JPH03205305A - Method for recovering oxygen - Google Patents

Method for recovering oxygen

Info

Publication number
JPH03205305A
JPH03205305A JP2000773A JP77390A JPH03205305A JP H03205305 A JPH03205305 A JP H03205305A JP 2000773 A JP2000773 A JP 2000773A JP 77390 A JP77390 A JP 77390A JP H03205305 A JPH03205305 A JP H03205305A
Authority
JP
Japan
Prior art keywords
oxygen
pressure
chlorine
zeolite
mixed gas
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2000773A
Other languages
Japanese (ja)
Inventor
Hiroyuki Ito
洋之 伊藤
Yoshitsugu Jinno
神野 嘉嗣
Shinji Takenaka
竹中 慎司
Yukihiro Yoshikawa
幸宏 吉川
Isao Kikuchi
菊地 功
Yoshiaki Matsuhashi
松橋 慶明
Akito Shimoyama
下山 昭人
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsui Toatsu Chemicals Inc
Original Assignee
Mitsui Toatsu Chemicals Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsui Toatsu Chemicals Inc filed Critical Mitsui Toatsu Chemicals Inc
Priority to JP2000773A priority Critical patent/JPH03205305A/en
Publication of JPH03205305A publication Critical patent/JPH03205305A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To efficiently recover oxygen by using zeolite as an adsorbent and recovering the oxygen by a pressure swing adsorption method in recovering the oxygen from a mixed gas containing chlorine and the oxygen. CONSTITUTION:Zeolite (e.g. Ca-A type) is preferably filled in four pressure- resistant vessels of the same shape and volume. Chlorine and oxygen are then contained therein and a mixed gas containing nitrogen and carbon dioxide, as necessary, is fed to a packed column under pressure to repeatedly carry out steps for successive absorbing, pressure equalizing, decompressing, vacuum deaerating and back washing and boosting according to a pressure swing adsorption method to separate the oxygen from the mixed gas. Thereby, the oxygen can be separated without being affected by the existing chlorine.

Description

【発明の詳細な説明】 〔産業上の利用分野] この発明は圧力スイング吸着法による酸素を製造する方
法に関するものである。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Field of Application] This invention relates to a method for producing oxygen by pressure swing adsorption.

C従来の技術〕 従来、ゼオライトなどの窒素を吸着する吸着剤を用いて
空気より酸素ガスを製造する、いわゆる圧力スイング吸
着法による酸素ガス製造方法はよく知られている.そし
て酸素の製造に関してはこの方法の対象原料ガスは空気
に限られてきた.しかしながら近年の技術進歩により窒
素・二酸化炭素以外の不純物を含む高濃度の酸素を含有
するガスが化学プラントから排出されるようになってき
た。すでに発明者らは塩酸ガスと酸素を触媒中で反応さ
せて塩素を製造する方法を提案しているが、このプロセ
スからはかなり高濃度の酸素を含有するガスが発生し系
外へ排出されている.現在はこのガスより酸素を経済的
に回収する方法がなかったので含有する塩素を除害した
のち大気へ放出しているが、もしこのガスより酸素を回
収することができるならば、回収した酸素を原料に戻す
ことができその経済的メリットは大きい。
C. Prior Art Conventionally, a method for producing oxygen gas by the so-called pressure swing adsorption method, in which oxygen gas is produced from air using an adsorbent such as zeolite that adsorbs nitrogen, is well known. Regarding the production of oxygen, the target raw material gas for this method has been limited to air. However, with recent technological advances, chemical plants have begun to emit gas containing high concentrations of oxygen and impurities other than nitrogen and carbon dioxide. The inventors have already proposed a method for producing chlorine by reacting hydrochloric acid gas and oxygen in a catalyst, but this process generates gas containing a fairly high concentration of oxygen and is discharged from the system. There is. Currently, there is no way to economically recover oxygen from this gas, so the chlorine content is removed and then released into the atmosphere. However, if oxygen can be recovered from this gas, the recovered oxygen can be returned to raw materials, which has great economic benefits.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

圧力スイング吸着法による酸素の回収において原料ガス
中の不純物として許容されるものとしては従来窒素・二
酸化炭素・一酸化炭素・硫黄酸化物・塩化水素および硫
化水素であり、塩素を含有するガスより酸素を分離・回
収する例はなかった。
In the recovery of oxygen by pressure swing adsorption, the impurities that are allowed in the raw material gas are nitrogen, carbon dioxide, carbon monoxide, sulfur oxides, hydrogen chloride, and hydrogen sulfide. There were no cases of separation and recovery of the waste.

〔!I!題を解決するための手段〕[! I! Means to solve the problem]

発明者らは酸素ガスを分離するのに良く用いられるCa
−A型ゼオライトを充填剤として使用して圧力スイング
吸着法を行った結果、塩素およびその他のガスを含有す
る混合ガスより酸素が効率よく分離できることを見出し
本発明に至った。
The inventors discovered that Ca, which is often used to separate oxygen gas,
As a result of carrying out a pressure swing adsorption method using Type-A zeolite as a filler, the present inventors discovered that oxygen could be efficiently separated from a mixed gas containing chlorine and other gases, leading to the present invention.

即ち、本発明は塩素と酸素を含有した混合ガスより酸素
を回収する方法において吸着剤としてゼオライトを使用
した圧力スイング吸着法による酸素の回収方法である。
That is, the present invention is a method for recovering oxygen from a mixed gas containing chlorine and oxygen using a pressure swing adsorption method using zeolite as an adsorbent.

使用するゼオライトはCa−A型・C a −X型・N
a−A型・Na−X型・天然モルデナイトなどが使用で
きるが、Ca−A型が酸素と窒素との選択係数が高く望
ましい。
The zeolites used are Ca-A type, Ca-X type, and N.
Although a-A type, Na-X type, natural mordenite, etc. can be used, Ca-A type is preferable because it has a high selectivity coefficient between oxygen and nitrogen.

処理するガス中の塩素濃度の制限はないが塩素はゼオラ
イトに非常によく吸着されるので、高濃度の場合には頻
繁に再生することになる。酸素・塩素以外に共存を許さ
れるガス戒分としては二酸化炭素・一酸化炭素・窒素な
どがある。
There is no limit to the concentration of chlorine in the gas being treated, but chlorine is very well adsorbed by zeolites, so high concentrations will require frequent regeneration. In addition to oxygen and chlorine, other gases that are allowed to coexist include carbon dioxide, carbon monoxide, and nitrogen.

操作圧力は基本的に脱着時より吸着時が高くなければな
らないが、吸着時は2 kg7cm”G以上’Okg/
cm”G未満が望ましく、また脱着時は大気圧前後から
O kg/cn+”abs.が望ましい。
The operating pressure must basically be higher during adsorption than during desorption, but during adsorption it should be 2 kg/7cm"G or more'Okg/
cm"G is desirable, and when attaching and detaching, the pressure should be around atmospheric pressure to O kg/cn+"abs. is desirable.

操作温度は室温程度の温度が望ましいか、使用するゼオ
ライトの種類・混合ガスの組戒や経済的理由である程度
の範囲は許容される。
The operating temperature is preferably around room temperature, or a certain range is acceptable depending on the type of zeolite used, the gas mixture, and economic reasons.

圧力スイング吸着法の操作は一般的な酸素分離の方法に
準じる。すなわち1塔以上の充填塔に上記のゼオライト
を充填し、順次に吸着精製・均圧・減圧・真空脱気逆洗
・昇圧を繰り返し酸素と塩r・二酸化炭素・窒素を分離
し高純度の酸素を得ることができる。
The operation of the pressure swing adsorption method is similar to a general oxygen separation method. In other words, one or more packed towers are filled with the above zeolite, and adsorption purification, pressure equalization, depressurization, vacuum degassing, backwashing, and pressure increase are repeated in sequence to separate oxygen, salt r, carbon dioxide, and nitrogen to produce high-purity oxygen. can be obtained.

以下に実施態様の1つの例を示す。ゼオライトを4つの
同形状・同容量の耐圧容器(仮にA,B,C.  Dと
呼ぶ)に等量充填する。各容器の内Aの吸着・脱着の過
程を次に述べる。すなわち吸着段階では塩素・酸素・二
酸化炭素・窒素を含んだ原料ガスを2 kg/cm”G
以上]Okg/co+”G未満の圧力下に充填容器Aに
通気する。一定時間後に原料ガスの通気を充填容器Dに
切り換える。充填容器Aは再生が完了し減圧下にあった
充填容器Bと均圧を取り充填容器A内にある酸素の多い
ガスの一部を充填容器Bへ回収する。その後充填容IA
を滅圧して大気圧とし、さらに真空ポンプにより排気を
行う。これによりゼオライトの再生を完全に行う。
An example of an embodiment is shown below. Equal amounts of zeolite are filled into four pressure-resistant containers of the same shape and capacity (temporarily referred to as A, B, C, and D). The adsorption/desorption process of A in each container will be described below. In other words, in the adsorption stage, the raw material gas containing chlorine, oxygen, carbon dioxide, and nitrogen is
above] Filling container A is vented under a pressure of less than Okg/co+"G. After a certain period of time, the ventilation of the raw material gas is switched to filling container D. Filling container A has been regenerated and is now under reduced pressure. The pressure is equalized and a part of the oxygen-rich gas in the filling container A is recovered to the filling container B. After that, the filling volume IA
is depressurized to atmospheric pressure, and then evacuated using a vacuum pump. This completely regenerates the zeolite.

その後吸着が完了した充填容器Dと均圧を取り充填容器
D内にある酸素の多いガスの一部を充填容器八へ回収す
る。さらに分離した高純度の酸素ガスにて充填容器Aを
昇圧して吸着圧力とする。この状態で待機し、吸着を完
了した充填容器Bに切り換え吸着段階を開始する。この
ような操作を4つの充填容器に交互に行い、連続的に酸
素の分離・回収を行う。
Thereafter, the pressure is equalized with the filled container D in which adsorption has been completed, and a part of the oxygen-rich gas in the filled container D is recovered to the filled container 8. Furthermore, the pressure in the filled container A is increased to adsorption pressure using the separated high-purity oxygen gas. The system waits in this state, and then switches to the filled container B, which has completed suction, to start the suction stage. Such operations are performed alternately on the four filled containers to continuously separate and recover oxygen.

〔発明の効果〕〔Effect of the invention〕

本発明は圧力スイング吸着法を使用することにより、酸
素と塩素およびその他のガスを含有する混合ガスより塩
素の影響を受けずに酸素を分離することのできる方法を
提供するもので、その工業的価値は非常に大きい。
The present invention provides a method by which oxygen can be separated from a mixed gas containing oxygen, chlorine, and other gases without being affected by chlorine, by using a pressure swing adsorption method. The value is huge.

〔実施例〕〔Example〕

次に実施例により本発明をさらに詳細に説明する。%は
容量%である。
Next, the present invention will be explained in more detail with reference to Examples. % is volume %.

実施例 Ca−A型ゼオライト(ユニオン昭和株式会社製)を7
2kg充填した吸着塔を150 mmllgabs.と
した後に150秒間塩素(0.1%)・酸素(66.0
%)・二酸化炭素(15.5%)・窒素(11(.4%
)の組或のガスを7 kg/cm”Gとなるように操作
しながら1.10Nnf導入し、塩素(不検出)・酸素
(95.4%)・二酸化炭素(l.1%)・窒素(3.
5%)の組戒のガスを0.41Nnfを得た。この時の
酸素の回収率は53%であった。続いて大気圧まで減圧
しさらに真空ボンブで150 mmHgabs.まで減
圧した。この操作を560回繰り返し行った後にガス流
量とガス組成を分析し酸素の回収率を算出すると52%
であった。
Example 7 Ca-A type zeolite (manufactured by Union Showa Co., Ltd.)
The adsorption tower packed with 2 kg was packed with 150 mmllgabs. After that, chlorine (0.1%) and oxygen (66.0
%), carbon dioxide (15.5%), nitrogen (11 (.4%)
) was introduced at a rate of 1.10 Nnf while operating it at 7 kg/cm"G, and chlorine (not detected), oxygen (95.4%), carbon dioxide (l.1%), and nitrogen (3.
We obtained 0.41Nnf of gas of 5%). The oxygen recovery rate at this time was 53%. Subsequently, the pressure was reduced to atmospheric pressure and then 150 mmHgabs. The pressure was reduced to After repeating this operation 560 times, the gas flow rate and gas composition were analyzed and the oxygen recovery rate was calculated to be 52%.
Met.

Claims (1)

【特許請求の範囲】 1)塩素と酸素を含有した混合ガスより酸素を回収する
方法において吸着剤としてゼオライトを使用した圧力ス
イング吸着法による酸素の回収方法。 2)混合ガスが塩素・酸素・窒素・二酸化炭素よりなる
請求項1記載の方法。 3)ゼオライトが5A型である請求項1記載の方法。
[Claims] 1) A method for recovering oxygen from a mixed gas containing chlorine and oxygen using a pressure swing adsorption method using zeolite as an adsorbent. 2) The method according to claim 1, wherein the mixed gas consists of chlorine, oxygen, nitrogen, and carbon dioxide. 3) The method according to claim 1, wherein the zeolite is type 5A.
JP2000773A 1990-01-06 1990-01-06 Method for recovering oxygen Pending JPH03205305A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000773A JPH03205305A (en) 1990-01-06 1990-01-06 Method for recovering oxygen

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000773A JPH03205305A (en) 1990-01-06 1990-01-06 Method for recovering oxygen

Publications (1)

Publication Number Publication Date
JPH03205305A true JPH03205305A (en) 1991-09-06

Family

ID=11483019

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000773A Pending JPH03205305A (en) 1990-01-06 1990-01-06 Method for recovering oxygen

Country Status (1)

Country Link
JP (1) JPH03205305A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5453113A (en) * 1994-04-11 1995-09-26 Uop Process for separation and recovery of methyl chloride from vent streams containing isobutane

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62212220A (en) * 1986-03-13 1987-09-18 Toyo Soda Mfg Co Ltd Production of molded article of zeolite
JPS62235201A (en) * 1986-04-05 1987-10-15 Masayoshi Maeda Method and device for concentrating oxygen in high yield-high concentration
JPS62278118A (en) * 1986-05-27 1987-12-03 Tosoh Corp Production of formed zeolite
JPS63190615A (en) * 1987-01-30 1988-08-08 Hitachi Ltd Gas separating and concentrating method
JPH01171637A (en) * 1987-12-28 1989-07-06 Tosoh Corp Adsorbing and separating zeolite agent
JPH01207113A (en) * 1987-12-22 1989-08-21 L'air Liquide Method of treating gaseous mixture by adsorption
JPH01236914A (en) * 1988-03-17 1989-09-21 Seitetsu Kagaku Co Ltd Method for recovery of concentrated oxygen

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62212220A (en) * 1986-03-13 1987-09-18 Toyo Soda Mfg Co Ltd Production of molded article of zeolite
JPS62235201A (en) * 1986-04-05 1987-10-15 Masayoshi Maeda Method and device for concentrating oxygen in high yield-high concentration
JPS62278118A (en) * 1986-05-27 1987-12-03 Tosoh Corp Production of formed zeolite
JPS63190615A (en) * 1987-01-30 1988-08-08 Hitachi Ltd Gas separating and concentrating method
JPH01207113A (en) * 1987-12-22 1989-08-21 L'air Liquide Method of treating gaseous mixture by adsorption
JPH01171637A (en) * 1987-12-28 1989-07-06 Tosoh Corp Adsorbing and separating zeolite agent
JPH01236914A (en) * 1988-03-17 1989-09-21 Seitetsu Kagaku Co Ltd Method for recovery of concentrated oxygen

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5453113A (en) * 1994-04-11 1995-09-26 Uop Process for separation and recovery of methyl chloride from vent streams containing isobutane

Similar Documents

Publication Publication Date Title
US4685939A (en) Production of oxygen enriched air
EP0349655B1 (en) Process for separating and recovering carbonic acid gas from gas mixture by adsorption
US4482361A (en) Pressure swing adsorption process
US6544318B2 (en) High purity oxygen production by pressure swing adsorption
US6468328B2 (en) Oxygen production by adsorption
US6616732B1 (en) Zeolite adsorbents, method for obtaining them and their use for removing carbonates from a gas stream
US5470378A (en) System for separation of oxygen from argon/oxygen mixture
EP0462778A1 (en) Pressure swing adsorption method for separating gaseous mixtures
US5536299A (en) Simultaneous step pressure swing adsorption process
ZA200210397B (en) Method for purifying hydrogen-based gas mixtures using a calcium X-zeolite.
JPH0796128A (en) Single floor pressure variation type adsorption system and method
EP0276309A1 (en) Process for separation of high purity gas from mixed gas
CA2462308C (en) Psa process for co-producing nitrogen and oxygen
EP0640376B1 (en) Method for recovering ethylene from ethylene oxide plant vent gas
JPH08309180A (en) Enrichment method by adsorbing oxygen in air with mixture ofmolecular sieve and zeolite
US5453113A (en) Process for separation and recovery of methyl chloride from vent streams containing isobutane
GB2109266A (en) Pressure swing process for the separation of gas mixtures by adsorption
US4931071A (en) Method for densely packing molecular sieve adsorbent beds in a PSA system
CN1074448C (en) Pressure swing adsorption process for concentration and purification of carbon monooxide in blast furnace gas
EP0135936A2 (en) Production of oxygen enriched air
JPH03205305A (en) Method for recovering oxygen
JPS621767B2 (en)
JP3026103B2 (en) Argon recovery method
JPS62117612A (en) Regenerating method for adsorption tower
JP2004300035A (en) Method for separating methane gas and apparatus therefor