JPH0320428A - Alloy for high strength die - Google Patents

Alloy for high strength die

Info

Publication number
JPH0320428A
JPH0320428A JP15512389A JP15512389A JPH0320428A JP H0320428 A JPH0320428 A JP H0320428A JP 15512389 A JP15512389 A JP 15512389A JP 15512389 A JP15512389 A JP 15512389A JP H0320428 A JPH0320428 A JP H0320428A
Authority
JP
Japan
Prior art keywords
alloy
mechanical strength
content
strength
die
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP15512389A
Other languages
Japanese (ja)
Inventor
Isao Yoshida
功 吉田
Shigemasa Kawai
河合 重征
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sekisui Chemical Co Ltd
Original Assignee
Sekisui Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sekisui Chemical Co Ltd filed Critical Sekisui Chemical Co Ltd
Priority to JP15512389A priority Critical patent/JPH0320428A/en
Publication of JPH0320428A publication Critical patent/JPH0320428A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To obtain the alloy for a high strength die having excellent mechanical strength and easy to cast by specifying the compsn. constituted of Zn, Mn, Fe, Al, Ni, Co, Ti, Zr and Cu with inevitable impurities. CONSTITUTION:The alloy for a high strength die is formed from, by weight, <=2% Zn, 0.5 to 3% Nn, 0.5 to 5% Fe, 0.5 to 10% Al, 0.01 to 5% Ni and/or Co, <=0.5% Ti and/or Zr and the balance Cu with <=0.5% inevitable impurities, which secures mechanical strength and has improved castability. The alloy has high content of Cu having high heat conductivity in the components and is therefore suitable particularly to a structural material such as a die for plastic molding.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は、プラスチック或形用金型等の構成材として用
いて好適な高強度金型用合金に関する. [従来の技術] 近年、事務用機器等の各種機器のハウジング、構或部品
等がプラスチック化され、かつ機器の性能を向上させる
べくそれら機器の頻繁なモデルチェンジが行なわれてい
る.これに伴い、プラスチック成形品の成形サイクルが
短くなり、多品種少量生産が実施されている.このため
、プラスチック成形用金型の構或材としては、鋳造/加
工が容易な材料が求められている. 従来のプラスチック或形用金型、特に射出或形用金型の
構成材としては、銑鉄、鋳鋼等の金属が用いられている
.これらの金属は、機械的強度は優れるものの、鋳遺/
加工が困難である。即ち、鋳鉄,iI鋼は鋳造温度が高
いため、錆造のための大規模な設備を必要とする.又、
簡易な鋳造は砂型でなされるが、その場合鋳造温度が約
1500℃と高いため、鋳造品の表面が粗くなり、その
ため、表面研磨に多大の工数を必要とする.又、精密な
金型な製作するためには、切削、放電加工等の機械加工
に多大の時間を必要とする. そこで近年、鋳造温度が低く、鋳造/加工が容易なプラ
スチック成形用金型の構或材として、亜鉛基合金や銅基
合金が使用されている.亜鉛基合金は、JIS H 5
301が規定するグイキャスト用亜鉛合金(znc−i
 )をベースとしており、Znの他にAl、Cu, M
g等を含有している.又、銅基合金は、例えば特公昭5
6−11380号公報に示されるように、Cuの他にA
l、Fe%Mn等を含有している.[発明が解決しよう
とする課M] 然しながら、上記従来の亜鉛基合金や銅基合金は、機械
的強度、硬度が不十分である.即ち、これらの合金をプ
ラスチック或形用金型の構成材として用いる場合には、
金型表面にクラックを生ずるおそれがある.又、この合
金を用いて戊形作業を重ねるにつれ、金型の寸法精度が
低下し、プラスチック或形品にパリを生ずるおそれがあ
り、このため、この金型は試作型程度にしか用いること
ができない. 本発明は、機械的強度に優れ、かつ鋳造/加工が容易な
高強度金型用合金を提供することを目的とする. [課題を解決するための手段] 本発明に係る高強度金型用合金は、重量バーセントで 
Zn  2%以下、Mn0.5〜3%、Fe 0.5〜
5%、Al0.5〜10%、0.01〜5%のNiもし
くはCo或いは両者の混合物、0.5%以下のTiもし
くはZr或いは両者の混合物、及び残部がCuと0.5
%以下の不可避不純物とからなるようにしたものである
. [作用] ′本発明合金によれば、Cu.Aj2を主成分とするた
め、機械的強度を確保し、鋳造/加工性を良好とするこ
とができる. 又、Mn, Zn, Fe, TiもしくはZr或いは
両者の混合物の添加によって機械的強度、及び硬度の向
上が図られ、NiもしくはCo或いは両者の混合物の添
加によって耐酸化性の向上が図られている。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a high-strength mold alloy suitable for use as a constituent material of plastic molds and the like. [Prior Art] In recent years, the housings, structural parts, etc. of various types of equipment, such as office equipment, have been made of plastic, and these equipments have undergone frequent model changes in order to improve their performance. Along with this, the molding cycle of plastic molded products has become shorter, and high-mix, low-volume production is being implemented. For this reason, materials that are easy to cast and process are required as structural materials for plastic molds. Conventional plastic molds, especially injection molds, are made of metals such as pig iron and cast steel. Although these metals have excellent mechanical strength, they
Difficult to process. That is, cast iron and II steel require large-scale equipment for rust forming due to their high casting temperatures. or,
Simple casting is done in a sand mold, but in this case the casting temperature is as high as approximately 1500°C, resulting in a rough surface of the cast product, which requires a large number of man-hours for surface polishing. In addition, in order to manufacture precise molds, a large amount of time is required for machining such as cutting and electrical discharge machining. Therefore, in recent years, zinc-based alloys and copper-based alloys have been used as structural materials for plastic molding molds, which have low casting temperatures and are easy to cast/process. Zinc-based alloys are JIS H5
Zinc alloy for gui casting specified by 301 (znc-i
), and in addition to Zn, it also contains Al, Cu, M
Contains g. In addition, copper-based alloys, for example,
As shown in Japanese Patent No. 6-11380, in addition to Cu, A
1, Fe%Mn, etc. [Problem M to be solved by the invention] However, the conventional zinc-based alloys and copper-based alloys described above have insufficient mechanical strength and hardness. That is, when these alloys are used as constituent materials for plastic molds,
There is a risk of cracks occurring on the mold surface. Furthermore, as the molding process is repeated using this alloy, the dimensional accuracy of the mold decreases and there is a risk of cracks occurring in the plastic product.For this reason, this mold can only be used for prototype molding. Can not. An object of the present invention is to provide a high-strength metal mold alloy that has excellent mechanical strength and is easy to cast/process. [Means for Solving the Problems] The high-strength mold alloy according to the present invention has a weight percentage of
Zn 2% or less, Mn 0.5~3%, Fe 0.5~
5% Al, 0.5-10% Al, 0.01-5% Ni or Co, or a mixture of both, 0.5% or less of Ti or Zr, or a mixture of both, and the balance is Cu and 0.5%.
% or less of unavoidable impurities. [Function] 'According to the alloy of the present invention, Cu. Since Aj2 is the main component, mechanical strength can be ensured and casting/processability can be improved. Furthermore, mechanical strength and hardness are improved by adding Mn, Zn, Fe, Ti, Zr, or a mixture of both, and oxidation resistance is improved by adding Ni or Co or a mixture of both. .

不純物としてのpb等はCuに対する溶解度が小さく、
粒界に折出し耐食性に悪影響を及ぼすため、できるだけ
低濃度であることが必要である.以下、合金の成分組成
を前述の通りに限定した理由について説明する. ■八2含有量 ^2はCuと合金化することで機械的強度を向上させる
効果を有する.その効果は10%を越えて含有させると
脆性が増し、0。5%以下では所期の強度向上効果が得
られないため、0.5〜10%と定めた. ■Zn含有量 Znは機械加工性を向上させる作用があるが、含有量が
過多となると、機械的強度を低下させる.効果を発現さ
せる量として2%以下と定めた.■Mn含有量 Mnは機械的強度を向上させる作用があるが、含有量が
0.5%未満では所期の強度向上効果を図ることができ
ず、他方3%を越えて含有させると脆化することから、
0.5〜3%と定めた.■Fe含有量 Feは機械的強度、硬度を向上させる効果があるが、そ
の含有量が0.5%未満では効果がなく、5%以上では
脆化するため、0.5〜5%と定めた. ■NiもしくはCo或いは両者の混合物含有量NLもし
くはCo或いは両者の混合物は耐食性、硬度を向上させ
る効果があるが、その含有量が0.01%未満では効果
が得られない.又、5%を越えて含有させた場合には、
脆化させるため、0.Ol〜5%と定めた. ■TiもしくはZr或いは両者の混合物含有量Tiもし
くはZr或いは両者の混合物は、微量の添加で機械的強
度、硬度を向上させる作用があるが、過剰な添加は脱化
させるため、0.5%以下と定めた. 即ち、本発明合金にあっては、上記の各金属元素を上記
の含有量で混合組成することにより、機械的強度及び表
面硬度を上げ、かつ鋳造/加工性を向上させることがで
きる. [実施例] 本発明合金の引張強度及び硬度を、比較合金と対比して
表1に示す. 表1に示す組成のCu−Zn− An −Fe−Mn−
Ni(Go)−Ti(Zr)系の本発明合金A−Eを作
成し、各成分が均一に溶解したことを確認した後、JI
S H 5301参考図Aに示す引張試験片を作成した
.これらの引張試験片について、JIS Z 2241
  の規定に従い引張試験を施し、それらの引張破断強
度を求めた。
Impurities such as PB have low solubility in Cu,
It is necessary to keep the concentration as low as possible because it precipitates at grain boundaries and has a negative effect on corrosion resistance. The reason for limiting the composition of the alloy as described above will be explained below. ■82 content^2 has the effect of improving mechanical strength by alloying with Cu. The effect is that if the content exceeds 10%, brittleness increases, and if it is less than 0.5%, the desired strength-improving effect cannot be obtained, so the content was set at 0.5 to 10%. ■Zn content Zn has the effect of improving machinability, but if the content is excessive, it reduces mechanical strength. The amount required to produce an effect was set at 2% or less. ■Mn content Mn has the effect of improving mechanical strength, but if the content is less than 0.5%, the desired strength improvement effect cannot be achieved, while if the content exceeds 3%, it will become brittle. From doing that,
It was set at 0.5-3%. ■Fe content Fe has the effect of improving mechanical strength and hardness, but if the content is less than 0.5%, it has no effect, and if it is more than 5%, it becomes brittle, so it is set at 0.5 to 5%. Ta. ■Content of Ni or Co or a mixture of both NL or Co or a mixture of both has the effect of improving corrosion resistance and hardness, but no effect can be obtained if the content is less than 0.01%. In addition, if the content exceeds 5%,
0.0 to make it brittle. It was set at 5%. ■Content of Ti, Zr, or a mixture of both Ti, Zr, or a mixture of both has the effect of improving mechanical strength and hardness when added in small amounts, but excessive addition causes decomposition, so the content should be 0.5% or less. It was determined that That is, in the alloy of the present invention, by mixing the above-mentioned metal elements in the above-mentioned contents, mechanical strength and surface hardness can be increased, and casting/processability can be improved. [Example] Table 1 shows the tensile strength and hardness of the alloy of the present invention in comparison with a comparative alloy. Cu-Zn- An -Fe-Mn- with the composition shown in Table 1
After creating Ni(Go)-Ti(Zr)-based alloys A-E of the present invention and confirming that each component was uniformly dissolved, JI
A tensile test piece shown in Reference Diagram A of S H 5301 was prepared. Regarding these tensile test pieces, JIS Z 2241
A tensile test was conducted in accordance with the regulations, and their tensile strength at break was determined.

又、上記の各合金について、JIS Z 2243の規
定に従いブリネル硬度を測定した.その結果は表1の通
りである。
In addition, the Brinell hardness of each of the above alloys was measured according to JIS Z 2243. The results are shown in Table 1.

又、表1に示す比較合金F−Iについても、上記と同様
な方法により、引張強度と硬度を測定した。尚、比較合
金GはJIS Fl 5301が規定するダイキャスト
亜鉛合金(ZDC−1 ) 、比較合金Hは三井金属鉱
業一のvJ造金型用亜鉛合金(ZAS)  比較合金工
はJIS H 5101が規定する黄銅鋳物(YBsC
1)である。
Furthermore, the tensile strength and hardness of Comparative Alloy F-I shown in Table 1 were also measured by the same method as above. Comparative alloy G is a die-cast zinc alloy (ZDC-1) specified by JIS Fl 5301, comparative alloy H is a zinc alloy for vJ mold making (ZAS) manufactured by Mitsui Mining & Co., Ltd., and comparative alloy is specified by JIS H 5101. Brass casting (YBsC)
1).

表tによれば、本発明合金は比較合金に比して、引張強
度、硬度に侵れていることが認められる。又、本発明合
金は、鋳鉄、鋳鋼に比して、融点が約1000℃と比較
的低温であり、鋳造/加工性が良く、従って、高強度金
型を比較的短時間で製作でき、射出戒彫金型用合金等と
して非常に有用であることが認められる. 又、本発明合金はその組成から明らかなように、成分中
に熱伝導率の大きいCuの含有量が多く、従って、加熱
、冷却に要する時間が少なくて済むとの利点も有する。
According to Table t, it is recognized that the alloy of the present invention has lower tensile strength and hardness than the comparative alloy. In addition, the alloy of the present invention has a relatively low melting point of approximately 1000°C compared to cast iron and cast steel, and has good casting/processability. Therefore, high-strength molds can be manufactured in a relatively short time, and injection molding is possible. It is recognized that it is very useful as an alloy for carving molds, etc. Furthermore, as is clear from its composition, the alloy of the present invention has a large content of Cu, which has a high thermal conductivity, and therefore has the advantage of requiring less time for heating and cooling.

このことはプラスチックの射出成形用金型として利用し
た時、成形時間が短時間となり射出成形金型用合金とし
て非常に有用であることを意味する. [発明の効果] 以上のように、本発明によれば、機械的強度に優れ、か
つ鋳造/加工が容易な高強度金型用合金を得ることが可
能となる.
This means that when used as a mold for plastic injection molding, the molding time is shortened, making it extremely useful as an alloy for injection molding. [Effects of the Invention] As described above, according to the present invention, it is possible to obtain a high-strength mold alloy that has excellent mechanical strength and is easy to cast/process.

Claims (1)

【特許請求の範囲】[Claims] (1)重量パーセントでZn2%以下、Mn0.5〜3
%、Fe0.5〜5%、Al0.5〜10%、0.01
〜5%のNiもしくはCo或いは両者の混合物、0.5
%以下のTiもしくはZr或いは両者の混合物、及び残
部がCuと0.5%以下の不可避不純物とからなる高強
度金型用合金。
(1) Zn 2% or less, Mn 0.5 to 3 in weight percent
%, Fe0.5-5%, Al0.5-10%, 0.01
~5% Ni or Co or a mixture of both, 0.5
% or less of Ti or Zr, or a mixture of both, and the balance is Cu and 0.5% or less of unavoidable impurities.
JP15512389A 1989-06-16 1989-06-16 Alloy for high strength die Pending JPH0320428A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP15512389A JPH0320428A (en) 1989-06-16 1989-06-16 Alloy for high strength die

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP15512389A JPH0320428A (en) 1989-06-16 1989-06-16 Alloy for high strength die

Publications (1)

Publication Number Publication Date
JPH0320428A true JPH0320428A (en) 1991-01-29

Family

ID=15599064

Family Applications (1)

Application Number Title Priority Date Filing Date
JP15512389A Pending JPH0320428A (en) 1989-06-16 1989-06-16 Alloy for high strength die

Country Status (1)

Country Link
JP (1) JPH0320428A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111893345A (en) * 2020-08-06 2020-11-06 贵溪骏达特种铜材有限公司 Ingot casting process of aluminum bronze

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111893345A (en) * 2020-08-06 2020-11-06 贵溪骏达特种铜材有限公司 Ingot casting process of aluminum bronze

Similar Documents

Publication Publication Date Title
KR102597784B1 (en) A aluminum alloy and for die casting and method for manufacturing the same, die casting method
US10525528B2 (en) Aluminum alloy for die-casting, having improved corrosion resistance
JP7386194B2 (en) High strength, uniform copper-nickel-tin alloy and manufacturing process
KR20070057144A (en) An al-si-mg-zn-cu alloy for aerospace and automotive castings
JP6385683B2 (en) Al alloy casting and manufacturing method thereof
JPH0320426A (en) Copper alloy for die
JPH0320428A (en) Alloy for high strength die
CN107695339A (en) A kind of preparation method of aluminum base powder metallurgy forging engine link
US2795501A (en) Copper base alloys
CN111057902B (en) Die-casting copper alloy, preparation method and application thereof and die-casting copper alloy composite plastic product
JPH0320429A (en) Alloy for high strength die
JP3152400B2 (en) Hard zinc alloy for hardfacing welding and a mold having a hardfacing portion made of the alloy
JPH0320427A (en) Alloy for high strength die
JP2014074202A (en) High strength and high toughness copper alloy forged article
CN111057901B (en) Die-casting copper alloy, preparation method and application thereof and die-casting copper alloy composite plastic product
KR101181846B1 (en) High strength copper alloys for die casting
KR101189478B1 (en) Tin bearing copper alloys for die-casting
JPS63203741A (en) Titanium-containing zinc-based alloy
JPH0699763B2 (en) Copper alloy for mold
JPS6338549A (en) Zinc alloy
JPH01165740A (en) Zinc-based alloy
Akhter et al. Study of mechanical properties of Zn-27Al alloy cast in metal mould at different casting conditions
JPH04218631A (en) Copper alloy for metal mold for plastic molding
EP3736351A1 (en) Copper-based microcrystalline alloy, preparation method thereof, and electronic product
JPH0452241A (en) High strength die alloy