JPH03204931A - Removal of surface defect on semiconductor substrate - Google Patents

Removal of surface defect on semiconductor substrate

Info

Publication number
JPH03204931A
JPH03204931A JP34415589A JP34415589A JPH03204931A JP H03204931 A JPH03204931 A JP H03204931A JP 34415589 A JP34415589 A JP 34415589A JP 34415589 A JP34415589 A JP 34415589A JP H03204931 A JPH03204931 A JP H03204931A
Authority
JP
Japan
Prior art keywords
thin film
epitaxial crystal
crystal thin
resin thin
abnormal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP34415589A
Other languages
Japanese (ja)
Inventor
Yoshiteru Itou
伊東 義曜
Masakiyo Ikeda
正清 池田
Shinichi Ishiwatari
伸一 石渡
Kazuo Yotsuya
四ツ谷 和雄
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Furukawa Electric Co Ltd
Original Assignee
Furukawa Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Furukawa Electric Co Ltd filed Critical Furukawa Electric Co Ltd
Priority to JP34415589A priority Critical patent/JPH03204931A/en
Publication of JPH03204931A publication Critical patent/JPH03204931A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To enable a protrusion abnormally grown on a surface of an epitaxial crystal thin film to be removed easily by a method wherein a flexible resin thin film is formed closely bonding onto an epitaxial crystal thin film and after applying pressure on the thin film, the resin thin film is released from the epitaxial crystal thin film. CONSTITUTION:A resin thin film is formed on an epitaxial crystal thin film formed on a semiconductor substrate. For example, in order to spin-coat a photoresist, this thin film may be formed by coating the epitaxial crystal thin film with the resin thin film in the thickness almost covering the level of an abnormal protrusion subject to the proper selection of the viscosity of photoresist and the revolution of a spinner. Besides, in case an ultraviolet-curing adhesive tape is to be used, the tape in proper thickness corresponding to the level of the abnormal protrusion may be used. Next, e.g. a metallic roller is rolled reciprocally several times on the formed photosensitive resin thin film to completely remove the abnormal protrusion. Finally, the sensitive resin thin film is released from the epitaxial crystal thin film.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は半導体基板の表面欠陥除去方法に関し、更に詳
しくは、ウェハ表面にエピタキシャル結晶を成長せしめ
たとき、形成されたエピタキシャル結晶薄膜の表面に異
常突起として成長している欠陥を除去する方法に関する
Detailed Description of the Invention (Industrial Application Field) The present invention relates to a method for removing surface defects from a semiconductor substrate, and more specifically, when an epitaxial crystal is grown on a wafer surface, the surface of the formed epitaxial crystal thin film is removed. The present invention relates to a method for removing defects growing as abnormal protrusions.

(従来の技術) 電子機器等に組込まれる半導体素子は、Si。(Conventional technology) Semiconductor elements incorporated into electronic devices and the like are made of Si.

GaAs等の所定の半導体のバルク単結晶を所定の厚み
にスライスしてウェハとし、このウェハの表面に鏡面研
磨処理を施したのち、ここにウェハと同じ半導体の単結
晶をエピタキシャル成長せしめてエピタキシャル結晶薄
膜を形成し、このエピタキシャル結晶薄膜にホトリソグ
ラフィー技術やエツチング技術を適用して各種デバイス
を装荷して製造されている。
A bulk single crystal of a given semiconductor such as GaAs is sliced to a given thickness to make a wafer, and the surface of this wafer is mirror-polished, and then a single crystal of the same semiconductor as the wafer is epitaxially grown to form an epitaxial crystal thin film. This epitaxial crystal thin film is then manufactured by applying photolithography and etching techniques to load various devices onto this epitaxial crystal thin film.

(発明が解決しようとする課題) 上記した一連の工程のうち、半導体ウェハの表面にエピ
タキシャル結晶薄膜を形成したとき、その薄膜の表面に
は、高さの異なるエピタキシャル結晶の柱状突起が異常
成長することがある。
(Problems to be Solved by the Invention) When an epitaxial crystal thin film is formed on the surface of a semiconductor wafer in the series of steps described above, columnar protrusions of epitaxial crystals of different heights grow abnormally on the surface of the thin film. Sometimes.

このような異常突起のうち、高さの高いものは、エピタ
キシャル結晶薄膜形成後に行なうホトリソグラフィーの
工程で、例えば、エピタキシャル結晶薄膜の上に密着さ
れるマスクを突き破り、マスクの損傷や割れなどを起す
場合がある。そのため、高い異常突起が成長している半
導体基板は使用不可として不良品になっていた。
Among these abnormal protrusions, tall ones can break through the mask that is tightly attached to the epitaxial crystal thin film during the photolithography process performed after the epitaxial crystal thin film is formed, causing damage or cracks to the mask. There are cases. As a result, semiconductor substrates on which tall abnormal protrusions have grown have been considered unusable and rejected.

本発明は、上記したようなエピタキシャル結晶薄膜表面
の異常突起を除去して、従来は不良品扱いされていた半
導体基板をも良品に転化することを可能にした半導体基
板の表面欠陥除去方法の提供を目的とする。
The present invention provides a method for removing surface defects from a semiconductor substrate, which makes it possible to convert a semiconductor substrate that was conventionally treated as a defective product into a good product by removing abnormal protrusions on the surface of an epitaxial crystal thin film as described above. With the goal.

(課題を解決するための手段・作用) 上記した目的を達成するために、本発明においては、エ
ピタキシャル結晶薄膜が形成されている半導体基板の前
記エピタキシャル結晶薄膜の上に可撓性の樹脂薄膜を密
着して形成し、ついで樹脂薄膜の上から加圧力を印加し
たのち、前記樹脂薄膜を前記エピタキシャル結晶薄膜か
ら剥離して、前記エピタキシャル結晶薄膜の表面に存在
する異常突起の結晶欠陥を除去することを特徴とする半
導体基板の表面欠陥除去方法が提供される。
(Means and effects for solving the problem) In order to achieve the above-mentioned object, in the present invention, a flexible resin thin film is provided on the epitaxial crystal thin film of the semiconductor substrate on which the epitaxial crystal thin film is formed. forming the resin thin film in close contact with each other, and then applying pressure from above the resin thin film, and then peeling the resin thin film from the epitaxial crystal thin film to remove crystal defects of abnormal protrusions existing on the surface of the epitaxial crystal thin film. Provided is a method for removing surface defects on a semiconductor substrate, characterized by the following.

本発明においては、まず、エピタキシャル結晶薄膜が形
成されている半導体基板の前記結晶薄膜の上に樹脂薄膜
が形成される。
In the present invention, first, a resin thin film is formed on the crystal thin film of the semiconductor substrate on which the epitaxial crystal thin film is formed.

この樹脂薄膜の形成は、例えば、ホトリソグラフィーの
工程で使用されるホトレジストをエピタキシャル結晶薄
膜の上に所定の厚みでスピンコードして塗布したのち、
これを光照射または乾燥して可撓性を有する樹脂薄膜に
成膜する方法、表面保護用の樹脂をスプレーもしくはス
ピナーで塗布後、所定の条件で乾燥し、樹脂薄膜を成膜
する方法、または、所定の厚みの紫外線硬化型粘着テー
プをエピタキシャル結晶薄膜の上に貼着したのち、ここ
に紫外線を照射して硬化せしめる方法を適用して行なわ
れる。
The formation of this resin thin film can be done, for example, by spin-coating a photoresist used in a photolithography process onto an epitaxial crystal thin film to a predetermined thickness, and then applying the photoresist to a predetermined thickness.
A method in which this is irradiated with light or dried to form a flexible resin thin film, a method in which a surface protection resin is applied with a spray or spinner and then dried under predetermined conditions to form a resin thin film, or This is done by applying a method in which an ultraviolet curable adhesive tape of a predetermined thickness is adhered onto the epitaxial crystal thin film and then irradiated with ultraviolet rays to cure the adhesive tape.

前者のホトレジストとしては、ホトリソグラフィー工程
で用いられるものであれば何であってもよいが、例えば
、AZ1350J(商品名、ヘキストジャパン(掬製)
、レコパック(商品名、ナガオカ(掬製のポリビニルア
ルコールを主体とするもの)を好適なものとしてあげる
ことができる。また、紫外線硬化型粘着テープとしては
、例えば、UVテープ(商品名、古河電気工業■製)を
あげることができる。
The former photoresist may be of any type as long as it is used in the photolithography process, but for example, AZ1350J (trade name, manufactured by Hoechst Japan)
, Recopak (trade name, Nagaoka (made mainly from polyvinyl alcohol) is suitable. Also, as an ultraviolet curable adhesive tape, for example, UV tape (trade name, Furukawa Electric Co., Ltd.) is suitable. ■) can be given.

これらの感光性樹脂薄膜は、エピタキシャル結晶薄膜の
表面に存在する異常突起を略包み込む程度の厚みとなる
ように形成される。例えば、ホトレジストをスピンコー
ドする場合は、異常突起の高さに応じて、ホトレジスト
の粘度やスピナーの回転数を適宜に選定して、前記異常
突起を略包み込むような厚みでエピタキシャル結晶薄膜
の上に塗布すればよい。また紫外線硬化型粘着テープを
用いる場合は、異常突起の高さに対応して適切な厚みの
テープを用いればよい。
These photosensitive resin thin films are formed to have a thickness that substantially covers abnormal protrusions present on the surface of the epitaxial crystal thin film. For example, when spin-coding photoresist, the viscosity of the photoresist and the rotation speed of the spinner are selected appropriately depending on the height of the abnormal protrusion, and the epitaxial crystal thin film is coated with a thickness that almost covers the abnormal protrusion. Just apply it. Furthermore, when using an ultraviolet curable adhesive tape, it is sufficient to use a tape with an appropriate thickness depending on the height of the abnormal protrusion.

このような処理によって、エピタキシャル結晶薄膜上の
異常突起は形成された感光性樹脂薄膜の膜厚部分の中に
固持された状態になる。
Through such treatment, abnormal protrusions on the epitaxial crystal thin film are held firmly within the thick portion of the formed photosensitive resin thin film.

ついで、本発明においては、上記のように形成した感光
性樹脂薄膜の上に加圧力を印加する。
Next, in the present invention, a pressing force is applied onto the photosensitive resin thin film formed as described above.

この処理により、異常突起は、上記加圧力によって生ず
る感光性樹脂薄膜の撓みによって、成長基部の付近から
折損する。折損した異常突起は、しかしながら、感光性
樹脂薄膜の膜厚部分σ中に固持されているので、基板の
表面に飛散して基板表面を損傷するという問題は起さな
い。
Through this treatment, the abnormal protrusion is broken from near the growth base due to the deflection of the photosensitive resin thin film caused by the above-mentioned pressure. However, since the broken abnormal protrusions are firmly fixed in the thickness portion σ of the photosensitive resin thin film, there is no problem of them scattering onto the surface of the substrate and damaging the substrate surface.

このときに印加する加圧力は、異常突起の太さ、高さな
どの形態とそれに伴う強度との関係から適宜に決めれば
よい。また、加圧力の印加に際しては、感光性樹脂薄膜
の上から例えば金属製のローラを圧接しながら複数回往
復運動させることが、異常突起を完全に折損するという
点では好適である。
The pressure applied at this time may be appropriately determined based on the relationship between the shape of the abnormal protrusion, such as its thickness and height, and its accompanying strength. In addition, when applying pressure, it is preferable to move a metal roller, for example, in pressure contact with the photosensitive resin thin film and reciprocate a plurality of times in order to completely break off the abnormal protrusion.

つぎに、感光性樹脂薄膜はエピタキシャル結晶薄膜から
剥離される。このことによって、折損され、感光性樹脂
薄膜の中に固持されている異常突起は前記感光性樹脂薄
膜と一緒にエピタキシャル結晶薄膜の表面から除去され
る。
Next, the photosensitive resin thin film is peeled off from the epitaxial crystal thin film. As a result, the abnormal protrusions that are broken and held in the photosensitive resin thin film are removed from the surface of the epitaxial crystal thin film together with the photosensitive resin thin film.

したがって、エピタキシャル結晶薄膜の表面に存在して
いた異常突起はその成長基部から掃引されて表面から完
全に除去されるか、または異常突起がその途中から折損
した場合は高さの低い異常突起を残すのみとなる。
Therefore, the abnormal protrusions that existed on the surface of the epitaxial crystal thin film are swept away from the growth base and are completely removed from the surface, or if the abnormal protrusions break off halfway, they leave abnormal protrusions with a low height. Only.

このようにして得られた半導体基板は、必要に応じて、
その表面の洗浄、乾燥の過程を経て、ホトリソグラフィ
ー工程に移送される。
The semiconductor substrate obtained in this way can be
After the surface is cleaned and dried, it is transferred to a photolithography process.

(発明の実施例) 実施例I Si基板の上に形成されているエピタキシャルSi単結
晶薄膜の表面の各点を観察して高さが7μm以上の異常
突起の数を測定した。ついで、この薄膜の上に、レコパ
ック(商品名、ナガオカ(掬製のレジスト)1−を滴下
し、200Orpmで回転するスピナーで全面に塗布し
た。
(Examples of the Invention) Example I Each point on the surface of an epitaxial Si single crystal thin film formed on a Si substrate was observed to measure the number of abnormal projections with a height of 7 μm or more. Next, Recopak (trade name, Nagaoka (resist made by Kiki) 1- was dropped onto this thin film and coated over the entire surface with a spinner rotating at 200 rpm.

その後、室温で15分間放置して前記レジストを乾燥し
、厚みが108mのレジスト膜を形成した。
Thereafter, the resist was allowed to stand for 15 minutes at room temperature to dry, thereby forming a resist film with a thickness of 108 m.

ついで、Si基板の裏面を真空吸着台にセットしてSi
基板を固定し、前記レジスト膜に1kg/criの圧力
で金属ローラを圧接して前記ローラを往復させた。
Next, set the back side of the Si substrate on a vacuum suction table and
The substrate was fixed, a metal roller was brought into contact with the resist film at a pressure of 1 kg/cri, and the roller was moved back and forth.

ついで、レジスト膜に粘着テープを貼着して前記粘着テ
ープを引張ることにより、レジスト膜をSi単結晶薄膜
の表面から剥離した。
Next, an adhesive tape was attached to the resist film and the adhesive tape was pulled to peel the resist film from the surface of the Si single crystal thin film.

得られたSi基板の表面における前記観察の各点を再び
観察して異常突起の個数と高さを測定した。その結果、
高さが7μm以上であった異常突起のうち、64%に相
当するものはその高さが7μmより低くなっていた。す
なわち、7μm以上の異常突起の64%は7μmより低
くなり、得られた基板は後段のホトリソグラフィー工程
に使用可能の状態になっていた。
Each point on the surface of the obtained Si substrate was observed again to measure the number and height of abnormal protrusions. the result,
Of the abnormal protrusions with a height of 7 μm or more, 64% had a height lower than 7 μm. In other words, 64% of the abnormal protrusions with a diameter of 7 μm or more were smaller than 7 μm, and the obtained substrate was ready for use in the subsequent photolithography process.

なお、レジスト膜を剥離したのちのSi単結晶薄膜の表
面につきESCA分析を行なったところ、その表面は不
純物で汚染されていないことが確認された。
When the surface of the Si single crystal thin film was subjected to ESCA analysis after the resist film was peeled off, it was confirmed that the surface was not contaminated with impurities.

実施例2 実施例1で用いたSi基板の表面に厚みが70μmのU
Vテープ(商品名、古河電気工業■製)を貼着し、その
上から1kg/cjの圧力で金属ローラを往復させた。
Example 2 U with a thickness of 70 μm was formed on the surface of the Si substrate used in Example 1.
A V-tape (trade name, manufactured by Furukawa Electric Co., Ltd.) was attached, and a metal roller was moved back and forth thereon with a pressure of 1 kg/cj.

ついで、UVテープの上から紫外線を照射したのち、そ
れに粘着テープを貼着して引張り、UVテープを剥離し
た。
Next, after irradiating the UV tape with ultraviolet rays, an adhesive tape was attached thereto and pulled to peel off the UV tape.

高さが7μm以上であった異常突起は、その60%が7
μmより低くなった。また、UVテープ剥離後、Si基
板の表面をS IMS分析したが、異常となる不純物は
検出されなかった。
Of the abnormal protrusions with a height of 7 μm or more, 60%
It became lower than μm. Furthermore, after the UV tape was removed, the surface of the Si substrate was analyzed by SIMS, but no abnormal impurities were detected.

(発明の効果) 以上の説明で明らかなように、本発明方法によれば、エ
ピタキシャル結晶薄膜の表面に異常成長している突起を
簡単に除去することができ、その結果、ホトリソグラフ
ィー工程における密着型露光方式を採用した場合でも、
使用するマスクの損傷や割れを防止することができる。
(Effects of the Invention) As is clear from the above explanation, according to the method of the present invention, abnormally growing protrusions on the surface of an epitaxial crystal thin film can be easily removed, and as a result, adhesion during the photolithography process can be easily removed. Even when using the type exposure method,
It is possible to prevent the mask used from being damaged or cracked.

したがって、本発明方法を採用することにより、従来は
不良品扱いになっていた半導体基板でも良品に転化する
ことができ、基板の付加価値は増大する。
Therefore, by employing the method of the present invention, even semiconductor substrates that were conventionally treated as defective products can be converted into good products, increasing the added value of the substrates.

Claims (1)

【特許請求の範囲】[Claims] エピタキシャル結晶薄膜が形成されている半導体基板の
前記エピタキシャル結晶薄膜の上に可撓性の樹脂薄膜を
密着して形成し、ついで樹脂薄膜の上から加圧力を印加
したのち、前記樹脂薄膜を前記エピタキシャル結晶薄膜
から剥離して、前記エピタキシャル結晶薄膜の表面に存
在する異常突起の結晶欠陥を除去することを特徴とする
半導体基板の表面欠陥除去方法。
A flexible resin thin film is formed in close contact with the epitaxial crystal thin film of the semiconductor substrate on which the epitaxial crystal thin film is formed, and then pressure is applied from above the resin thin film, and then the resin thin film is attached to the epitaxial crystal thin film. A method for removing surface defects from a semiconductor substrate, comprising removing crystal defects of abnormal projections existing on the surface of the epitaxial crystal thin film by peeling the epitaxial thin film from the crystal thin film.
JP34415589A 1989-12-29 1989-12-29 Removal of surface defect on semiconductor substrate Pending JPH03204931A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP34415589A JPH03204931A (en) 1989-12-29 1989-12-29 Removal of surface defect on semiconductor substrate

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP34415589A JPH03204931A (en) 1989-12-29 1989-12-29 Removal of surface defect on semiconductor substrate

Publications (1)

Publication Number Publication Date
JPH03204931A true JPH03204931A (en) 1991-09-06

Family

ID=18367061

Family Applications (1)

Application Number Title Priority Date Filing Date
JP34415589A Pending JPH03204931A (en) 1989-12-29 1989-12-29 Removal of surface defect on semiconductor substrate

Country Status (1)

Country Link
JP (1) JPH03204931A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04182067A (en) * 1990-11-14 1992-06-29 Hitachi Ltd Method for coating semiconductor device with flux

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5636127A (en) * 1979-08-31 1981-04-09 Fujitsu Ltd Treatment of wafer-surface
JPS62112851A (en) * 1985-11-13 1987-05-23 三井建設株式会社 Concrete curtain wall and its production

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5636127A (en) * 1979-08-31 1981-04-09 Fujitsu Ltd Treatment of wafer-surface
JPS62112851A (en) * 1985-11-13 1987-05-23 三井建設株式会社 Concrete curtain wall and its production

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04182067A (en) * 1990-11-14 1992-06-29 Hitachi Ltd Method for coating semiconductor device with flux
JPH0739034B2 (en) * 1990-11-14 1995-05-01 株式会社日立製作所 Flux application method for semiconductor devices

Similar Documents

Publication Publication Date Title
EP0157508B1 (en) Thin adhesive sheet for use in working semiconductor wafers
KR101458143B1 (en) Method for processing, in particular, thin rear sides of a wafer, wafer-carrier arrangement and method for producing said type of wafer-carrier arrangement
AT510068B1 (en) METHOD AND DEVICE FOR REMOVING A REVERSIBLE ASSEMBLED BUILDING UNIT FROM A SUPPORTING SUBSTRATE
TWI589665B (en) Adhesive adhesive material for wafer processing, member for wafer processing using the temporary adhesive material for wafer processing, method for manufacturing wafer processed body, and thin wafer
US9230888B2 (en) Wafer back side coating as dicing tape adhesive
KR20060058001A (en) Large size pellicle
JPH09330940A (en) Manufacture of semiconductor device
JPH03204931A (en) Removal of surface defect on semiconductor substrate
WO2007028695A1 (en) Method for cleaning particulate foreign matter from the surfaces of semiconductor wafers
US6040110A (en) Process and apparatus for the removal of resist
CN108682613B (en) Method for processing semiconductor wafer
TWI796486B (en) Manufacturing method of thin substrate
US6688948B2 (en) Wafer surface protection method
US6142853A (en) Method and apparatus for holding laser wafers during a fabrication process to minimize breakage
JPH0780865A (en) Stripping method of thin optical resin film and frame for stripping
JPH0582868B2 (en)
US11244971B2 (en) Method of transferring a thin film from a substrate to a flexible support
JPH0264A (en) Production of photomask cover
JP2742367B2 (en) Pellet separation method
EP0989465B1 (en) Method for one-shot removal of resist member and sidewall protection layer
JPS6143849B2 (en)
JPS62128516A (en) Removing method for projection of semiconductor wafer
CN114695084A (en) Wafer and glass carrying disc attaching method
JPH04257238A (en) Manufacture of semiconductor device
KR100626557B1 (en) Process for the removal of resist material