JPH0320435B2 - - Google Patents

Info

Publication number
JPH0320435B2
JPH0320435B2 JP58089770A JP8977083A JPH0320435B2 JP H0320435 B2 JPH0320435 B2 JP H0320435B2 JP 58089770 A JP58089770 A JP 58089770A JP 8977083 A JP8977083 A JP 8977083A JP H0320435 B2 JPH0320435 B2 JP H0320435B2
Authority
JP
Japan
Prior art keywords
pitch
yield
carbonization
anthracene oil
air blowing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP58089770A
Other languages
Japanese (ja)
Other versions
JPS59215387A (en
Inventor
Juji Matsumura
Hiroshi Nagata
Toyohiro Maeda
Shigeji Mizutori
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Osaka Gas Co Ltd
Original Assignee
Osaka Gas Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Osaka Gas Co Ltd filed Critical Osaka Gas Co Ltd
Priority to JP8977083A priority Critical patent/JPS59215387A/en
Publication of JPS59215387A publication Critical patent/JPS59215387A/en
Publication of JPH0320435B2 publication Critical patent/JPH0320435B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Working-Up Tar And Pitch (AREA)
  • Inorganic Fibers (AREA)

Description

【発明の詳細な説明】 本発明は、ピツチの製造方法に関し、更に詳し
くは、炭素材料の原料として特に好適な良質のピ
ツチを高収率で製造する方法に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for producing pitch, and more particularly to a method for producing high-quality pitch, which is particularly suitable as a raw material for carbon materials, at a high yield.

炭素繊維等の炭素材料用原料ピツチの製造法と
しては、いくつかの方法が知られている。例え
ば、石油系又はコールタール系のピツチを熱処理
してメソフエースピツチを得る方法がある。しか
しながら、この方法には、種々の問題点が存在し
ている:即ち、原料が反応性の異なる無数の化学
種の混合物である為、設備及び操作条件の観点か
ら反応設計が困難であり、また反応生成物におい
ても劣質なメソフエースが混入するので、高品質
のメソフエースピツチが得られない;特にコール
タール系ピツチを原料とする場合には、不純物の
除去工程が必要となる;生成したメソフエースピ
ツチは、流動性に乏しい為、炭素繊維の製造に際
し、紡糸性及び成型性(圧縮性)に劣る;又、炭
素材料製造時の炭化に際し、顕微鏡で観察した場
合に炭素材料として劣質であることを示すフアイ
ンモザイク状を呈する場合もある。更に、液状炭
化水素混合物を熱分解重縮合してメソフエースピ
ツチを製造する方法には、ピツチ収率が低い、メ
ソフエースピツチの品質が必ずしも満足すべきも
のであるとは言い難い等の欠点がある。
Several methods are known for producing raw material pitches for carbon materials such as carbon fibers. For example, there is a method of heat-treating petroleum or coal tar pitch to obtain mesophase pitch. However, this method has various problems: the raw materials are a mixture of countless chemical species with different reactivities, making reaction design difficult in terms of equipment and operating conditions; Since inferior mesophace is mixed in the reaction product, high quality mesophace pitch cannot be obtained; especially when coal tar pitch is used as a raw material, an impurity removal step is required; Pitch has poor fluidity, so it is inferior in spinnability and moldability (compressibility) when producing carbon fibers; also, when observed under a microscope during carbonization during the production of carbon materials, it is of poor quality as a carbon material. In some cases, it exhibits a fine mosaic pattern. Furthermore, the method of producing mesophase pitch by thermally decomposing and polycondensing a liquid hydrocarbon mixture has drawbacks such as low pitch yield and the quality of mesophase pitch being not necessarily satisfactory. .

本発明者は、上記の如き従来方法の問題点に留
意して種々研究を重ねた結果、3〜5環の芳香族
化合物の芳香環に特定の割合で水素を導入した
後、加熱下にエアブローイング処理することによ
り、炭化特性に優れた高品質のピツチが高収率で
収得されることを見出した。本発明は、この新知
見に基いて完成されたものである。
The inventor of the present invention has conducted various studies while keeping in mind the problems of the conventional methods as described above. After introducing hydrogen into the aromatic rings of a 3- to 5-ring aromatic compound at a specific ratio, It has been found that by blowing, high quality pitches with excellent carbonization properties can be obtained in high yield. The present invention was completed based on this new knowledge.

一般にピツチ中に導入された脂肪族性水素が炭
化歩留りを低下させることは知られており、一方
ピツチを加熱下エアブローイング処理することに
よりピツチの炭化歩留りは向上するが炭化特性が
劣化することも知られている。しかるに、特定の
割合で水素を添加させ、次いでエアブローイング
を行なう本発明方法によれば、出発原料の炭化歩
留りを向上させつつ同時に炭化特性をも改善し得
るという予想外の効果が達成される。
It is generally known that aliphatic hydrogen introduced into pitch reduces the carbonization yield, while heating air blowing treatment of pitch improves the carbonization yield of pitch, but may also deteriorate the carbonization properties. Are known. However, according to the method of the present invention in which hydrogen is added at a specific ratio and then air blowing is performed, an unexpected effect is achieved in that the carbonization yield of the starting material can be improved and the carbonization characteristics can be improved at the same time.

本発明の出発原料は、3〜5環の芳香族化合物
の少なくとも1種を80%以上含む石炭系重質留出
油である。この様な芳香族化合物としては、アン
トラセン及びメチルアントラセン等のアントラセ
ン誘導体;フエナントレン及びメチルフエナント
レン等のフエナントレン誘導体;フルオランテン
及びメチルフルオランテン等のフルオランテン誘
導体;ピレン及びメチルピレン等のピレン誘導
体;ベンゾフエナンスレン及びそのメチル誘導
体;ジベンゾフラン、ジフエニレンオキシド、メ
チルジフエニレンオキシド等の含酸素芳香族化合
物;キノリン、カルバゾール等の含窒素芳香族化
合物等が例示される。
The starting material of the present invention is a coal-based heavy distillate containing 80% or more of at least one type of 3- to 5-ring aromatic compound. Such aromatic compounds include anthracene derivatives such as anthracene and methylanthracene; phenanthrene derivatives such as phenanthrene and methylphenanthrene; fluoranthene derivatives such as fluoranthene and methylfluoranthene; pyrene derivatives such as pyrene and methylpyrene; Enanthrene and its methyl derivatives; oxygen-containing aromatic compounds such as dibenzofuran, diphenylene oxide, and methyldiphenylene oxide; nitrogen-containing aromatic compounds such as quinoline and carbazole; and the like.

本発明においては、先ず上記の如き出発原料を
軽度に水添処理する。水添処理の方法は、特に限
定されないが、水添の程度は、重要である。即
ち、プロトンNMRにおいて下記の様に定義され
る脂肪族性水素(Hα+Hβ+Hγ)が35〜70%と
なり且つ原料が分解を生じない程度の水添を行な
う。
In the present invention, the starting materials as described above are first subjected to a slight hydrogenation treatment. Although the method of hydrogenation treatment is not particularly limited, the degree of hydrogenation is important. That is, hydrogenation is carried out to such an extent that aliphatic hydrogen (Hα+Hβ+Hγ) defined as below becomes 35 to 70% in proton NMR and the raw material does not decompose.

Ha:6〜10ppm、Hα:1.1〜2ppm、Hβ:2〜
4ppm、Hγ:0.3〜1ppm 水添方法としては、例えば、Ni−Mo−Al2O3
系、Co−Mo−Al2O3系等の触媒の存在下、水素
圧20〜200Kg/cm2、温度350〜440℃、0.3〜2時間
程度の条件で行なわれる接触水添を例示すること
が出来る。或いは、Li金属とエチレンジアミンと
を使用するバーチ還元(常圧、100〜120℃、1〜
2時間)により原料の水添を行なつても良い。
Ha: 6~10ppm, Hα: 1.1~2ppm, Hβ: 2~
4ppm, Hγ: 0.3-1ppm As a hydrogenation method, for example, Ni-Mo-Al 2 O 3
To give an example of catalytic hydrogenation carried out in the presence of a catalyst such as a Co-Mo-Al 2 O 3 system, a hydrogen pressure of 20 to 200 Kg/cm 2 , a temperature of 350 to 440°C, and a duration of about 0.3 to 2 hours. I can do it. Alternatively, Birch reduction using Li metal and ethylenediamine (normal pressure, 100-120°C, 1-
The raw material may be hydrogenated for 2 hours).

次いで水添処理された出発原料をエアーブロー
イングにより酸化する。酸化は、エアブローイン
グ後に得られるピツチ中の残存脂肪族性水素
(Hα+Hβ+Hγ)の割合が15〜35%、好ましくは
20〜30%となるまで行なう。酸化処理時の条件は
特に限定さるものではないが、通常常圧下150〜
350℃、1〜40時間、通気量試料1gり0.5〜10
ml/秒程度とする。又、処理温度が被酸化物の沸
点以上となる場合は、加圧又は還流下で酸化する
のが好ましい。
The hydrogenated starting material is then oxidized by air blowing. Oxidation is performed until the proportion of residual aliphatic hydrogen (Hα + Hβ + Hγ) in the pitch obtained after air blowing is 15 to 35%, preferably
Continue until it reaches 20-30%. The conditions during oxidation treatment are not particularly limited, but usually under normal pressure 150~
350℃, 1 to 40 hours, aeration rate 0.5 to 10 per gram of sample
Approximately ml/second. Furthermore, when the treatment temperature is higher than the boiling point of the substance to be oxidized, it is preferable to oxidize under pressure or reflux.

本発明方法によれば、設備的にも操作条件的に
も何らの困難もなく高品質のメソフエースピツチ
が高収率で得られる。得られたメソフエースピツ
チは、流動性に優れており、例えば炭素繊維製造
に使用する場合には、紡糸性及び成型性に優れて
いる。又、炭化時には炭素材料として優れた性質
を示すとされている光学的流れもよう(optical
flow texture)を呈する。
According to the method of the present invention, high quality mesophase pitch can be obtained in high yield without any difficulties in terms of equipment or operating conditions. The obtained mesophase pitch has excellent fluidity and, for example, when used for producing carbon fibers, has excellent spinnability and moldability. Additionally, during carbonization, there is an optical flow that is said to exhibit excellent properties as a carbon material.
flow texture).

実施例 1 重アントラセン油(アントラセン、フエナント
レン、アセナフテン、ピレン等を主成分とし、少
量の5環芳香族化合物などを含むタール蒸留時の
留出油、Hα+Hβ+Hγ=17%)をNi−Mo−
Al2O3系触媒の存在下H2初期圧100Kg/cm2、温度
380℃で、2時間水添処理した。かくして、重ア
ントラセン油のHα+Hβ+Hγは、35%に増加し
た。
Example 1 Heavy anthracene oil (distillate oil from tar distillation containing anthracene, phenanthrene, acenaphthene, pyrene, etc. as main components, and a small amount of 5-ring aromatic compounds, Hα + Hβ + Hγ = 17%) was converted into Ni-Mo-
In the presence of Al 2 O 3 based catalyst H 2 initial pressure 100Kg/cm 2 , temperature
Hydrogenation treatment was carried out at 380°C for 2 hours. Thus, Hα+Hβ+Hγ of heavy anthracene oil increased to 35%.

次いで、該水添重アントラセン油を220℃で24
時間エアブローイング処理した。空気吸込み量
は、水添重アントラセン油1g当り2ml/秒であ
つた。
Next, the hydrogenated heavy anthracene oil was heated at 220°C for 24 hours.
Treated with air blowing for an hour. The air intake rate was 2 ml/sec per gram of hydrogenated heavy anthracene oil.

エアブローイング後の生成物を減圧蒸留し、沸
点350℃以下の軽質分を除去することにより収率
57%でピツチを得た。本ピツチの脂肪族性水素
は、15%であり、分子量1000以上の高分子量成分
も生成した。
The product after air blowing is distilled under reduced pressure to remove light components with a boiling point of 350°C or less to improve yield.
57% got a pitch. The aliphatic hydrogen content of this pitch was 15%, and high molecular weight components with a molecular weight of 1000 or more were also produced.

本実施例により得たピツチの炭化特性を確認す
る為に、直径30mm×長さ300mmの耐熱ガラス管に
サンプルを入れ、窒素ガス気流中600℃まで1時
間で昇温し、同温度で2時間保持して炭化させ
た。下記で定義する炭化収率は、28%であた。
In order to confirm the carbonization characteristics of the pitch obtained in this example, a sample was placed in a heat-resistant glass tube with a diameter of 30 mm and a length of 300 mm, and the temperature was raised to 600°C in a nitrogen gas stream for 1 hour, and then kept at the same temperature for 2 hours. It was held and carbonized. The carbonization yield, defined below, was 28%.

炭化収率=残存炭化物量(g)/仕込みサンプル量(g
)×100 得られた炭化物をプラスチツク中に埋め込み、
表面を研磨した後、偏光顕微鏡で観察した写真
(200倍)を参考図面として示す。本実施例で得
られたピツチの炭化物は、光学的流れもようを示
している。
Carbonization yield = amount of residual carbide (g) / amount of sample prepared (g
) × 100 The obtained carbide is embedded in plastic,
A photograph (200x magnification) taken with a polarizing microscope after polishing the surface is shown as a reference drawing. The pitch carbide obtained in this example exhibits optical flow behavior.

比較例 1 実施例1と同様の重アントラセン油を実施例1
と同様の方法で直接炭化したところ、炭化収率
は、3%に過ぎなかつた。
Comparative Example 1 The same heavy anthracene oil as in Example 1 was used in Example 1.
When direct carbonization was performed in the same manner as above, the carbonization yield was only 3%.

又、上記炭化物をプラスチツクに埋め込み、表
面を研磨した後、偏光顕微鏡で観察した結果は、
参考図面の通りであり、光学的な流れもようを
示している。
In addition, after embedding the above carbide in plastic and polishing the surface, the results of observing it with a polarizing microscope are as follows.
It is as shown in the reference drawing, and the optical flow is also shown.

比較例 2 実施例1と同様の重アントラセン油を実施例1
と同様にして水添処理し、直ちに炭化したとこ
ろ、炭化収率は、ほとんど零であつた。
Comparative Example 2 The same heavy anthracene oil as in Example 1 was used in Example 1.
When hydrogenated in the same manner as above and immediately carbonized, the carbonization yield was almost zero.

比較例 3 実施例1と同様の重アントラセン油を実施例1
と同様にしてエアブローイング処理した後、生成
物を減圧蒸留して、沸点350℃以下の軽質分を除
去し、収率76%でピツチを得た。
Comparative Example 3 The same heavy anthracene oil as in Example 1 was used in Example 1.
After air blowing treatment in the same manner as above, the product was distilled under reduced pressure to remove light components with a boiling point of 350°C or lower, and pitch was obtained with a yield of 76%.

得られたピツチを実施例1と同様にして炭化し
たところ、炭化収率は、27%であつた。
When the obtained pitch was carbonized in the same manner as in Example 1, the carbonization yield was 27%.

又、上記炭化物を実施例1と同様にして研磨
し、偏光顕微鏡で観察した結果は、参考図面に
示すフアインモザイク形状を示していた。
Further, the carbide was polished in the same manner as in Example 1 and observed under a polarizing microscope, and the results showed a fine mosaic shape as shown in the reference drawings.

比較例 4 実施例1と同様の水添重アントラセン油を280
℃で15時間エアブローイング処理した。空気吸込
み量は、水添重アントラセン油1g当り2ml/秒
であつた。
Comparative Example 4 The same hydrogenated heavy anthracene oil as in Example 1 was
Air blowing was performed at ℃ for 15 hours. The air intake rate was 2 ml/sec per gram of hydrogenated heavy anthracene oil.

エアブローイング後の生成物を減圧蒸留し、沸
点350℃以下の軽質分を除去することにより、収
率33%でピツチを得た。本ピツチの脂肪族性水素
は、2%に過ぎなかつた。
The product after air blowing was distilled under reduced pressure to remove light components with a boiling point of 350°C or lower, thereby obtaining pituti in a yield of 33%. The aliphatic hydrogen content of this pitch was only 2%.

上記のピツチを実施例1と同様にして炭化した
ところ、炭化収率は56%であつた。
When the above pitch was carbonized in the same manner as in Example 1, the carbonization yield was 56%.

又、上記炭化物を実施例1と同様にして研磨
し、偏光顕微鏡で観察した結果は、参考図面に
示す如く、フアインモザイク形状を呈していた。
Further, the carbide was polished in the same manner as in Example 1 and observed under a polarizing microscope. As shown in the reference drawing, it had a fine mosaic shape.

実施例 2 実施例1と同様の重アントラセン油50gにエチ
レンジアミン420mlを加え、90〜95℃で撹拌しつ
つLi15gを少量ずつ添加した後、更に20時間撹拌
を継続した。反応生成物を塩酸で中和した後、ベ
ンゼンを加えて、水添重アントラセン油を回収し
た。水添重アントラセン油の脂肪族性水素は、60
%に達していた。
Example 2 420 ml of ethylenediamine was added to 50 g of the same heavy anthracene oil as in Example 1, 15 g of Li was added little by little while stirring at 90 to 95°C, and stirring was continued for an additional 20 hours. After neutralizing the reaction product with hydrochloric acid, benzene was added to recover hydrogenated heavy anthracene oil. The aliphatic hydrogen content of hydrogenated heavy anthracene oil is 60
% had been reached.

次いで、該水添重アントラセン油を実施例1と
同様にしてエアブローイング処理した後、生成物
を減圧蒸留し、沸点350℃以下の軽質分を除去す
ることにより収率68%でピツチを得た。本ピツチ
の脂肪族性水素は、30%であつた。
Next, the hydrogenated heavy anthracene oil was subjected to air blowing treatment in the same manner as in Example 1, and then the product was distilled under reduced pressure to remove light components with a boiling point of 350° C. or lower, thereby obtaining pituti in a yield of 68%. . The aliphatic hydrogen content of this pitch was 30%.

上記ピツチを実施例1と同様にして炭化処理し
たところ、炭化収率は、39%であつた。
When the above pitch was carbonized in the same manner as in Example 1, the carbonization yield was 39%.

又、得られた炭化物の偏光顕微鏡写真は、参考
図面に示す通りであり、光学的な流れもようを
示している。
Moreover, the polarized light micrograph of the obtained carbide is as shown in the reference drawing, and also shows the optical flow.

Claims (1)

【特許請求の範囲】[Claims] 1 3〜5環の芳香族炭化水素の少なくとも1種
を含む石炭系重質留出油を水添した後、酸化する
ことを特徴とするピツチの製造方法。
1. A method for producing pituti, which comprises hydrogenating a coal-based heavy distillate containing at least one type of 3- to 5-ring aromatic hydrocarbon and then oxidizing it.
JP8977083A 1983-05-20 1983-05-20 Preparation of pitch Granted JPS59215387A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP8977083A JPS59215387A (en) 1983-05-20 1983-05-20 Preparation of pitch

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8977083A JPS59215387A (en) 1983-05-20 1983-05-20 Preparation of pitch

Publications (2)

Publication Number Publication Date
JPS59215387A JPS59215387A (en) 1984-12-05
JPH0320435B2 true JPH0320435B2 (en) 1991-03-19

Family

ID=13979918

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8977083A Granted JPS59215387A (en) 1983-05-20 1983-05-20 Preparation of pitch

Country Status (1)

Country Link
JP (1) JPS59215387A (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63278996A (en) * 1987-05-11 1988-11-16 Nkk Corp Production of binder pitch for special carbon product

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS53219A (en) * 1976-06-23 1978-01-05 Cindu Chemie Bv Method of preparating joining pitch
JPS5698953A (en) * 1980-01-10 1981-08-08 Nec Corp Transmission system of control signal in tdma communication system

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS53219A (en) * 1976-06-23 1978-01-05 Cindu Chemie Bv Method of preparating joining pitch
JPS5698953A (en) * 1980-01-10 1981-08-08 Nec Corp Transmission system of control signal in tdma communication system

Also Published As

Publication number Publication date
JPS59215387A (en) 1984-12-05

Similar Documents

Publication Publication Date Title
EP0318843A1 (en) Mesophase pitch for use in the making of carbon materials and process for producing the same
US4397830A (en) Starting pitches for carbon fibers
US4460455A (en) Process for producing pitch for using as raw material for carbon fibers
JPH02187494A (en) Manufacture of mesophase pitch
US4521294A (en) Starting pitches for carbon fibers
JPH0150272B2 (en)
JPH0320435B2 (en)
EP0072573B1 (en) Process for producing pitch for use as raw material for carbon fibers and carbon fibers produced from the pitch
EP0063051B1 (en) Starting pitches for carbon fibers
JPH08259957A (en) Production of metal-containing pitch for production of activated carbon fiber, production of activated carbon fiber and activated carbon fiber
JPS6065090A (en) Preparation of pitch for carbon fiber spinning
JPH0662285B2 (en) Method for producing elastic graphite body
JPS60170694A (en) Preparation of precursor pitch of carbon fiber
JPH0150271B2 (en)
JPH0150275B2 (en)
JPH0150273B2 (en)
EP0119015B1 (en) Starting pitches for carbon fibers
JPH0475273B2 (en)
KR100305372B1 (en) Isotropic pitch for producing carbon fiber and its manufacturing method
JPH0148313B2 (en)
JPS58191222A (en) Manufacture of pitch based carbon fiber
JPH0150276B2 (en)
EP0612870B1 (en) Process for producing carbon fibers
JPS5874786A (en) Raw pitch for carbon fiber
JPH0144751B2 (en)