JPH03204522A - Pump arrangement for refrigerant - Google Patents

Pump arrangement for refrigerant

Info

Publication number
JPH03204522A
JPH03204522A JP31813189A JP31813189A JPH03204522A JP H03204522 A JPH03204522 A JP H03204522A JP 31813189 A JP31813189 A JP 31813189A JP 31813189 A JP31813189 A JP 31813189A JP H03204522 A JPH03204522 A JP H03204522A
Authority
JP
Japan
Prior art keywords
refrigerant
conduit
lead wire
pump
heating
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP31813189A
Other languages
Japanese (ja)
Other versions
JPH0788995B2 (en
Inventor
Yoshitaka Iwasaki
吉隆 岩崎
Hiroshi Yuyama
湯山 ▲ひろし▼
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP31813189A priority Critical patent/JPH0788995B2/en
Publication of JPH03204522A publication Critical patent/JPH03204522A/en
Publication of JPH0788995B2 publication Critical patent/JPH0788995B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Compressor (AREA)
  • Central Heating Systems (AREA)
  • Domestic Hot-Water Supply Systems And Details Of Heating Systems (AREA)

Abstract

PURPOSE:To prevent a leak of a current from a connecting element without fail by a construction wherein a connecting element vessel for connecting a power line for driving a pump for a refrigerant and a lead wire is provided in isolation above the main body of the pump for the refrigerant, a conduit joining the connecting element vessel and the pump for the refrigerant and having the lead wire inserted is fitted, and a heating means is fitted to the vicinity of the upper end part of the conduit. CONSTITUTION:A connecting element connecting a power line 9 for driving a pump arrangement for a refrigerant with a lead wire 24 in a terminal is provided in isolation above a pressure vessel 13. A conduit 32 joining an insulating terminal connecting vessel 31 and the pressure vessel 13 and having the lead wire 24 inserted is fitted, and moreover an electric heater for vaporizing a liquid-phase refrigerant 14 filled up in the insulating terminal connecting vessel 31 is fitted to the upper end part of the conduit 32. By heating the upper end part of the conduit 32, the liquid 32. By heating the upper end part of the conduit 32, the liquid-phase refrigerant 14 in the insulating terminal connecting vessel 31 is vaporized and an electric resistance is increased. A current from a power source is prevented form leaking to the pressure vessel 13 along the refrigerant 14 from the connecting element with the lead wire 24, and thus the safety against a leak is secured.

Description

【発明の詳細な説明】 [産業上の利用分野コ 本発明は、冷媒を使用した暖房装置における冷媒移送用
の冷媒用ポンプ装置に関するもので、特に、冷媒用ポン
プを駆動する電源の接続に関するものである。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a refrigerant pump device for transferring refrigerant in a heating device using a refrigerant, and particularly relates to a connection of a power source for driving a refrigerant pump. It is.

[従来の技術] 従来より、室内の暖房を行なう手段として、冷媒加熱用
熱交換器に燃焼熱を与え、液相の冷媒を気化させて室内
熱交換器に移送し、ここで冷媒を凝縮液化させ、このと
きに発生する放熱によって、暖房を行なうものがある。
[Prior Art] Conventionally, as a means of heating a room, combustion heat is applied to a heat exchanger for heating a refrigerant, and the liquid phase refrigerant is vaporized and transferred to the indoor heat exchanger, where the refrigerant is condensed and liquefied. Some systems use the heat released at this time to provide heating.

この種の暖房装置における冷媒の移送は、通常、冷媒用
ポンプを使用して行なわれる。
The transfer of refrigerant in heating devices of this type is usually carried out using a refrigerant pump.

従来のこの種の暖房装置及びこれに使用される冷媒用ポ
ンプを第7図及び第8図に示す。
A conventional heating device of this type and a refrigerant pump used therein are shown in FIGS. 7 and 8.

第7図は従来の冷媒用ポンプを用いた暖房装置を示す回
路図、第8図は従来の冷媒用ポンプを示す縦断面図であ
る。
FIG. 7 is a circuit diagram showing a heating device using a conventional refrigerant pump, and FIG. 8 is a longitudinal sectional view showing a conventional refrigerant pump.

第7図において、(A)は室外ユニット、(B)は室内
ユニットである。(1)は室外ユニット(A)内に配設
され、冷媒を圧送して循環させる冷媒用ポンプ、(2)
は燃料供給管(3)を通して供給された石油、ガス等の
燃料を図示しないバーナーによって燃焼する燃焼器、(
4)は前記燃焼器(2)の燃焼ガスによって加熱され、
前記冷媒用ポンプ(1)の吐出管(5)より圧送されて
きた液相の冷媒を蒸発、気化させる冷媒加熱用熱交換器
、(6)は燃焼器(2)の燃焼ガスを室外ユニット(A
)の外部に排気する排気筒である。
In FIG. 7, (A) is an outdoor unit, and (B) is an indoor unit. (1) is a refrigerant pump that is installed in the outdoor unit (A) and pumps and circulates refrigerant; (2)
is a combustor that burns fuel such as oil or gas supplied through a fuel supply pipe (3) by a burner (not shown);
4) is heated by the combustion gas of the combustor (2),
A refrigerant heating heat exchanger (6) evaporates and vaporizes the liquid-phase refrigerant fed through the discharge pipe (5) of the refrigerant pump (1); A
) is an exhaust stack that exhausts the air to the outside.

(7)は冷媒を冷媒用ポンプ(1)内に導入する吸入管
、(8)は冷媒用ポンプ(1)等の各部品に供給される
電源を制御する電源制御器、(9)は前記電源制御器(
8)から冷媒用ポンプ(1)に接続された電源線であり
、前記冷媒用ポンプ(1)から前記電源線(9)までの
各部品は室外ユニット(A)内に収納されている。(1
0)は室内ユニット(B)の内部に配設され、冷媒と周
囲の空気との熱交換を行なう室内熱交換器、(11)、
(12)は室外ユニット(A)と室内ユニット(B)内
の冷媒配管を接続する接続配管である。
(7) is a suction pipe that introduces the refrigerant into the refrigerant pump (1), (8) is a power supply controller that controls the power supplied to each component such as the refrigerant pump (1), and (9) is the above-mentioned power supply controller. Power controller (
8) is a power line connected to the refrigerant pump (1), and each component from the refrigerant pump (1) to the power line (9) is housed in the outdoor unit (A). (1
0) is an indoor heat exchanger that is disposed inside the indoor unit (B) and exchanges heat between the refrigerant and the surrounding air; (11);
(12) is a connection pipe that connects the refrigerant pipes in the outdoor unit (A) and the indoor unit (B).

上記冷媒回路において、冷媒は冷媒用ポンプ(1)から
吐出管(5)、冷媒加熱用熱交換器(4)、接続配管(
11)を経て、室内熱交換器(10)、接続配管(12
)、吸入管(7)の順に循環する。
In the above refrigerant circuit, the refrigerant flows from the refrigerant pump (1) to the discharge pipe (5), the refrigerant heating heat exchanger (4), and the connecting pipe (
11), then the indoor heat exchanger (10) and the connecting pipe (12).
), then the suction pipe (7).

第8図において、(13)は冷媒用ポンプ装置(1)の
外壁を形成する鋼製の圧力容器で、コツプ状部材及び円
筒状部材を溶接等で接合し、液洩れがなく、かつ耐圧構
造にしたものである。(14)は冷媒で、前記圧力容器
(13)内においては液相になっている。(15)は冷
媒用ポンプ(1)を駆動するモータからなる駆動部で、
(16)は固定子、(17)は回転子であり、この回転
はシャフト(18)を介して機械部(19)に伝達され
る。(20)は機械部(19)を覆うケーシング(21
)内に冷媒(14)を導く吸入管、(22)は機械部(
19)内部に冷媒(14)を吸入する吸入孔、(23)
は機械部(19)で高圧にされた冷媒(14)を吐出す
る吐出孔である。
In Fig. 8, (13) is a steel pressure vessel that forms the outer wall of the refrigerant pump device (1), and has a cup-shaped member and a cylindrical member joined by welding, etc., and has a pressure-resistant structure with no liquid leakage. This is what I did. (14) is a refrigerant, which is in a liquid phase within the pressure vessel (13). (15) is a drive unit consisting of a motor that drives the refrigerant pump (1),
(16) is a stator, (17) is a rotor, and this rotation is transmitted to the mechanical part (19) via the shaft (18). (20) is a casing (21) that covers the mechanical part (19).
), the suction pipe (22) leads the refrigerant (14) into the mechanical part (
19) Suction hole for sucking refrigerant (14) into the interior (23)
is a discharge hole that discharges the refrigerant (14) made high pressure in the mechanical part (19).

(41)は圧力容器(13)の内部を仕切る略円板状の
隔壁で、周端は圧力容器(13)の内壁に固着されてい
る。前記隔壁(41)の中央部には、前記駆動部(15
)のシャツ)(18)の一端を支持する軸受か取付けら
れており、また、面上の適宜位置には、冷媒(14)の
吐出管(5)の端部及び駆動部(15)の固定子(16
)に電源を供給するリード線(24)を保持するスリー
ブ(25)が取付けられている。(26)は圧力容器(
13)の側面に取付けられ、電源線(9)とリード線(
24)を接続する絶縁端子であり、リード線(24)の
一端はこの絶縁端子(26)の圧力容器(13)の内部
側の接続部(42)に取付けられているとともに、他端
はスリーブ(25)を経て駆動部(15)の固定子(1
6)に接続されている。(43)は圧力容器(13)に
設けられた注入口(44)から注入され、リード線(2
4)が入っている圧力容器(13)と隔壁(41)との
間の空間に充たされた絶縁材で、電気的絶縁性があり、
かつ冷媒(14)に侵されない樹脂材料等が使用されて
いる。
(41) is a substantially disk-shaped partition wall that partitions the inside of the pressure vessel (13), and its peripheral end is fixed to the inner wall of the pressure vessel (13). The drive section (15) is located in the center of the partition wall (41).
) A bearing is attached to support one end of the shirt (18), and the end of the refrigerant (14) discharge pipe (5) and the drive unit (15) are fixed at appropriate positions on the surface. Child (16)
) is fitted with a sleeve (25) which holds a lead wire (24) for supplying power to the motor. (26) is a pressure vessel (
13) and connects the power wire (9) and lead wire (
24), one end of the lead wire (24) is attached to the connection part (42) on the inside of the pressure vessel (13) of this insulated terminal (26), and the other end is connected to the sleeve. (25), the stator (1) of the drive section (15)
6). (43) is injected from the injection port (44) provided in the pressure vessel (13), and the lead wire (2
4) is an insulating material that fills the space between the pressure vessel (13) containing the pressure vessel (13) and the partition wall (41), and has electrical insulation properties.
In addition, a resin material or the like that is not attacked by the refrigerant (14) is used.

次に、上記のように構成された従来の冷媒用ポンプの動
作を説明する。
Next, the operation of the conventional refrigerant pump configured as described above will be explained.

暖房運転が行われるとき、燃焼器(2)において、燃料
供給管(3)から吐出された石油、ガス等の燃料が図示
しないバーナーによって燃焼され、その燃焼ガスによっ
て冷媒加熱用熱交換器(4)が加熱される。そして、燃
焼ガスは排気筒(6)から室外ユニット(A)の外部に
排出される。
When heating operation is performed, in the combustor (2), fuel such as oil or gas discharged from the fuel supply pipe (3) is combusted by a burner (not shown), and the combustion gas is used to heat the refrigerant heating heat exchanger (4). ) is heated. The combustion gas is then discharged to the outside of the outdoor unit (A) from the exhaust stack (6).

方、冷媒(14)は冷媒用ポンプ(1)によって、冷媒
用ポンプ(1)の吐出管(5)から冷媒加熱用熱交換器
(4)、接続配管(11)を経て、室内熱交換器(10
)、接続配管(12)、冷媒用ポンプ(1)の吸入管(
7)から冷媒用ポンプ(1)に戻る順に冷媒回路を循環
する。冷媒加熱用熱交換器(4)で冷媒(14)が加熱
されると、一般に冷媒(14)は沸点が低いので容易に
蒸発する。そして、蒸発により気化した冷媒(14)は
室内ユニット(B)の室内熱交換器(10)に移送され
て、ここで、周囲の空気と熱交換して放熱し、凝縮され
て液化する。逆に、周囲の空気は加熱されて室内は暖房
される。液化した冷媒(14)は冷媒用ポンプ(1)の
吸入管(7)から冷媒用ポンプ(1)内に戻される。
On the other hand, the refrigerant (14) is passed through the refrigerant pump (1) from the discharge pipe (5) of the refrigerant pump (1) to the refrigerant heating heat exchanger (4) and the connecting pipe (11) to the indoor heat exchanger. (10
), connection pipe (12), refrigerant pump (1) suction pipe (
The refrigerant circulates through the refrigerant circuit in the order from 7) to the refrigerant pump (1). When the refrigerant (14) is heated in the refrigerant heating heat exchanger (4), the refrigerant (14) generally evaporates easily because it has a low boiling point. Then, the refrigerant (14) vaporized by evaporation is transferred to the indoor heat exchanger (10) of the indoor unit (B), where it exchanges heat with the surrounding air, radiates heat, and is condensed and liquefied. Conversely, the surrounding air is heated and the room is heated. The liquefied refrigerant (14) is returned into the refrigerant pump (1) from the suction pipe (7) of the refrigerant pump (1).

一方、冷媒用ポンプ(1)内に吸入された液相の冷媒(
14)は、圧力容器(13)内に充満するとともに、一
部は吸入管(20)からケーシング(21)内に吸引さ
れ、更に、吸入孔(22)から機械部(19)に流入し
、ここで加圧されて、吐出孔(23)から駆動部(15
)内に入る。そして、冷媒(14)は、固定子(16)
と回転子(17)の間の空間を通り、吐出管(5)より
冷媒用ポンプ(1)の外に吐出される。
On the other hand, the liquid phase refrigerant (
14) fills the pressure vessel (13), a part of it is sucked into the casing (21) from the suction pipe (20), and further flows into the mechanical part (19) from the suction hole (22), Pressurized here, the drive unit (15) is discharged from the discharge hole (23).
) go inside. The refrigerant (14) is then transferred to the stator (16).
and the rotor (17), and is discharged from the discharge pipe (5) to the outside of the refrigerant pump (1).

なお、冷媒用ポンプ(1)を駆動する電源電流は、電源
制御器(8)から電源線(9)を伝って、絶縁端子(2
6)に入り、更に、リード線(24)を通って駆動部の
固定子(16)に伝送されて回転子(17)を回転させ
る。
Note that the power supply current that drives the refrigerant pump (1) is transmitted from the power supply controller (8) through the power supply line (9) to the insulated terminal (2).
6), and is further transmitted to the stator (16) of the drive unit through the lead wire (24) to rotate the rotor (17).

ところで、冷媒を用いた暖房は、冷媒の相変化を利用し
て熱を移送するため、冷媒には気化し易く、また、液化
し易いとともに、蒸発潜熱の大きなものが使用される。
By the way, in heating using a refrigerant, heat is transferred using the phase change of the refrigerant, so a refrigerant that is easily vaporized or liquefied and has a large latent heat of vaporization is used.

フロン系の冷媒は、水、不凍液等と比較して、同一の熱
量を移送する場合、循環量を少なくすることができる。
Compared to water, antifreeze, etc., fluorocarbon-based refrigerants can reduce the amount of circulation when transferring the same amount of heat.

したがって、冷媒用ポンプ(1)の消費電力が少なく、
また、冷媒配管径を小さくすることができ、製造及び据
付作業性が容易で、機器のコストも廉価である等の利点
がある。このため、フロン系の冷媒は、ヒートポンプ用
冷媒としても多用されている。しかし、フロン系の冷媒
は、一般に、電気抵抗が低く、これが液相の場合には、
更に大きく低下する。したがって、従来の冷媒用ポンプ
(1)において、圧力容器(13)と隔壁(41)との
間の空間に絶縁材(43)を充たせずに、この部分にも
液相の冷媒(14)が充満すると、電源線(9)を流れ
てきた電流は、絶縁端子(26)の接続部(42)にお
けるリード線(24)との接続部分から一部液相の冷媒
(14)を伝って、圧力容器(13)に流れる。このた
め、漏電ブレーカによる電源の遮断或いは感電等の危険
性が生じ、電気用品取締法等で規定された絶縁抵抗値を
確保することができない。
Therefore, the power consumption of the refrigerant pump (1) is low,
Further, there are advantages such as the diameter of the refrigerant piping can be reduced, manufacturing and installation workability is easy, and the cost of the equipment is low. For this reason, fluorocarbon-based refrigerants are also frequently used as refrigerants for heat pumps. However, fluorocarbon-based refrigerants generally have low electrical resistance, and when they are in the liquid phase,
It decreases even more. Therefore, in the conventional refrigerant pump (1), the space between the pressure vessel (13) and the partition wall (41) is not filled with the insulating material (43), and the liquid phase refrigerant (14) is not filled in this area. When the current flows through the power line (9), the current flowing through the power supply line (9) is transmitted through the partially liquid refrigerant (14) from the connection part (42) of the insulated terminal (26) to the lead wire (24). , flows into the pressure vessel (13). Therefore, there is a risk of power interruption due to the earth leakage breaker or electric shock, and it is not possible to ensure the insulation resistance value specified by the Electrical Appliance and Material Control Act.

そこで、前記圧力容器(13)と隔壁(41)との間の
リード線(24)が通っている空間に前記絶縁材(43
)を充たして、絶縁端子(26)の接続部(43)から
の電流の洩れ防止を図っている。なお、ヒートポンプ用
冷媒の循環にはガス圧縮器が使用されており、この場合
には、ガス圧縮器内の冷媒は気相になっているので、比
較的高い電気絶縁性を示し、リード線の接続部に特別な
絶縁処置を施す必要はない。
Therefore, the insulating material (43) is placed in the space where the lead wire (24) passes between the pressure vessel (13) and the partition wall (41).
) to prevent leakage of current from the connection portion (43) of the insulated terminal (26). Note that a gas compressor is used to circulate the refrigerant for heat pumps, and in this case, the refrigerant in the gas compressor is in the gas phase, so it exhibits relatively high electrical insulation and the lead wires No special insulation measures are required at the connections.

[発明が解決しようとする課題] 従来の冷媒用ポンプ装置は、上記のように構成され、圧
力容器(13)と隔壁(41)との間のリード線(24
)が通っている空間に絶縁材(43)を充たして、電源
の絶縁端子(26)の接続部(42)からの電流の洩れ
を防止しているが、絶縁材(43)として、物性的に長
期間の冷媒(14)との接触に耐え得る材料がなく、ま
た、絶縁材(43)を多量に必要とし、更に、圧力容器
(13)内に絶縁材(43)を注入して固化させる等の
製造上の工程が増え、冷媒用ポンプ(1)の製造コスト
が高くなる等の不具合があった。
[Problems to be Solved by the Invention] The conventional refrigerant pump device is configured as described above, and has a lead wire (24) between the pressure vessel (13) and the partition wall (41).
) is filled with an insulating material (43) to prevent leakage of current from the connection part (42) of the insulated terminal (26) of the power supply. There is no material that can withstand long-term contact with the refrigerant (14), and a large amount of insulating material (43) is required, and the insulating material (43) is injected into the pressure vessel (13) and solidified. There were disadvantages such as an increase in the number of manufacturing steps, such as additional steps, and an increase in the manufacturing cost of the refrigerant pump (1).

なお、絶縁性の不具合を解決する他の手段として、例え
ば、冷媒用ポンプ(1)の駆動部を圧力容器(13)の
内部に収納せず、マグネットカップリングによって駆動
部と機械部とを接続し、駆動部の回転力を伝達するもの
、或いは駆動部と機械部を分離してメカニカルシール等
により駆動部への冷媒の洩れを防止するもの等があるが
、前者の場合には、冷媒の差動圧力が20〜30kg/
cdになるので、ケーシングの耐圧強度上の問題があり
、更に、伝達動力が大きいと、冷媒用ポンプ装置の効率
が低下する。また、後者の場合には、シール部からの冷
媒の洩れやメカニカルシールを用いることによる構造の
複雑化及びコスト高等の問題があって、いずれも実用性
に乏しかった。
In addition, as another means to solve the insulation problem, for example, the drive part of the refrigerant pump (1) is not housed inside the pressure vessel (13), but the drive part and the mechanical part are connected by a magnetic coupling. However, there are those that transmit the rotational force of the drive part, or those that separate the drive part and mechanical part and use mechanical seals to prevent refrigerant from leaking into the drive part. Differential pressure is 20~30kg/
CD, there is a problem with the pressure resistance of the casing, and furthermore, if the transmitted power is large, the efficiency of the refrigerant pump device will decrease. Furthermore, in the latter case, there are problems such as leakage of refrigerant from the seal portion, a complicated structure due to the use of a mechanical seal, and high cost, all of which are impractical.

そこで、本発明は、電源との接続部からの電流の洩れを
安価にかつ確実に防止して、安全性を確保できるように
した冷媒循環用の冷媒用ポンプ装置の提供を課題とする
ものである。
SUMMARY OF THE INVENTION Therefore, an object of the present invention is to provide a refrigerant pump device for refrigerant circulation that can inexpensively and reliably prevent leakage of current from a connection with a power source and ensure safety. be.

[課題を解決するための手段] 本節−発明にかかる冷媒用ポンプ装置は、冷媒用ポンプ
駆動用の電源線と端末のリード線を中継する接続部容器
を冷媒用ポンプ本体の上方に隔離して設けるとともに、
前記接続部容器と前記冷媒用ポンプとを連結してリード
線が挿入された導管とを取付け、更に、導管の上端部付
近に前記接続部容器に充たされた液相の冷媒を気化させ
る加熱手段を取付けたものである。
[Means for Solving the Problems] This section - The refrigerant pump device according to the invention is characterized in that the connection container that relays the power supply line for driving the refrigerant pump and the terminal lead wire is isolated above the refrigerant pump main body. In addition to providing
A conduit in which a lead wire is inserted is connected to connect the connection container and the refrigerant pump, and further, heating is performed to vaporize the liquid phase refrigerant filled in the connection container near the upper end of the conduit. It has a means attached to it.

また、本第二発明にかかる冷媒用ポンプ装置は、冷媒用
ポンプ駆動用の電源線と端末のリード線を中継する接続
部容器を冷媒用ポンプ本体の上方に隔離して設けるとと
もに、前記接続部容器と前記冷媒用ポンプとを連結して
リード線が挿入された導管とを取付け、更に、導管内の
上端部付近を気相の冷媒で充たすことにより、前記接続
部容器内も気相の冷媒で充たす気相冷媒充満手段を取付
けたものである。
Further, in the refrigerant pump device according to the second invention, a connection portion container for relaying a power line for driving the refrigerant pump and a terminal lead wire is provided isolated above the refrigerant pump main body, and the connection portion By connecting the container and the refrigerant pump and attaching a conduit into which a lead wire is inserted, and filling the vicinity of the upper end of the conduit with gaseous refrigerant, the inside of the connection container is also filled with gaseous refrigerant. It is equipped with a gas phase refrigerant filling means.

[作用] 本節−発明においては、冷媒用ポンプ内に充たされてい
る冷媒は、導管を通って冷媒用ポンプから隔離されてい
る冷媒用ポンプ駆動用電源の接続部容器にも流入する。
[Operation] In this section of the invention, the refrigerant filled in the refrigerant pump also flows through the conduit into the connection container of the refrigerant pump driving power source, which is isolated from the refrigerant pump.

この状態で、導管の上端部付近の接続部容器或いは導管
の上端部を加熱すると、接続部容器内の液相の冷媒は気
化し、この相変化に伴なって冷媒の電気抵抗が増大する
。このため、冷媒用ポンプを運転している間に、電源か
ら供給された電力がリード線との接続部から冷媒を伝っ
て冷媒用ポンプ側に洩れることがなくなる。
In this state, when the connection container near the upper end of the conduit or the upper end of the conduit is heated, the liquid phase refrigerant in the connection container is vaporized, and the electrical resistance of the refrigerant increases with this phase change. Therefore, while the refrigerant pump is operating, the electric power supplied from the power supply will not leak through the refrigerant from the connection portion with the lead wire to the refrigerant pump side.

また、本第二発明においても、導管を通って冷媒用ポン
プから隔離されている冷媒用ポンプ駆動用電源の接続部
容器に液相の冷媒が流入し得る。
Further, in the second aspect of the present invention as well, liquid-phase refrigerant can flow through the conduit into the connection container of the refrigerant pump driving power source that is isolated from the refrigerant pump.

この状態で、導管内の上端部付近に気相の冷媒を充たす
ことにより、接続部容器内も気相の冷媒で充たされ、こ
の気相の冷媒が充満するに伴なって冷媒の電気抵抗が増
大する。このため、上記第一発明と同様に冷媒用ポンプ
を運転している間に、電源から供給された電力がリード
線との接続部から冷媒を伝って冷媒用ポンプ側に洩れる
ことがな(なる。
In this state, by filling the vicinity of the upper end of the conduit with gas-phase refrigerant, the inside of the connection container is also filled with gas-phase refrigerant, and as this gas-phase refrigerant fills, the electrical resistance of the refrigerant increases. increases. For this reason, while the refrigerant pump is operating as in the first invention, the power supplied from the power supply does not leak through the refrigerant from the connection with the lead wire to the refrigerant pump side. .

[実施例] 以下、本箱−及び第二発明の各実施例を説明する。[Example] Hereinafter, each embodiment of the bookcase and the second invention will be described.

く第一発明の第一実施例〉 まず、本節−発明の第一実施例を第1図及び第2図に基
づいて説明する。
First Embodiment of the First Invention> First, the first embodiment of the invention in this section will be described based on FIGS. 1 and 2.

第1図は本節−発明の第一実施例である冷媒用ポンプ装
置を示す縦断面図、第2図は第1図の冷媒用ポンプ装置
を用いた暖房装置を示す回路図である。なお、図中、第
7図及び第8図と同一符号は従来の構成部分と同一また
は相当する部分であるから、ここではその説明を省略す
る。
FIG. 1 is a longitudinal sectional view showing a refrigerant pump device according to a first embodiment of the invention in this section, and FIG. 2 is a circuit diagram showing a heating device using the refrigerant pump device of FIG. 1. Note that in the drawings, the same reference numerals as in FIGS. 7 and 8 indicate parts that are the same as or correspond to conventional components, so their explanation will be omitted here.

図において、(31)は圧力容器(13)から所定長だ
け離された位置に配設され、圧力容器(13)の上方に
配設された箱状の絶縁端子接続容器で、本実施例の接続
部容器の主体となるものである。前記絶縁端子接続容器
(31)の開口面には電源制御器(8)からの電源線(
9)を接続する絶縁端子(26)が取付けられている。
In the figure, (31) is a box-shaped insulated terminal connection container located at a predetermined distance from the pressure vessel (13) and above the pressure vessel (13). The connection part is the main body of the container. A power line (from the power supply controller (8)) is connected to the opening of the insulated terminal connection container (31).
9) is attached.

リード線(24)の一端は、前記絶縁端子接続容器(3
1)の内部において絶縁端子(26)に接続され、他端
は圧力容器(13)に入り、スリーブ(25)を紅で冷
媒用ポンプ(1)の駆動部(15)の固定子(16)に
接続されている。(32)は一端が前記絶縁端子接続容
器(31)の底面に貫通して取付けられ、他端は圧力容
器(13)の側面に貫通して固定されたセラミックス等
からなる導管で、内部にはリード線(24)を収納して
いる。前記絶縁端子接続容器(31)及び導管(32)
は密閉した状態に取付けられ、各接合部から液洩れやガ
ス洩れがないようにされている。
One end of the lead wire (24) is connected to the insulated terminal connection container (3).
1), the other end enters the pressure vessel (13), and the sleeve (25) is connected to the stator (16) of the drive unit (15) of the refrigerant pump (1). It is connected to the. (32) is a conduit made of ceramics etc. whose one end is attached to the bottom of the insulated terminal connection container (31) and the other end is fixed to the side of the pressure vessel (13). A lead wire (24) is housed therein. The insulated terminal connection container (31) and the conduit (32)
are installed in a sealed manner to prevent liquid or gas leakage from each joint.

また、導管(32)の内径はリード線(24)が挿入可
能な最小の大きさにされている。(33)は電源制御器
(8)からの電流によって、前記導管(32)の上端部
を加熱する電気ヒータである。
Further, the inner diameter of the conduit (32) is set to the minimum size into which the lead wire (24) can be inserted. (33) is an electric heater that heats the upper end of the conduit (32) using a current from the power supply controller (8).

なお、液相の冷媒(14)は冷媒用ポンプ(1)の運転
によって圧力容器(13)の内部全体を満たすとともに
、導管(32)を通って絶縁端子接続容器(31)内に
も充満している。
The liquid phase refrigerant (14) not only fills the entire interior of the pressure vessel (13) by operating the refrigerant pump (1), but also fills the insulated terminal connection vessel (31) through the conduit (32). ing.

なお、前記電源線(9)を接続する絶縁端子(26)及
び圧力容器(13)から所定長だけ離された位置に配設
され、圧力容器(13)の上方に配設された箱状の絶縁
端子接続容器(31)は、本実施例の接続部容器を構成
している。
In addition, a box-shaped box is provided at a position a predetermined distance away from the insulated terminal (26) to which the power supply line (9) is connected and the pressure vessel (13), and is disposed above the pressure vessel (13). The insulated terminal connection container (31) constitutes the connection portion container of this embodiment.

次に、上記のように構成された本実施例の冷媒用ポンプ
装置の動作を説明する。
Next, the operation of the refrigerant pump device of this embodiment configured as described above will be explained.

圧力容器(13)及び絶縁端子接続容器(31)内に液
相の冷媒(14)が充満した状態で、電気ヒータ(33
)に通電が行なわれると、導管(32)の上端部及び絶
縁端子接続容器(31)の内部が加熱されて冷媒(14
)の温度が上昇する。
While the pressure vessel (13) and the insulated terminal connection vessel (31) are filled with the liquid phase refrigerant (14), the electric heater (33)
) is energized, the upper end of the conduit (32) and the inside of the insulated terminal connection container (31) are heated, and the refrigerant (14) is heated.
) temperature increases.

一方、導管(32)の内径はリード線(24)が挿入可
能な最小寸法にし、リード線(24)との隙間を小さく
しているので、冷媒(14)の流動はほとんど抑えられ
ている。したがって、冷媒(14)の流動に伴って熱が
移動することがほとんどなく、電気ヒータ(33)の取
付部のみが蓄熱し、この部分の冷媒(14)が蒸発して
、絶縁端子接続容器(31)内は気相の冷媒(14)で
充満する(第1図において、絶縁端子接続容器(31)
内の冷媒(14)は気相の状態を示す)。
On the other hand, the inner diameter of the conduit (32) is set to the minimum size that allows the lead wire (24) to be inserted, and the gap between the lead wire (24) and the lead wire (24) is made small, so that the flow of the refrigerant (14) is almost suppressed. Therefore, heat hardly moves with the flow of the refrigerant (14), and only the mounting part of the electric heater (33) accumulates heat, and the refrigerant (14) in this part evaporates, and the insulated terminal connection container ( 31) is filled with a gas phase refrigerant (14) (in Fig. 1, the insulated terminal connection container (31)
The refrigerant (14) inside is in a gas phase).

なお、絶縁端子接続容器(31)は圧力容器(13)の
上方に配設されているので、絶縁端子接続容器(31)
内に発生した気相の冷媒(14)は導管(32)を下降
して圧力容器(13)内に流入することはなく、常に絶
縁端子接続容器(31)内に充満した状態におかれる。
In addition, since the insulated terminal connection container (31) is arranged above the pressure vessel (13), the insulated terminal connection container (31)
The gaseous refrigerant (14) generated within the insulated terminal connection container (31) is always filled with the insulated terminal connection container (31) without descending the conduit (32) and flowing into the pressure container (13).

これによって、絶縁端子(26)におけるリード線(2
4)との接続部から電流が洩れても、絶縁端子接続容器
(31)内の冷媒(14)は気化して電気抵抗が増大し
ているので、冷媒(14)で絶縁され、圧力容器(13
)に流れることがない。
As a result, the lead wire (2) at the insulated terminal (26)
Even if current leaks from the connection with the insulated terminal connection container (31), the refrigerant (14) in the insulated terminal connection container (31) has vaporized and increased its electrical resistance, so it is insulated by the refrigerant (14) and the pressure container ( 13
) does not flow.

なお、暖房運転において、冷媒(14)は、上記以外は
、従来例と同様に動作して、冷媒用ポンプ(1)内で高
圧にされ、各冷媒回路を循環する。
In addition, in the heating operation, the refrigerant (14) operates in the same manner as in the conventional example except for the above, is brought to high pressure within the refrigerant pump (1), and circulates through each refrigerant circuit.

ところで、暖房運転の停止から起動までの間は、電気ヒ
ータ(33)への通電を停止するが、このとき、絶縁端
子接続容器(31)内の気相の冷媒(14)は周囲の温
度によって冷却され、液相に変化する。そこで、冷媒用
ポンプ(1)の運転開始前に、予め電気ヒータ(33)
を所定時間通電し、絶縁端子接続容器(31)内の冷媒
(14)がガス化してから、冷媒用ポンプ(1)の駆動
部の運転が開始される。
By the way, from the stop to the start of the heating operation, the power supply to the electric heater (33) is stopped, but at this time, the gas phase refrigerant (14) in the insulated terminal connection container (31) is affected by the ambient temperature. It is cooled and changes to a liquid phase. Therefore, before starting the operation of the refrigerant pump (1), the electric heater (33)
After the refrigerant (14) in the insulated terminal connection container (31) is gasified by energizing the refrigerant pump (14) for a predetermined period of time, the drive section of the refrigerant pump (1) starts operating.

なお、前記電気ヒータ(33)は導管(32)の上端部
付近に取付けているが、絶縁端子接続容器(31)の外
側に取付けることも可能である。
Although the electric heater (33) is attached near the upper end of the conduit (32), it can also be attached to the outside of the insulated terminal connection container (31).

このように、上記実施例の冷媒用ポンプ装置は、冷媒用
ポンプ装置駆動用の電源線(9)と端末のリード線(2
4)を中継する接続部を圧力容器(13)の上方に隔離
して設けるとともに、前記接続部に、接続部容器として
の絶縁端子接続容器(31)と、前記絶縁端子接続容器
(31)と前記圧力容器(13)とを連結、してリード
線(24)が挿入された導管(32)とを取付け、更に
、前記絶縁端子接続容器(31)或いは前記導管(32
)の上端部に、前記絶縁端子接続容器(31)に充たさ
れた液相の冷媒(14)を気化させる加熱手段としての
電気ヒータ(33)を取付けたものである。
In this way, the refrigerant pump device of the above embodiment has the power supply line (9) for driving the refrigerant pump device and the terminal lead wire (2).
4) is provided isolated above the pressure vessel (13), and an insulated terminal connection container (31) as a connection container and an insulated terminal connection container (31) are provided in the connection portion. The pressure vessel (13) is connected to the conduit (32) into which the lead wire (24) is inserted, and the insulated terminal connection vessel (31) or the conduit (32) is attached.
) is provided with an electric heater (33) as a heating means for vaporizing the liquid phase refrigerant (14) filled in the insulated terminal connection container (31).

したがって、上記実施例によれば、絶縁端子接続容器(
31)或いは導管(32)の上端部を加熱することによ
って、絶縁端子接続容器(31)内の液相の冷媒(14
)は気化し、この相変化に伴なって冷媒(14)の電気
抵抗が増大する。このため、冷媒用ポンプ(1)の運転
中に、電源からの電流がリード線(24)との接続部か
ら冷媒(14)を伝って圧力容器(13)に洩れること
がなくなり、漏電に対する安全性を確保することができ
る。
Therefore, according to the above embodiment, the insulated terminal connection container (
31) Alternatively, by heating the upper end of the conduit (32), the liquid phase refrigerant (14) in the insulated terminal connection container (31) is heated.
) is vaporized, and as a result of this phase change, the electrical resistance of the refrigerant (14) increases. Therefore, while the refrigerant pump (1) is operating, the current from the power source will not leak through the refrigerant (14) from the connection with the lead wire (24) to the pressure vessel (13), ensuring safety against electrical leakage. It is possible to ensure sex.

〈第一発明の第二実施例〉 次に、本節−発明の第二実施例を第3図を用いて説明す
る。
<Second Embodiment of the First Invention> Next, a second embodiment of the invention in this section will be described using FIG. 3.

第3図は本節−発明の第二実施例である冷媒用ポンプ装
置を用いた暖房装置を示す回路図である。
FIG. 3 is a circuit diagram showing a heating device using a refrigerant pump device, which is a second embodiment of the invention in this section.

図中、第2図と同一符号は第一実施例の構成部分と同一
または相当する部分であるから、ここではその説明を省
略する。
In the figure, the same reference numerals as in FIG. 2 are the same as or corresponding to the constituent parts of the first embodiment, so the explanation thereof will be omitted here.

図において、(31)は圧力容器(13)の上方に隔離
され、冷媒加熱用熱交換器(4)の出口部分の冷媒配管
に接触し、良好な熱伝導状態で取付けられた絶縁端子接
続容器(31)で、電源制御器(8)からの電源線(9
)とリード線(24)とを中継している。冷媒加熱用熱
交換器(4)の出口部分の冷媒配管と絶縁端子接続容器
(31)との接触部分は、両方の相対する接触面を平面
に形成したり、或いはパイプ状の冷媒配管の周囲を覆う
ように絶縁端子接続容器(31)を二重円筒状に形成す
るなどして接触部分を大きくするとともに、冷媒配管と
絶縁端子接続容器(31)の外側を断熱材で覆って熱効
率を高めるようにされている。
In the figure, (31) is an insulated terminal connection container that is isolated above the pressure vessel (13), contacts the refrigerant piping at the outlet of the refrigerant heating heat exchanger (4), and is attached in a good heat conductive state. (31), the power line (9) from the power controller (8)
) and the lead wire (24). The contact portion between the refrigerant piping at the outlet portion of the refrigerant heating heat exchanger (4) and the insulated terminal connection container (31) may be formed by forming both opposing contact surfaces flat, or by forming the contact area around the pipe-shaped refrigerant piping. The contact area is increased by forming the insulated terminal connection container (31) into a double cylindrical shape so as to cover the refrigerant pipe and the outside of the insulated terminal connection container (31) with a heat insulating material to increase thermal efficiency. It is like that.

上記のように構成された第二実施例の冷媒用ポンプ装置
は、絶縁端子接続容器(31)を冷媒加熱用熱交換器(
4)出口部分の冷媒配管に取付けて加熱するようにした
ものであるから、第一実施例と同様の動作を期待するこ
とができる。特に、第二実施例では、絶縁端子接続容器
(31)を冷媒加熱用熱交換器(4)の出口部分の冷媒
配管に取付けているので、絶縁端子接続容器(31)内
の液相の冷媒(14)は、冷媒加熱用熱交換器(4)で
加熱された冷媒(14)と一部熱交換して加熱されてガ
ス化される。
The refrigerant pump device of the second embodiment configured as described above connects the insulated terminal connection container (31) to the refrigerant heating heat exchanger (
4) Since it is attached to the refrigerant pipe at the outlet portion for heating, the same operation as in the first embodiment can be expected. In particular, in the second embodiment, since the insulated terminal connection container (31) is attached to the refrigerant pipe at the outlet of the refrigerant heating heat exchanger (4), the liquid phase refrigerant in the insulated terminal connection container (31) The refrigerant (14) is heated and gasified by partially exchanging heat with the refrigerant (14) heated by the refrigerant heating heat exchanger (4).

なお、暖房運転に際しては、先に、燃焼器(2)のバー
ナーに着火し、絶縁端子接続容器(31)内の冷媒(1
4)が気化した後、駆動部(15)の起動が行なわれる
In addition, during heating operation, the burner of the combustor (2) is first ignited, and the refrigerant (1) in the insulated terminal connection container (31) is ignited.
4) is vaporized, the drive unit (15) is activated.

ところで、絶縁端子接続容器(31)は、冷媒加熱用熱
交換器(4)或いは排気筒(6)に近接した適宜位置に
取付け、これらの近接部からの伝熱によって加熱を行な
うことも可能である。
By the way, it is also possible to install the insulated terminal connection container (31) at an appropriate position close to the refrigerant heating heat exchanger (4) or the exhaust pipe (6), and heat it by heat transfer from these nearby parts. be.

このように、第二実施例の冷媒用ポンプ装置は、冷媒用
ポンプ装置駆動用の電源線(9)と端末のリード線(2
4)を中継する接続部を圧力容器(13)の上方に隔離
して設けるとともに、接続部容器としての絶縁端子接続
容器(31)を冷媒(14)の加熱手段となる冷媒加熱
用熱交換器(4)出口部分の冷媒配管等の冷媒加熱用熱
交換器(4)近接部に取付け、更に、前記絶縁端子接続
容器(31)と前記圧力容器(13)との間にリード線
(24)が挿入された導管(32)を取付けたものであ
る。
In this way, the refrigerant pump device of the second embodiment has the power supply line (9) for driving the refrigerant pump device and the terminal lead wire (2).
4) is provided isolated above the pressure vessel (13), and the insulated terminal connection container (31) as a connection container is used as a refrigerant heating heat exchanger that serves as a heating means for the refrigerant (14). (4) A heat exchanger for heating the refrigerant (4) such as refrigerant piping at the outlet portion is installed in the vicinity, and a lead wire (24) is installed between the insulated terminal connection container (31) and the pressure container (13). A conduit (32) into which is inserted is attached.

したがって、第二実施例によれば、第一実施例と同様の
効果を期待することができる。特に、第二実施例では、
絶縁端子接続容器(31)内の冷媒(14)は、冷媒加
熱用熱交換器(4)の近接部によって加熱される。この
ため、電気ヒータ(33)等の加熱器を別途設ける必要
がなく、また、燃焼器(2)の燃焼熱を利用できるので
、コストを低減することができる。
Therefore, according to the second embodiment, the same effects as the first embodiment can be expected. In particular, in the second embodiment,
The refrigerant (14) in the insulated terminal connection container (31) is heated by the vicinity of the refrigerant heating heat exchanger (4). Therefore, there is no need to separately provide a heater such as an electric heater (33), and the combustion heat of the combustor (2) can be used, so costs can be reduced.

ところで、上記各実施例においては、冷媒(14)の加
熱手段として、電気ヒータ(33)を取付けたり、或い
は冷媒加熱用熱交換器(4)近接部の熱を利用している
が、本発明を実施する場合には、これに限定されるもの
ではなく、冷媒はわずかな温度上昇によって容易にガス
化するので、蓄熱材を使用した加熱器等各種の加熱手段
を使用することも可能7である。
Incidentally, in each of the above embodiments, as a heating means for the refrigerant (14), an electric heater (33) is attached or the heat near the refrigerant heating heat exchanger (4) is used. When carrying out this method, the refrigerant is not limited to this, but since the refrigerant is easily gasified by a slight temperature rise, it is also possible to use various heating means such as a heater using a heat storage material7. be.

〈第二発明の第一実施例〉 続いて、本第二発明の第一実施例を第4図及び第5図に
基づいて説明する。
<First embodiment of the second invention> Next, a first embodiment of the second invention will be described based on FIGS. 4 and 5.

第4図は本第二発明の第一実施例である冷媒用ポンプ装
置を示す縦断面図、第5図は第4図の冷媒用ポンプ装置
を用いた暖房装置を示す回路図である。なお、図中、上
記従来例及び第一発明の各実施例と同一または相当する
符号は従来例及び第一発明の各実施例と同一または相当
する構成部分であるから、ここではその説明を省略する
FIG. 4 is a longitudinal sectional view showing a refrigerant pump device according to a first embodiment of the second invention, and FIG. 5 is a circuit diagram showing a heating device using the refrigerant pump device of FIG. 4. In addition, in the drawings, the same or corresponding numerals as those in the conventional example and each embodiment of the first invention are the same or corresponding components as in the conventional example and each embodiment of the first invention, so their explanation is omitted here. do.

図において、(34)は導管(32)の上端部付近に設
けた第1の分岐管、(35)は前記第1の分岐管(34
)の分岐位置よりも下方位の導管(32)に設けた第2
の分岐管、(36)は第1の分岐管(34)の途中に介
在させた毛細管、(37)は導管(32)内においてリ
ード線(24)を固定するとともに冷媒(14)の流路
を閉塞しているバンド、(38)は冷媒加熱用熱交換器
(4)からの冷媒の出口である加熱冷媒出口管である。
In the figure, (34) is the first branch pipe provided near the upper end of the conduit (32), and (35) is the first branch pipe (34).
) installed in the conduit (32) below the branch position of
branch pipe (36) is a capillary tube interposed in the middle of the first branch pipe (34), (37) fixes the lead wire (24) in the conduit (32) and provides a flow path for the refrigerant (14). The band (38) blocking the refrigerant is a heating refrigerant outlet pipe which is an outlet of the refrigerant from the refrigerant heating heat exchanger (4).

そして、本実施例においては、第1の分岐管(34)に
より冷媒加熱用熱交換器(4)の加熱冷媒出口管(38
)と導管(32)の上端部とを毛細管(36)を介して
冷媒(14)が流動可能に連結されている。この加熱冷
媒出口管(38)は絶縁端子接続容器(31)よりも下
方位で、しかも、他の冷媒回路の最上部に位置する。ま
た、第2の分岐管(35)により冷媒用ポンプ(1)の
吸入管(7)と導管(32)とも冷媒(14)が流動可
能に連結されている。この第2の分岐管(35)は第1
の分岐管(34)よりも下方位において導管(32)か
ら分岐している。そして、本実施例の冷媒用ポンプ装置
においても、上記各実施例で説明したのと同様の構造の
絶縁端子接続容器(31)が圧力容器(13)から所定
長だけ離された位置に配設されている。この絶縁端子接
続容器(31)は導管(32)により冷媒用ポンプ(1
)の圧力容器(13)に支持されており、本実施例の接
続部容器を構成している。なお、上記の絶縁端子接続容
器(31)、導管(32)、第1の分岐管(34) 、
第2の分岐管(35)、及び毛細管(36)は密閉した
状態で連結されており、各接続部から液洩れやガス洩れ
がないように配管されている。また、この絶縁端子接続
容器(31)及び導管(32)の内部にはリード線(2
4)が貫通状態で挿入されている。したがって、この導
管(32)内に冷媒(14)が流入すると、絶縁端子接
続容器(31)の内部にも流入し得る構造となっている
。しかし、この冷媒(14)はバンド(37)により遮
蔽されており、圧力容器(13)内には直接大量には流
れることはない。
In this embodiment, the heating refrigerant outlet pipe (38) of the refrigerant heating heat exchanger (4) is connected to the first branch pipe (34).
) and the upper end of the conduit (32) are connected via a capillary tube (36) so that the refrigerant (14) can flow therethrough. This heated refrigerant outlet pipe (38) is located below the insulated terminal connection container (31) and at the top of the other refrigerant circuits. Further, the suction pipe (7) of the refrigerant pump (1) and the conduit (32) are connected by the second branch pipe (35) so that the refrigerant (14) can flow therein. This second branch pipe (35)
It branches from the conduit (32) below the branch pipe (34). Also in the refrigerant pump device of this embodiment, an insulated terminal connection container (31) having a structure similar to that described in each of the above embodiments is arranged at a position separated from the pressure container (13) by a predetermined length. has been done. This insulated terminal connection container (31) is connected to the refrigerant pump (1) by a conduit (32).
) is supported by a pressure vessel (13), which constitutes the connection vessel of this embodiment. In addition, the above-mentioned insulated terminal connection container (31), conduit (32), first branch pipe (34),
The second branch pipe (35) and the capillary tube (36) are connected in a sealed manner, and the piping is arranged so that there is no liquid or gas leakage from each connection. Further, inside the insulated terminal connection container (31) and the conduit (32), there are lead wires (2
4) is inserted in a penetrating state. Therefore, the structure is such that when the refrigerant (14) flows into the conduit (32), it can also flow into the inside of the insulated terminal connection container (31). However, this refrigerant (14) is blocked by the band (37) and does not flow directly into the pressure vessel (13) in large quantities.

次に、上記のように構成された本実施例の冷媒用ポンプ
装置の動作について説明をする。なお、ここでは、説明
の便宜上、冷媒(14)を液相の冷媒と気相の冷媒とで
符号を分けて説明をする。
Next, the operation of the refrigerant pump device of this embodiment configured as described above will be explained. In addition, for convenience of explanation, the refrigerant (14) will be described here with reference numerals being divided into a liquid-phase refrigerant and a gas-phase refrigerant.

すなわち、(14a)は液相の冷媒を、(14b)は気
相の冷媒を各々示す。
That is, (14a) indicates a liquid-phase refrigerant, and (14b) indicates a gas-phase refrigerant.

暖房運転が行なわれるとき、液相の冷媒(14a)は圧
力容器(13)内に充満するとともに、バンド(37)
の−面を加圧する。バンド(37)は導管(32)向流
路を閉塞するものの、物理的に長期間の液相の冷媒(1
4a)との接触に耐え得るものではなく少量の洩れを生
ずるが、バンド(37)の圧力容器(13)側の吐出圧
力と絶縁端子接続容器(31)側の吸入圧力の差は維持
される。導管(32)内のバンド(37)を洩れた液相
の冷媒(14a)は導管(32)内の液面を上昇してい
く。
When heating operation is performed, the liquid phase refrigerant (14a) fills the pressure vessel (13) and the band (37)
Pressure is applied to the negative side. Although the band (37) blocks the counterflow path of the conduit (32), it physically lasts for a long period of time when the liquid phase refrigerant (1
4a) and a small amount of leakage occurs, but the difference between the discharge pressure on the pressure vessel (13) side of the band (37) and the suction pressure on the insulated terminal connection vessel (31) side is maintained. . The liquid phase refrigerant (14a) leaking through the band (37) in the conduit (32) rises in the liquid level in the conduit (32).

一方、冷媒用ポンプ(1)から吐出され暖房運転用冷媒
回路内を循環する冷媒(14)は、冷媒加熱用熱交換器
(4)で加熱されて気化し気相の冷媒(14b)となる
。したがって、冷媒加熱用熱交換器(4)の加熱冷媒出
口管(38)においては、冷媒(14)は気相の冷媒(
14b)となっている。そして、この気相の冷媒(14
b)は室内熱交換器(10)で放熱して、凝縮し液化し
て液相の冷媒(14a)となり、冷媒用ポンプ(1)の
吸入管(7)から冷媒用ポンプ(1)内に戻る。なお、
このような暖房運転中においては、冷媒回路内の圧力は
冷媒加熱用熱交換器(4)の加熱冷媒出口管(38)の
方が冷媒用ポンプ(1)の吸入管(7)よりも高圧状態
となっている。このため、冷媒加熱用熱交換器(4)か
ら吐出された気相の冷媒(14b)の一部は加熱冷媒出
口管(38)から第1の分岐管(34)に流れ込み毛細
管(36)へと流れる。この毛細管(36)は気相の冷
媒(14b)が流れる際の抵抗となるため流量は減少す
る。すなわち、毛細管(36)は大量の気相の冷媒(1
4b)が導管(32)に流入するのを防止している。毛
細管(36)を経て導管(32)に流入した気相の冷媒
(14b)は、導管(32)の最上部に位置する絶縁端
子接続容器(31)内を充たすとともに、導管(32)
内の液相の冷媒(14a)を第2の分岐管(35)から
流出させる。このように、第2の分岐管(35)から冷
媒(14)が流出するのは、導管(32)の下端部がバ
ンド(37)により遮蔽されており、圧力容器(13)
には流れないようになっているからである。したがって
、導管(32)内の液相の冷媒(14a)の液面は第2
の分岐管(35)の下端部まで下降する。この導管(3
2)内の液相の冷媒(14a)は前記位置で安定し、そ
の後に、第1の分岐管(34)から導管(32)内に流
入した気相の冷媒(14b)は第2の分岐管(35)か
ら流出する。この第2の分岐管(35)から流出した液
相または気相の冷媒(14)は、この冷媒回路中の冷媒
(14)の最低圧部である冷媒用ポンプ(1)の吸入管
(7)に導がれ、暖房用の冷媒回路に合流する。
On the other hand, the refrigerant (14) discharged from the refrigerant pump (1) and circulating in the refrigerant circuit for heating operation is heated and vaporized by the refrigerant heating heat exchanger (4) to become a gas-phase refrigerant (14b). . Therefore, in the heating refrigerant outlet pipe (38) of the refrigerant heating heat exchanger (4), the refrigerant (14) is a gas phase refrigerant (
14b). Then, this gas phase refrigerant (14
b) radiates heat in the indoor heat exchanger (10), condenses and liquefies to become a liquid-phase refrigerant (14a), which flows into the refrigerant pump (1) from the suction pipe (7) of the refrigerant pump (1). return. In addition,
During such heating operation, the pressure in the refrigerant circuit is higher at the heating refrigerant outlet pipe (38) of the refrigerant heating heat exchanger (4) than at the suction pipe (7) of the refrigerant pump (1). It is in a state. Therefore, a part of the gas phase refrigerant (14b) discharged from the refrigerant heating heat exchanger (4) flows from the heating refrigerant outlet pipe (38) into the first branch pipe (34) and into the capillary tube (36). It flows. This capillary tube (36) acts as a resistance when the gas phase refrigerant (14b) flows, so the flow rate decreases. That is, the capillary tube (36) carries a large amount of gas phase refrigerant (1
4b) from entering the conduit (32). The gas phase refrigerant (14b) that has flowed into the conduit (32) via the capillary tube (36) fills the insulated terminal connection container (31) located at the top of the conduit (32), and
The liquid phase refrigerant (14a) inside is made to flow out from the second branch pipe (35). In this way, the refrigerant (14) flows out from the second branch pipe (35) because the lower end of the conduit (32) is shielded by the band (37), and the refrigerant (14) flows out from the pressure vessel (13).
This is because it is designed not to flow. Therefore, the liquid level of the liquid phase refrigerant (14a) in the conduit (32) is at the second level.
It descends to the lower end of the branch pipe (35). This conduit (3
The liquid phase refrigerant (14a) in 2) is stabilized at the above position, and then the gas phase refrigerant (14b) that has flowed into the conduit (32) from the first branch pipe (34) flows into the second branch pipe (32). It flows out from the tube (35). The liquid or gas phase refrigerant (14) flowing out from this second branch pipe (35) is transferred to the suction pipe (7) of the refrigerant pump (1), which is the lowest pressure part of the refrigerant (14) in this refrigerant circuit. ) and joins the heating refrigerant circuit.

このように、この実施例では絶縁端子接続容器(31)
が導管(32)を介して圧力容器(13)の上方に配設
されており、しかも、導管(32)内の上端部付近に第
1の分岐管(34)を通して気相の冷媒(14b)を供
給し、過剰冷媒(14)を第2の分岐管(35)を通し
て冷媒用ポンプ(1)の吸入管(7)に戻すことにより
、絶縁端子接続容器(31)内を気相の冷媒(14b)
で充満させるという気相冷媒充満手段を有している。
In this way, in this embodiment, the insulated terminal connection container (31)
is disposed above the pressure vessel (13) via a conduit (32), and gas phase refrigerant (14b) is passed through a first branch pipe (34) near the upper end of the conduit (32). By supplying excess refrigerant (14) through the second branch pipe (35) and returning it to the suction pipe (7) of the refrigerant pump (1), a gas phase refrigerant ( 14b)
It has gas phase refrigerant filling means.

したがって、暖房運転中は絶縁端子接続容器(31)内
は常に気相の冷媒(14b)が充満した状態になってい
る。このため、仮に、絶縁端子(26)のリード線(2
4)の接続部から電流が流れても、絶縁端子接続容器(
31)内の気相の冷媒(14b)は電気抵抗が大きいの
で、この気相の冷媒(14b)で絶縁され、圧力容器(
13)に電流は流れない。
Therefore, during the heating operation, the inside of the insulated terminal connection container (31) is always filled with the gas phase refrigerant (14b). Therefore, if the lead wire (2) of the insulated terminal (26)
Even if current flows from the connection in 4), the insulated terminal connection container (
Since the gas phase refrigerant (14b) in the pressure vessel (31) has a large electrical resistance, it is insulated by this gas phase refrigerant (14b) and the pressure vessel (
No current flows through 13).

ところで、暖房運転の停止から起動までの間は、冷媒加
熱用熱交換器(4)のバーナーは燃焼が停止しており、
冷媒加熱用熱交換器(4)による冷媒(14)の加熱は
行なわれない。また、冷媒用ポンプ(1)の運転も停止
しており、冷媒回路内の圧力が均一化しているので、第
1の分岐管(34)から気相の冷媒(14b)が導管(
32)に供給されない。このため、絶縁端子接続容器(
31)内が液相の冷媒(14a)で充たされる可能性が
ある。そこで、冷媒用ポンプ(1)の運転開始前に、予
め、冷媒加熱用熱交換器(4)のバーナーの燃焼により
、冷媒加熱用熱交換器(4)で冷媒(14)を気化させ
、第1の分岐管(34)を通じて気相の冷媒(14b)
を導管(32)に供給し、この気相の冷媒(14b)が
絶縁端子接続容器(31)内を充たすような一定の時間
を経た後に、冷媒用ポンプ(1)の駆動部(15)の運
転を開始する。
By the way, from the stop to the start of the heating operation, the burner of the refrigerant heating heat exchanger (4) stops burning.
The refrigerant (14) is not heated by the refrigerant heating heat exchanger (4). In addition, since the operation of the refrigerant pump (1) has also been stopped and the pressure within the refrigerant circuit is equalized, the gas phase refrigerant (14b) is transferred from the first branch pipe (34) to the conduit (
32) is not supplied. For this reason, the insulated terminal connection container (
31) may be filled with liquid phase refrigerant (14a). Therefore, before the refrigerant pump (1) starts operating, the refrigerant (14) is vaporized in the refrigerant heating heat exchanger (4) by combustion in the burner of the refrigerant heating heat exchanger (4). A gas phase refrigerant (14b) is passed through the branch pipe (34) of No. 1.
is supplied to the conduit (32), and after a certain period of time such that the gas phase refrigerant (14b) fills the insulated terminal connection container (31), the drive unit (15) of the refrigerant pump (1) is turned off. Start driving.

このように、上記実施例の冷媒用ポンプ装置は、冷媒用
ポンプ装置駆動用の電源線(9)と端末のリード線(2
4)を中継する接続部を圧力容器(13)の上方に隔離
して設けるとともに、前記接続部に、接続部容器として
の絶縁端子接続容器(31)と、前記絶縁端子接続容器
(31)と前記圧力容器(13)とを連結してリード線
(24)が挿入された導管(32)とを取付け、更に、
導管(32)内の上端部付近を気相の冷媒(14b)で
充たすことにより、前記絶縁端子接続容器(31)内も
気相の冷媒(14b)で充たす気相冷媒充満手段を取付
けたものである。
In this way, the refrigerant pump device of the above embodiment has the power supply line (9) for driving the refrigerant pump device and the terminal lead wire (2).
4) is provided isolated above the pressure vessel (13), and an insulated terminal connection container (31) as a connection container and an insulated terminal connection container (31) are provided in the connection portion. Connecting the pressure vessel (13) with a conduit (32) into which the lead wire (24) is inserted;
A gas phase refrigerant filling means is installed that fills the inside of the insulated terminal connection container (31) with the gas phase refrigerant (14b) by filling the vicinity of the upper end of the conduit (32) with the gas phase refrigerant (14b). It is.

したがって、上記実施例によれば、冷媒用ポンプ(1)
の駆動時においては、絶縁端子接続容器(31)に気相
の冷媒(14b)が導かれ、絶縁端子(26)の絶縁性
が増大する。このため、冷媒用ポンプ(1)の運転中に
、電源からの電流がリード線(24)との接続部から冷
媒(14)を伝って圧力容器(13)に洩れることがな
くなり、漏電に対する安全性を確保することができる。
Therefore, according to the above embodiment, the refrigerant pump (1)
When the insulating terminal (26) is driven, a gas phase refrigerant (14b) is introduced into the insulating terminal connection container (31), and the insulation of the insulating terminal (26) increases. Therefore, while the refrigerant pump (1) is operating, the current from the power source will not leak through the refrigerant (14) from the connection with the lead wire (24) to the pressure vessel (13), ensuring safety against electrical leakage. It is possible to ensure sex.

く第二発明の第二実施例〉 次に、本第二発明の第二実施例を第6図を用いて説明す
る。
Second Embodiment of the Second Invention Next, a second embodiment of the second invention will be described with reference to FIG.

第6図は本第二発明の第二実施例である冷媒用ポンプ装
置を用いた暖房装置を示す回路図である。
FIG. 6 is a circuit diagram showing a heating device using a refrigerant pump device according to a second embodiment of the second invention.

図中、第5図と同一符号は第一実施例の構成部分と同一
または相当する部分であるから、ここではその説明を省
略する。
In the figure, the same reference numerals as in FIG. 5 are the same as or corresponding to the constituent parts of the first embodiment, so the explanation thereof will be omitted here.

図において、(39)は冷媒加熱用熱交換器(4)の加
熱冷媒出口管(38)と導管(32)とを結ぶ第1の分
岐管(34)の途中に設けられた電磁弁、(40)は絶
縁端子接続容器(31)内に配設された液面検知器であ
る。この液面検知器(40)で絶縁端子接続容器(31
)内の液相の冷媒(14a)の液面高を検知し、その信
号を電源制御器(8)に取込み、電磁弁(39)の開閉
制御を行なう。
In the figure, (39) is a solenoid valve provided in the middle of the first branch pipe (34) connecting the heating refrigerant outlet pipe (38) of the refrigerant heating heat exchanger (4) and the conduit (32); 40) is a liquid level detector disposed within the insulated terminal connection container (31). This liquid level detector (40) is connected to the insulated terminal connection container (31).
) is detected, and the signal is input to the power supply controller (8) to control the opening and closing of the solenoid valve (39).

かかる構成を採用したことにより、絶縁端子接続容器(
31)に流入する気相の冷媒(14b)量を絶縁端子接
続容器(31)に充満する最小限度の量に抑制すること
ができる。したがって、気相の冷媒(14b)が室内熱
交換器(10)を通過することなく冷媒用ポンプ(1)
の吸入管(7)に戻る量を減少させることができ、暖房
能力の低下を抑制でき、効率のよい暖房運転が可能にな
る。
By adopting this configuration, the insulated terminal connection container (
31) can be suppressed to the minimum amount that fills the insulated terminal connection container (31). Therefore, the gas-phase refrigerant (14b) does not pass through the indoor heat exchanger (10), and the refrigerant pump (1)
It is possible to reduce the amount of water that returns to the suction pipe (7), suppress a decrease in heating capacity, and enable efficient heating operation.

このように、上記実施例の冷媒用ポンプ装置は、前記第
一実施例の冷媒用ポンプ装置に電磁弁(39)及び液面
検知器(40)を附加したものであり、第一実施例と同
様の動作を期待できる。特に、第二実施例では、絶縁端
子接続容器(31)内に液面検知器(40)を取付けて
いるので、絶縁端子接続容器(31)内の液相の冷媒(
14a)の有無を確実に把握できるので漏電防止に対す
る信頼性が高い。
In this way, the refrigerant pump device of the above embodiment is the refrigerant pump device of the first embodiment with the addition of a solenoid valve (39) and a liquid level detector (40), and is different from the first embodiment. You can expect similar behavior. In particular, in the second embodiment, since the liquid level detector (40) is installed inside the insulated terminal connection container (31), the liquid phase refrigerant (
Since the presence or absence of 14a) can be reliably detected, reliability in preventing electric leakage is high.

ところで、上記第一発明の冷媒用ポンプ装置においては
、導管(32)の上端部付近を加熱し、絶縁端子接続容
器(31)内の冷媒(14)を液相の冷媒(14a)か
ら気相の冷媒(14b)に相変換することによる冷媒の
電気抵抗の増大を利用して、絶縁端子接続容器(31)
の絶縁性を確保し、漏電に対する安全を安価に、かつ、
確実に確保するものである。したがって、この第一発明
における導管(32)の上端部付近を加熱し、絶縁端子
接続容器(31)内に充たされた液相の冷媒(14a)
を気化させる加熱手段は、必ずしも上記の各実施例で開
示した手段に限定されるものではない。また、第二発明
の冷媒用ポンプ装置においては、導管(32)の上端部
付近に気相の冷媒(14b)を供給し、絶縁端子接続容
器(31)内の冷媒(14)を液相の冷媒(14a)か
ら気相の冷媒(14b)に入換えることによる冷媒の電
気抵抗の増大を利用して、絶縁端子接続容器(31)の
絶縁性を確保し、漏電に対する安全を安価に、かつ、確
実に確保するものである。したがって、この第二発明に
おける導管(32)の上端部付近を気相の冷媒(14b
)で充たすことにより、絶縁端子接続容器(31)内も
気相の冷媒(14b)で充たす気相冷媒充満手段は、必
ずしも上記の各実施例で開示した手段に限定されるもの
ではない。
By the way, in the refrigerant pump device of the first invention, the vicinity of the upper end of the conduit (32) is heated to convert the refrigerant (14) in the insulated terminal connection container (31) from the liquid phase refrigerant (14a) to the gas phase. By utilizing the increase in electrical resistance of the refrigerant due to phase conversion to the refrigerant (14b),
Ensures insulation, provides safety against electrical leakage at low cost, and
This is to be ensured. Therefore, the vicinity of the upper end of the conduit (32) in the first invention is heated, and the liquid phase refrigerant (14a) filled in the insulated terminal connection container (31) is heated.
The heating means for vaporizing is not necessarily limited to the means disclosed in each of the above embodiments. In addition, in the refrigerant pump device of the second invention, the gas phase refrigerant (14b) is supplied near the upper end of the conduit (32), and the refrigerant (14) in the insulated terminal connection container (31) is converted into a liquid phase. Utilizing the increase in electrical resistance of the refrigerant by replacing the refrigerant (14a) with a gas phase refrigerant (14b), the insulation of the insulated terminal connection container (31) is ensured, and safety against electric leakage can be achieved at low cost and , shall be ensured. Therefore, the vapor phase refrigerant (14b
) The gas phase refrigerant filling means for filling the inside of the insulated terminal connection container (31) with the gas phase refrigerant (14b) is not necessarily limited to the means disclosed in each of the above embodiments.

[発明の効果] 以上のように、本節−発明の冷媒用ポンプ装置は、冷媒
用ポンプ駆動用の電源線とその端末のリード線とを中継
する接続部容器を冷媒用ポンプの上方に配設し、前記接
続部容器と前記冷媒用ポンプとを連結してリード線が挿
入された導管とを取付け、更に、前記導管の上端部付近
に、この接続部容器に充たされた液相の冷媒を気化させ
る加熱手段を設けたものである。
[Effects of the Invention] As described above, the refrigerant pump device of the invention in this section has a connecting container that relays the power line for driving the refrigerant pump and the lead wire at its terminal above the refrigerant pump. A conduit in which a lead wire is inserted is attached to connect the connection container and the refrigerant pump, and a liquid phase refrigerant filled in the connection container is installed near the upper end of the conduit. It is equipped with a heating means to vaporize.

したがって、この接続部容器或いは導管の上端部を加熱
することによって、接続部容器内の液相の冷媒は気化さ
れ、この相変化に伴なって冷媒の電気抵抗が増大するの
で、冷媒用ポンプの運転中に、電源の電流がリード線と
の接続部から冷媒を伝って冷媒用ポンプに洩れることが
なくなり、また、加熱においては、少ない熱量で溶媒を
気化させることができる。これによって、漏電に対する
安全を安価に、かつ、確実に確保することができる。
Therefore, by heating the upper end of the connection container or the conduit, the liquid phase refrigerant in the connection container is vaporized, and the electrical resistance of the refrigerant increases as a result of this phase change. During operation, the current from the power source passes through the refrigerant from the connection with the lead wire and does not leak to the refrigerant pump, and during heating, the solvent can be vaporized with a small amount of heat. Thereby, safety against electrical leakage can be ensured at low cost and reliably.

また、本第二発明の冷媒用ポンプ装置は、冷媒用ポンプ
駆動用の電源線とその端末のリード線とを中継する接続
部容器を冷媒用ポンプの上方に配設し、前記接続部容器
と前記冷媒用ポンプとを連結してリード線が挿入された
導管とを取付け、更に、導管内の上端部付近を気相の冷
媒で充たすことにより、前記接続部容器内も気相の冷媒
で充たす気相冷媒充満手段を設けたものである。
Further, in the refrigerant pump device of the second invention, a connection container for relaying a power line for driving the refrigerant pump and a lead wire at its terminal is disposed above the refrigerant pump, and the connection portion container and the connection portion container are arranged above the refrigerant pump. By connecting the refrigerant pump with a conduit into which a lead wire is inserted, and filling the vicinity of the upper end of the conduit with gaseous refrigerant, the inside of the connection container is also filled with gaseous refrigerant. A gas phase refrigerant filling means is provided.

したがって、この接続部容器内に気相の冷媒を充満させ
ることによって、接続部容器内の液相の冷媒を廃除でき
、この気相の冷媒が充満するに伴なって冷媒の電気抵抗
が増大するので、冷媒用ポンプの運転中に、電源の電流
がリード線との接続部から冷媒を伝って冷媒用ポンプに
洩れることがなくなり、また、加熱においては、少ない
熱量で溶媒を気化させることができる。これによって、
漏電に対する安全を安価に、かつ、確実に確保すること
ができる。
Therefore, by filling the connection container with gas phase refrigerant, the liquid phase refrigerant in the connection container can be removed, and as the connection container is filled with gas phase refrigerant, the electrical resistance of the refrigerant increases. Therefore, while the refrigerant pump is operating, the power supply current will not flow through the refrigerant from the connection with the lead wire and leak into the refrigerant pump, and during heating, the solvent can be vaporized with less heat. . by this,
Safety against electrical leakage can be ensured at low cost and reliably.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本節−発明の第一実施例である冷媒用ポンプ装
置を示す縦断面図、第2図は第1図の冷媒用ポンプ装置
を用いた暖房装置を示す回路図、第3図は本節−発明の
第二実施例である冷媒用ポンプ装置を用いた暖房装置を
示す回路図、第4図は本第二発明の第一実施例である冷
媒用ポンプ装置を示す縦断面図、第5図は第4図の冷媒
用ポンプ装置を用いた暖房装置を示す回路図、第6図は
本第二発明の第二実施例である冷媒用ポンプ装置を用い
た暖房装置を示す回路図、第7図は従来の冷媒用ポンプ
を用いた暖房装置を示す回路図、第8図は従来の冷媒用
ポンプを示す縦断面図である。 図において、 1:冷媒用ポンプ  13:圧力容器 14:冷媒      14a:液相の冷媒14b:気
相の冷媒  24:リード線31:絶縁端子接続容器 32:導管      33:電気ヒータ34:第1の
分岐管  35:第2の分岐管である。 なお、図中、同−符号及び同一記号は同一または相当部
分を示すものである。 0) N
Fig. 1 is a vertical sectional view showing a refrigerant pump device according to the first embodiment of the invention in this section, Fig. 2 is a circuit diagram showing a heating device using the refrigerant pump device of Fig. 1, and Fig. 3 is a This section - A circuit diagram showing a heating device using a refrigerant pump device according to a second embodiment of the invention, FIG. 4 is a longitudinal sectional view showing a refrigerant pump device according to a first embodiment of the second invention, 5 is a circuit diagram showing a heating device using the refrigerant pump device of FIG. 4, FIG. 6 is a circuit diagram showing a heating device using the refrigerant pump device according to the second embodiment of the second invention, FIG. 7 is a circuit diagram showing a heating device using a conventional refrigerant pump, and FIG. 8 is a longitudinal sectional view showing a conventional refrigerant pump. In the figure, 1: refrigerant pump 13: pressure vessel 14: refrigerant 14a: liquid phase refrigerant 14b: gas phase refrigerant 24: lead wire 31: insulated terminal connection container 32: conduit 33: electric heater 34: first branch Pipe 35: Second branch pipe. In the drawings, the same reference numerals and the same symbols indicate the same or equivalent parts. 0) N

Claims (2)

【特許請求の範囲】[Claims] (1)冷媒を移送する冷媒用ポンプの圧力容器と、 前記圧力容器の上方に配設され、前記冷媒用ポンプ駆動
用の電源線と前記冷媒用ポンプに接続されたリード線と
を中継する接続部容器と、 前記接続部容器と前記ポンプ本体とを連結し、前記リー
ド線が挿入された導管と、 前記導管の上端部付近を加熱し、前記接続部容器に充た
された液相の冷媒を気化させる加熱手段と を具備することを特徴とする冷媒用ポンプ装置。
(1) A connection between a pressure vessel of a refrigerant pump that transfers refrigerant, and a lead wire disposed above the pressure vessel and connected to a power supply line for driving the refrigerant pump and a lead wire connected to the refrigerant pump. a conduit that connects the connection container and the pump body and into which the lead wire is inserted; and a liquid phase refrigerant that heats the vicinity of the upper end of the conduit and fills the connection container. 1. A refrigerant pump device comprising: heating means for vaporizing refrigerant.
(2)冷媒を移送する冷媒用ポンプの圧力容器と、 前記圧力容器の上方に配設され、前記冷媒用ポンプ駆動
用の電源線と前記冷媒用ポンプに接続されたリード線と
を中継する接続部容器と、 前記接続部容器と前記ポンプ本体とを連結し、前記リー
ド線が挿入された導管と、 前記導管内の上端部付近を気相の冷媒で充たすことによ
り、前記接続部容器内も気相の冷媒で充たす気相冷媒充
満手段と を具備することを特徴とする冷媒用ポンプ装置。
(2) A connection that relays a pressure vessel of a refrigerant pump that transfers refrigerant, and a power supply line that is disposed above the pressure vessel and that is connected to the power supply line for driving the refrigerant pump and the lead wire that is connected to the refrigerant pump. a conduit into which the lead wire is inserted, and a gas-phase refrigerant filling the vicinity of the upper end of the conduit, so that the inside of the connection container is also cooled. 1. A refrigerant pump device comprising: a gas-phase refrigerant filling means for filling with a gas-phase refrigerant.
JP31813189A 1989-08-18 1989-12-07 Refrigerant pump device Expired - Fee Related JPH0788995B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP31813189A JPH0788995B2 (en) 1989-08-18 1989-12-07 Refrigerant pump device

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP21234789 1989-08-18
JP1-212347 1989-08-18
JP31813189A JPH0788995B2 (en) 1989-08-18 1989-12-07 Refrigerant pump device

Publications (2)

Publication Number Publication Date
JPH03204522A true JPH03204522A (en) 1991-09-06
JPH0788995B2 JPH0788995B2 (en) 1995-09-27

Family

ID=26519171

Family Applications (1)

Application Number Title Priority Date Filing Date
JP31813189A Expired - Fee Related JPH0788995B2 (en) 1989-08-18 1989-12-07 Refrigerant pump device

Country Status (1)

Country Link
JP (1) JPH0788995B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006250145A (en) * 2005-02-08 2006-09-21 Sanden Corp Electric compressor
WO2009034838A1 (en) * 2007-09-13 2009-03-19 Sanden Corporation Potting structure and potting method for inverter-integrated type electric compressor
CN110318981A (en) * 2018-03-30 2019-10-11 株式会社丰田自动织机 Motor compressor
CN114857740A (en) * 2022-03-28 2022-08-05 青岛海尔空调器有限总公司 Air conditioner control method and device, electronic equipment, storage medium and air conditioner

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006250145A (en) * 2005-02-08 2006-09-21 Sanden Corp Electric compressor
WO2009034838A1 (en) * 2007-09-13 2009-03-19 Sanden Corporation Potting structure and potting method for inverter-integrated type electric compressor
CN110318981A (en) * 2018-03-30 2019-10-11 株式会社丰田自动织机 Motor compressor
CN114857740A (en) * 2022-03-28 2022-08-05 青岛海尔空调器有限总公司 Air conditioner control method and device, electronic equipment, storage medium and air conditioner
CN114857740B (en) * 2022-03-28 2024-03-22 青岛海尔空调器有限总公司 Air conditioner control method and device, electronic equipment, storage medium and air conditioner

Also Published As

Publication number Publication date
JPH0788995B2 (en) 1995-09-27

Similar Documents

Publication Publication Date Title
US4363221A (en) Water heating system having a heat pump
US2968934A (en) Heat pump systems
US4252185A (en) Down pumping heat transfer device
US4073285A (en) Fluid handling system
KR20040012697A (en) An improved heater
CN108286911B (en) Low-temperature loop heat pipe
US4852366A (en) Heat pump and system
JPH03204522A (en) Pump arrangement for refrigerant
US4554966A (en) Heat-transfer device
US5265444A (en) Inverted frustum shaped microwave heat exchanger using a microwave source with multiple magnetrons and applications thereof
US2446853A (en) Restrictor-suction line assembly
CN114286919B (en) Common unit for refrigerant gas treatment systems
EP1001231B1 (en) Gas absorption cooling apparatus
ES2929973T3 (en) Thermal insulation device between a turbine whose wheel is driven in rotation by a hot fluid and an electric generator with a rotor coupled to this wheel, in particular for a turbogenerator
WO1999030091A1 (en) Cooling capacity control
JPH05106928A (en) Pump apparatus for refrigerant
JPH04278185A (en) Refrigerant transfer device, operating method thereof and pump device for refrigerant
US2885866A (en) Heat exchange assembly and control
JP3968635B2 (en) Liquefied gas supply device
JP2001173598A (en) Liquid refrigerant pump
JPS6035013Y2 (en) water heater
JP3139099B2 (en) Heat transfer device
WO2012062938A1 (en) Starter heater for a thermal control device
CN112432258B (en) Refrigerant cuts device and air conditioning system
JP2869647B1 (en) Hot water supply device

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees