn,  A s蛍光体のAs付活量
と点輝度の関係を表す図、第3図も同じ< Zn2S 
i 04: Mn,As蛍光体のAs付活量と残光時間
の関係を表す図である。 1・・・アノード、2・・・カソード、3・・・前面ガ
ラス、4・・・背面ガラス、5・・・隔壁、6・・・放
電空間・7・・・蛍光体。
1a and 1-b are respectively a perspective view and a cross-sectional view of a structural model of a display panel of a typical DC plasma display, and FIG.
2S i O4: A diagram showing the relationship between As activation amount and relative brightness of Mn, As phosphor, Figure 2-b is also the same < Z n2
s i 04: Diagram showing the relationship between As activation amount and point brightness of Mn, As phosphor, Figure 3 is also the same < Zn2S
i04: A diagram showing the relationship between As activation amount and afterglow time of Mn,As phosphor. DESCRIPTION OF SYMBOLS 1... Anode, 2... Cathode, 3... Front glass, 4... Back glass, 5... Partition wall, 6... Discharge space, 7... Phosphor.

Claims (1)

【特許請求の範囲】[Claims]  蛍光体母体(Zn_2SiO_4)に対して0より多
く0.003重量%以下の範囲でAsが付活されたZn
_2SiO_4:Mn,As蛍光体が塗布されて成るこ
とを特徴とする直流型プラズマデイスプレイパネル。
Zn activated with As in a range from 0 to 0.003% by weight based on the phosphor matrix (Zn_2SiO_4)
_2SiO_4: A DC plasma display panel coated with Mn, As phosphor.
JP27779389A 1989-10-24 1989-10-24 Dc plasma display pannel Pending JPH03205481A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP27779389A JPH03205481A (en) 1989-10-24 1989-10-24 Dc plasma display pannel

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP27779389A JPH03205481A (en) 1989-10-24 1989-10-24 Dc plasma display pannel

Publications (1)

Publication Number Publication Date
JPH03205481A true JPH03205481A (en) 1991-09-06

Family

ID=17588367

Family Applications (1)

Application Number Title Priority Date Filing Date
JP27779389A Pending JPH03205481A (en) 1989-10-24 1989-10-24 Dc plasma display pannel

Country Status (1)

Country Link
JP (1) JPH03205481A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2003054110A1 (en) * 2001-12-21 2003-07-03 Matsushita Electric Industrial Co., Ltd. Phosphor and method for production thereof and plasma display device

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2003054110A1 (en) * 2001-12-21 2003-07-03 Matsushita Electric Industrial Co., Ltd. Phosphor and method for production thereof and plasma display device
US7147802B2 (en) 2001-12-21 2006-12-12 Matsushita Electric Industrial Co., Ltd. Phosphor and method for production thereof and plasma display device

Similar Documents

Publication Publication Date Title
JPH11297212A (en) Plasma display
US7365491B2 (en) Plasma display panel having discharge electrodes buried in barrier ribs
JP3501498B2 (en) Plasma display panel
KR100670351B1 (en) Plasma display panel
JPH10208647A (en) Plasma display panel
JPH03205481A (en) Dc plasma display pannel
JPH11131059A (en) Fluorescent layer and display device having the layer
JPH0766744B2 (en) DC type plasma display panel
JP4592423B2 (en) Image display device
EP1783801A2 (en) Display device
JPH06145659A (en) Vacuum ultraviolet ray-excited luminous element
KR20020036012A (en) Plasma Display Panel with Lattice -Type Ribs
JPH11103431A (en) Color plasma display pannel filed with three-component gaseous mixture
JPH07245062A (en) Plasma display panel
JPH11176340A (en) Gas discharge display device
JPH11185631A (en) Plasma display panel
KR100304905B1 (en) Color Plasma Display Panel
JP2002180042A (en) High-luminance phosphor layer
JP2001229835A (en) Plasma display panel
JP2002083570A (en) Vacuum ultraviolet excitation-emissive element
JPH11297221A (en) Plasma display panel
KR0166020B1 (en) Flat panel display device
JP2001135241A (en) Gas-discharge panel and manufacturing method therefor
KR100575631B1 (en) Color Plasma Display Panel Device
KR19990054288A (en) Plasma display panel