JPH0320425A - High purity gold alloy - Google Patents

High purity gold alloy

Info

Publication number
JPH0320425A
JPH0320425A JP15220589A JP15220589A JPH0320425A JP H0320425 A JPH0320425 A JP H0320425A JP 15220589 A JP15220589 A JP 15220589A JP 15220589 A JP15220589 A JP 15220589A JP H0320425 A JPH0320425 A JP H0320425A
Authority
JP
Japan
Prior art keywords
gold
alloy
weight
gold alloy
hardness
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP15220589A
Other languages
Japanese (ja)
Other versions
JPH0678578B2 (en
Inventor
Yoshihiko Isobe
礒部 芳彦
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NIPPON KIKINZOKU KOGYO KK
Original Assignee
NIPPON KIKINZOKU KOGYO KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NIPPON KIKINZOKU KOGYO KK filed Critical NIPPON KIKINZOKU KOGYO KK
Priority to JP15220589A priority Critical patent/JPH0678578B2/en
Publication of JPH0320425A publication Critical patent/JPH0320425A/en
Publication of JPH0678578B2 publication Critical patent/JPH0678578B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Manufacture And Refinement Of Metals (AREA)
  • Adornments (AREA)

Abstract

PURPOSE:To obtain the high purity gold alloy having high toughness and excellent workability by holding an alloy having specified compsn. of which trace amounts of Al or Ni and trace amounts of Ru or Ge are added to a gold base metal to a specified high temp. CONSTITUTION:Trace amounts of Al or Ni and trace amounts of Ru or Ge are added to a gold base metal having high purity of, by weight, about 99.99% quality to form a gold alloy constituted of 99.9% Au, 0.07 to 0.081% Al or 0.072 to 0.063% Ni and the balance Ru or Ge. The gold alloy is held to a high temp. of >=1400 deg.C or is repeatedly subjected to melting at about 1400 deg.C and cooling for solidification. In this way, the high purity gold alloy having high toughness and high hardness as well as excellent workability can be obtd.

Description

【発明の詳細な説明】 [産業上の利用分野1 この発明は99.91i量%以上の高純度金合金の提供
、就中高靭性を有し加工性に優れた高純度金合金の提供
に関する. [従来の技術] 金は、その優れk装飾的特性、化学的特性等から種々の
用途に向けて用いられている.しかしながら高品位の金
は一般に柔かく傷つき易く、変形し易い等の不都合を有
し、実用的な加工特性に欠ける不都合があった.か\る
点から夫々の使用目的に合せた硬度を有する加工特性に
優れた金素材を得るために金素材の合金化、加工硬化、
熱処理等がなされている. しかしながら高品位の99.99%の金等では加工ない
しは熱処理による高靭化には自ずと限界があり、一般的
Cはカラット金と称し、金一銀一銅の三元合金として使
用している.このカラット金は、使用目的に合せて要請
される色調と硬度を前提として前記の金一銀一銅の合金
設計をすることが一般になされている. しかし々がら高純度金合金であって、しかも高靭性を有
し、加工特性に優れた高純度金合金を得るためには限ら
れた範囲内での特殊な合金設計が必要であると同時に、
同一の化学的組成の高純度金合金においても特別な鋳造
条件、加工条件、熱処理条件を予め設定する必要があっ
た. 一般に金を母材として得られる金合金では99.9重量
%の高純度材金合金で析出硬化を得たものではなかった
. そこで、一般的な金属合金での時硬効果理論にもとづい
て金一ニッケル、金−ゲルマニウム、金一アルミニウム
の二元系合金状態図(変態図〉を参照して、析出基材と
してニッケルとアルミニウムとを選択して高純度材金合
金での析出硬化を試みた. この析出基材としてのニッケルは800℃以下の温域で
^u*Niの二相分離を生ずることが認められ、又折出
基材としてのアルミニウムは545℃で3重量%^Uに
固溶するもの\、低温域で析出、硬化することが認めら
れた.しかしながら、このニッケルとアルミニウムを析
出基材として用いた金一ニッケル,金−アルミニウムの
二元系合金では、ニッケルと、アルξニウムとが金に対
し共に1重量%以上添加することを要し、金に対しニッ
ケルとアル亙ニクムとの添加量が1重量%未満である場
合には所期の時硬効果能が認められなかった. [発明が解決しようとする課題] しかしながら9!1.9重量%以上の高純度金合金であ
って、しかも所期の高靭性を有し、加工特性にも優れた
金合金材が各方面から要請されるにいたっている. か}る要請には金合金材が導電接点材として用いられた
りする際の導電特性その他の諸特性の要請に適応する特
性をもち、しかも所期の高靭性、加工性をもつ必要のあ
る場合、ネックレス等の加工特性並びに装飾的機能と資
産的価値づけとを同時に必要とする場合等種々の目的か
ら、その撞供が求められている. そこで金属合金における一般的な時硬効果理論にもとづ
いて析出碁材にニッケルとアルミニウムとを選び、高靭
性を有する高純度金高金を得ようと試みたが、かエるニ
ッケル、アルミニウムを析出基材とする時硬効果は、ニ
ッケル、アル主二ウムの添加量が少なくとも1重量%以
上であることを要し、これよりも少ない析出基材の添加
では充分な時硬効果能を高めることができなかった. か)る点から、析出基材をより完全なものとする意図か
ら第三元素としてモリブデン、バナジウム、ベリウム、
イリジウム、イットリウム、コバルト、ジルコニウム、
チタンを前記の金一ニッケル、金一アル主二ウムの二元
系合金に添加し、その時硬効果能を高めることが試みら
れたが、そのいずれも80Hv (ビッカース硬度〉以
上の高純度金合金を得ることができなかった. 本発明にかへる金合金は、か}る従前における高純度且
つ高硬度の金合金における不都合に鑑み優れた加工特性
に見合う高靭性を有し、しかも99.9重量%以上の高
純度を保つ金合金の提供を目的としている. [i!I題を解決するための手段】 本発明は、か)る目的を達成するものとして、金の含有
率が9!1.99重量%の高純度の金母材を用い、これ
にアルミニウムとルテニウム又はゲルマニウムとを添加
し、又は品位が99.99%の高純度金母材にニッケル
とゲルマニウム又はルテニウムとを添加して1400℃
以上の高温で保持するか、又は略1400℃で溶解した
後冷却凝固する処理を反復して行なう.この処理によっ
て, 金0.9重量%と、 アルミニウム0.07〜0.081重量%又はニッケル
0.072〜0.063重量%と、微量のルテニウム又
はゲルマニウムとからなる高純度で高硬度の金合金を得
る. [実施例】 以下本発明にか\る典型的な一実施例を詳細に説明する
. 先ず品位が99.99%の金99.9重量%に、アル夫
二ウム0.07〜0.081重量%と微量のルテニウム
又はゲルマニウムとを添加する。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Application Field 1] The present invention relates to the provision of a high-purity gold alloy with a content of 99.91i% or more, particularly to the provision of a high-purity gold alloy having high toughness and excellent workability. [Prior Art] Gold is used for various purposes due to its excellent decorative and chemical properties. However, high-grade gold generally has disadvantages such as being soft, easily damaged, and easily deformed, and lacks practical processing characteristics. From this point of view, in order to obtain a gold material with hardness suitable for each purpose and excellent processing characteristics, alloying of gold materials, work hardening,
It has been subjected to heat treatment, etc. However, with high-grade 99.99% gold, etc., there is a limit to how tough it can be made through processing or heat treatment, so C is generally called karat gold and is used as a ternary alloy of gold, silver, and copper. This karat gold is generally designed as an alloy of gold, silver, and copper based on the color tone and hardness required for the purpose of use. However, in order to obtain a high-purity gold alloy with high toughness and excellent processing characteristics, a special alloy design within a limited range is required.
Even for high-purity gold alloys with the same chemical composition, it was necessary to set special casting, processing, and heat treatment conditions in advance. In general, gold alloys obtained using gold as a base material were not 99.9% by weight high-purity gold alloys that achieved precipitation hardening. Therefore, based on the theory of time-hardening effect in general metal alloys, referring to binary alloy phase diagrams (transformation diagrams) of gold-nickel, gold-germanium, and gold-aluminum, we decided to use nickel and aluminum as the precipitation base material. We attempted precipitation hardening of a high-purity metal alloy by selecting nickel as a precipitation base material.It has been recognized that nickel as a precipitation base material causes two-phase separation of ᄒu*Ni in the temperature range below 800℃, and Aluminum as a precipitation base material was found to form a solid solution in 3% by weight of U at 545°C, but it was observed that it precipitated and hardened at low temperatures. In a binary alloy of nickel and gold-aluminum, both nickel and aluminum must be added in an amount of 1% by weight or more relative to the gold, and the amount of nickel and aluminum added to the gold must be 1% by weight. %, the desired time hardening effect was not observed. [Problem to be solved by the invention] However, if the high purity gold alloy is 9!1.9% by weight or more, and the desired time hardening effect is Gold alloy materials with high toughness and excellent processing properties are now being requested from various fields.These demands include the need for conductive properties when gold alloy materials are used as conductive contact materials. In cases where it is necessary to have properties that meet the requirements of other various properties, as well as the desired high toughness and workability, or where processing characteristics such as necklaces, decorative functions, and asset value are required at the same time. Therefore, based on the general time hardening effect theory in metal alloys, we selected nickel and aluminum as the precipitated materials, and used high-purity gold with high toughness. However, the hardening effect when using nickel or aluminum as a precipitation base material requires that the amount of nickel or aluminum added is at least 1% by weight or less. It was not possible to sufficiently increase the hardening effect by adding the precipitation base material.From this point of view, molybdenum, vanadium, beryum,
Iridium, yttrium, cobalt, zirconium,
Attempts were made to increase the hardening effect by adding titanium to the above-mentioned gold-nickel and gold-aluminum alloys, but none of these methods resulted in high-purity gold alloys with a Vickers hardness of 80Hv or higher. The gold alloy according to the present invention has high toughness commensurate with excellent processing properties in view of the disadvantages of conventional high-purity and high-hardness gold alloys, and has a hardness of 99. The object of the present invention is to provide a gold alloy that maintains a high purity of 9% by weight or more. !A high-purity gold base material of 1.99% by weight is used, and aluminum and ruthenium or germanium are added thereto, or nickel and germanium or ruthenium are added to a high-purity gold base material of 99.99% grade. and 1400℃
Either it is held at a high temperature above 1,400°C, or it is melted at about 1400°C and then cooled and solidified repeatedly. This treatment produces high-purity, high-hardness gold consisting of 0.9% by weight of gold, 0.07-0.081% by weight of aluminum or 0.072-0.063% by weight of nickel, and a trace amount of ruthenium or germanium. Obtain the alloy. [Example] A typical example according to the present invention will be described in detail below. First, 0.07 to 0.081 weight % of aluminum and a trace amount of ruthenium or germanium are added to 99.9 weight % of gold having a grade of 99.99%.

又、同様に品位が99.99%の金99.9重量%に、
ニッケル0.072〜0.063重量%と、微量のルテ
ニウム又はゲルマニウムとを添加する. このアルくニウム0.07〜0.081重量%と微量の
ルテニウム又はゲルマニウムの添加、又はニッケル0.
072〜0.063重量%と微量のゲルマニウム又はル
テニウムの添加以外の範囲での添加、特に添加量の少な
い場合には充分な析出効果かく、所期の硬度を得ること
ができなかった.又、この添加量を増した場合の析出効
果は満足し得るものであったが99.9%の高純度金合
金を得ることができなかった.尚、前記合金の組成範囲
としては、金g9.9重量%、アルミニウム0.07〜
0.081重量%、ルテニウム0.02〜0.009重
量%の組成範囲又は、金99.9重量%、ニッケル0.
072〜O.Oli3瓜量%、ゲルマニウム0.018
〜0.027 1iJi%の組成範囲が好ましく、ルテ
ニウムに代ってゲルマニウムを添加した合金、前記ゲル
マニウムに代ってルテニウムを添加した合金でも時硬効
果能が高められ、高硬度の金合金を得ることができた. 更に、金99.91量%、アルミニウム0.081重量
%、ルテニウム0.009重量%の組成又は、金99.
9重量%、ニッケル0.063重量%、ゲルマニウム0
.027 31量%の組成の金合金がより好ましく、所
期の高靭性を有する加工性に優れた高純度金゛合金を得
ることができた.又、前記のルテニウム、ゲルマニウム
に代るものとして、アルミニウム又はニッケルに微量の
モリブデン、バナジウム、ベリウム、イリジウム、イッ
トリウム、コバルト、ジルコニウム、チタンを添加して
得た品位99.9%の高純度金合金では80Hv以上の
硬度を得ることができなかった. 次いで前記の化学組成に相当する元素の添加された金合
金素材を真空又はアルゴンガスの雰囲気内で溶解し14
00℃以上の高温に保持する. 又は略1400℃で溶解後冷却凝固させる処理を2〜3
回繰返すことによって高純度金合金での析出硬化をした
. かSる溶解処理を経た高純度金合金では、その鋳造状態
で70Hv以上の硬度が得られた.又、この鋳造インゴ
ットを単純にロール加工し、加工率50%の状態で90
Hv以上の硬度が得られた. 尚、前記の鋳造条件以外の方法で得たキャスト品は非常
に脆く、加工性に乏しく実用に供し得る合金とすること
ができなかった.このようにして得られた高純度金合金
の一つは金99.9重量%と、アル稟ニウム0.07〜
0.081重量%と、微量のルテニウム又はゲルマニウ
ムとからなる.又、他の高純度金合金は金99.9重量
%と、ニッケル0.072〜0.063重量%と、微量
のゲルマニウム又はルテニウムとからなる. この金合金を前記のロール加工後に、150〜250℃
の温域に3〜5時間保持して熱処理を施したところ14
0Hv以上の硬度を得ることができた. 尚、前記の合金設計において添加されるルテニウムとゲ
ルマニウムとは高温域で固溶されているアル主ニウム、
ニッケルの析出を高め又は分離を補う.又、合金組織の
微細化が、このルテニウム、ゲルマニウムの添加によっ
てす\められる. 実施例1 金9g.9重量%、アルミニウム0.081 TL量%
、ルテニウム0.009重量%の配合率からなる合金素
材を1400℃以上の高温で保持した後常温に戻して合
金鋳造品を得た. この溶解処理において添加アルミニウムは完全に金に固
溶していたが、545℃以下の温域で効果的に折出した
. この低温域でのアルくニウムの析出はルテニウムの添加
された状態でより高められることが認められた. このようにして得られた合金鋳造品に熱処理を施した. この熱処理は、該合金鋳造品を200℃に4時間保持す
ることで施した. この合金鋳造品の硬度(ビッカース硬度)は次の通りで
あった.(尚、この硬度測定は10ms+径の丸棒状の
合金鋳造品を木材とし、その表面層と、該木材の中心位
置とで測定し、これと同形状且つ同条件の99.99%
品位の金の鋳造品の丸棒とを比較して示している.)次
いで、前記の合金鋳造品をロール加工で、加工度50%
まで加工し、偏平の板状とし、その加工鋳造品を木材と
し、その表面層と、該木材の中心位置とで硬度測定をし
、同条件の99.19%品位の金鋳造品と比較した.実
施例2 添加合金種をニッケル0.OIi3重量%、ゲルマニウ
ム0.027 !量%とした以外の条件を実施例1と同
一にして高純度、高硬度の金合金を得た. この金合金では溶解処理、特に低温域での^u+Niの
分離をし、硬化することが認められた.又、添加したル
テニウムが、この^U◆Niの分離を補うと共に組成の
微細化に有効であることが認められた. 得られた高純度金合金の硬度は前記実施例1と略同一で
あった. 実施例3 溶解処理を、1400℃で溶解後冷却する方法の繰返し
とした以外の条件を、実施例1と同一にして高純度、高
硬度の金合金を得た.こ)で得られた金合金の硬度は実
施例1で得られた金合金より僅かに良好であることが認
められた. 実施例4 添加合金種をアル【ニウム0,07重量%、ゲルマニウ
ム0.03重量%とした以外の条件を実施例1と同一に
して高純度、高硬度の金合金を得た. こエで得られた金合金の硬度は、実施例lで得られた金
合金の硬度よりも僅かに劣っていたが加工上全く問題が
なかった. 実施例5 添加合金種をニッケル0.072重量%、ルテニウム0
.02重量%とした以外の条件を実施例1と同一にして
高純度、高硬度の金合金を得た. こ\で得られた金合金は、実施例1で得られた金合金に
比較して硬度が劣り、加工上稍々難が認められたものS
実用C供することができた. 比較例1 添加合金種としてルテニウムを用いずニッケルのみを0
.1重量%添加した以外の条件を実施例1におけると同
一にして金合金を得た. こ)で得られた金合金は柔く、傷つき易く、99.99
%品位の金鋳造品に近い硬度であって、加工に適してい
なかった. 比較例2 添加合金種をニッケルのみとし、ゲルマニウムを用いず
に0.0g重量%を添加した以外の条件を実施例2と同
一にして金合金を得た.こ\で得られた金合金は比較例
1と同様に加工に適する硬度を有していなかった.比較
例3 アルaニウムの添加量を0.06重量%とした以外の条
件を実施例1におけると同一にして金合金を得た. こSで得られた金合金は比較例1と同様に加工に適する
硬度を有しなかった. 比較例4 ニッケルの添加量を0.05重量%とした以外の条件を
実施例2におけると同一にして金合金を得た. こ)で得られた金合金は比較例1と同様に加工に適する
硬度を有しなかった. [効果] 本発明にか\る高純度金合金は、金の含有率が!19.
91i量%と高い状態で、その硬度を高めた結果、高純
度金合金における加工特性を良好とすることができた. 特に、高純度金合金とすることによって金素材の有する
電気的、化学的あるいは熱的特性等を損うことなく、そ
の機械的強度を高めることができた結果、各種の電子機
器類等の構成素材とすることができた. 又、高純度金合金としてその品位を保ったま)で高靭性
を付与されたことから変形したり、傷を生ずることのな
い純金製ネツクレス等の装飾品、純金工芸品、装飾用ク
リップ類として用いることができた. 更に、高品位で、しかも酎腐食性に優れ、さらに適度の
硬さを有する高純度金合金であることから重要な公印な
いしは私印の印材等として用いることができた.
Also, 99.9% by weight of gold with a grade of 99.99%,
Add 0.072 to 0.063% by weight of nickel and a small amount of ruthenium or germanium. Addition of 0.07 to 0.081% by weight of this aluminum and a trace amount of ruthenium or germanium, or 0.08% by weight of nickel.
When adding a small amount of germanium or ruthenium other than 0.072 to 0.063% by weight, especially in a small amount, the precipitation effect was insufficient and the desired hardness could not be obtained. Furthermore, although the precipitation effect was satisfactory when the amount added was increased, it was not possible to obtain a gold alloy with a high purity of 99.9%. The composition range of the alloy is 9.9% by weight of gold and 0.07% by weight of aluminum.
0.081% by weight, ruthenium in the composition range of 0.02-0.009% by weight, or 99.9% by weight of gold, 0.00% by weight of nickel.
072~O. Oli3 melon amount%, germanium 0.018
A composition range of ~0.027 1iJi% is preferable, and even alloys in which germanium is added instead of ruthenium, and alloys in which ruthenium is added in place of germanium, the hardening effect is enhanced and a high-hardness gold alloy is obtained. I was able to do that. Furthermore, a composition of 99.91% by weight of gold, 0.081% by weight of aluminum, and 0.009% by weight of ruthenium, or a composition of 99.9% by weight of gold.
9% by weight, 0.063% by weight of nickel, 0% of germanium
.. A gold alloy having a composition of 027 31% by weight is more preferable, and a high-purity gold alloy having the desired high toughness and excellent workability could be obtained. In addition, as a substitute for the above-mentioned ruthenium and germanium, a 99.9% grade high purity gold alloy obtained by adding trace amounts of molybdenum, vanadium, beryum, iridium, yttrium, cobalt, zirconium, and titanium to aluminum or nickel. However, it was not possible to obtain a hardness of 80Hv or higher. Next, a gold alloy material to which elements corresponding to the above chemical composition have been added is melted in a vacuum or an argon gas atmosphere.
Maintain at a high temperature of 00℃ or higher. Or 2 to 3 steps of cooling and solidifying after melting at approximately 1400°C.
By repeating this process several times, precipitation hardening was achieved in a high-purity gold alloy. A high-purity gold alloy that has undergone a S melting process has a hardness of 70 Hv or more in its cast state. In addition, this cast ingot was simply rolled, and at a processing rate of 50%, the
A hardness of Hv or higher was obtained. Incidentally, cast products obtained using methods other than the casting conditions described above were extremely brittle and had poor workability, and could not be made into alloys that could be put to practical use. One of the high-purity gold alloys obtained in this way contains 99.9% by weight of gold and 0.07~0.07% of aluminum.
It consists of 0.081% by weight and a trace amount of ruthenium or germanium. Other high-purity gold alloys consist of 99.9% by weight of gold, 0.072 to 0.063% by weight of nickel, and trace amounts of germanium or ruthenium. After the above-mentioned roll processing, this gold alloy was heated to 150 to 250°C.
When heat-treated by holding at a temperature range of 3 to 5 hours, 14
We were able to obtain a hardness of 0Hv or higher. In addition, the ruthenium and germanium added in the above alloy design are mainly aluminum, which is solid solution in the high temperature range.
Increases nickel precipitation or supplements separation. Also, the refinement of the alloy structure is promoted by the addition of ruthenium and germanium. Example 1 9g of gold. 9% by weight, aluminum 0.081 TL amount%
An alloy material having a compounding ratio of 0.009% by weight of ruthenium was held at a high temperature of 1400°C or higher and then returned to room temperature to obtain an alloy casting. In this melting process, the added aluminum was completely dissolved in the gold, but it was effectively precipitated at temperatures below 545°C. It was observed that the precipitation of aluminum in this low temperature range was further enhanced when ruthenium was added. The alloy castings thus obtained were heat treated. This heat treatment was performed by holding the alloy casting at 200°C for 4 hours. The hardness (Vickers hardness) of this alloy casting was as follows. (In addition, this hardness measurement is made using a round bar-shaped alloy casting product with a diameter of 10 ms + wood, and is measured at the surface layer and the center position of the wood, and is 99.99% of the same shape and under the same conditions.
It is shown in comparison with a round bar of high quality gold casting. ) Next, the alloy casting was rolled to a working degree of 50%.
The hardness of the processed and cast wood was measured at the surface layer and at the center of the wood, and compared with a 99.19% grade gold cast product under the same conditions. .. Example 2 The additive alloy type was nickel 0. OIi 3% by weight, germanium 0.027! A gold alloy with high purity and high hardness was obtained under the same conditions as in Example 1 except for the weight percentage. It was observed that this gold alloy undergoes melting treatment, especially at low temperatures, to separate ᄒu+Ni and harden it. It was also found that the added ruthenium supplemented this separation of ^U◆Ni and was effective in refining the composition. The hardness of the obtained high-purity gold alloy was approximately the same as that of Example 1. Example 3 A high-purity, high-hardness gold alloy was obtained under the same conditions as in Example 1 except that the melting process was repeated at 1400°C and then cooled. It was found that the hardness of the gold alloy obtained in Example 1 was slightly better than that of the gold alloy obtained in Example 1. Example 4 A gold alloy with high purity and high hardness was obtained under the same conditions as in Example 1 except that the alloy species added were 0.07% by weight of aluminum and 0.03% by weight of germanium. The hardness of the gold alloy obtained in this process was slightly inferior to that of the gold alloy obtained in Example 1, but there were no problems in processing. Example 5 Addition alloy species: nickel 0.072% by weight, ruthenium 0
.. A gold alloy with high purity and high hardness was obtained under the same conditions as in Example 1 except that the gold alloy was 0.2% by weight. The gold alloy obtained here was inferior in hardness compared to the gold alloy obtained in Example 1, and was found to be somewhat difficult to process.
We were able to provide a practical C. Comparative Example 1 Only nickel was used without using ruthenium as the additive alloy type.
.. A gold alloy was obtained under the same conditions as in Example 1 except that 1% by weight was added. The gold alloy obtained by this method is soft and easily scratched, and has a 99.99%
The hardness was close to that of % grade gold castings, making it unsuitable for processing. Comparative Example 2 A gold alloy was obtained under the same conditions as in Example 2 except that nickel was the only alloy added and germanium was not used and 0.0 g weight % was added. As with Comparative Example 1, the gold alloy obtained here did not have a hardness suitable for processing. Comparative Example 3 A gold alloy was obtained under the same conditions as in Example 1 except that the amount of aluminum added was 0.06% by weight. As with Comparative Example 1, the gold alloy obtained in this S did not have a hardness suitable for processing. Comparative Example 4 A gold alloy was obtained under the same conditions as in Example 2 except that the amount of nickel added was 0.05% by weight. Similar to Comparative Example 1, the gold alloy obtained in this step) did not have a hardness suitable for processing. [Effect] The high purity gold alloy according to the present invention has a high gold content! 19.
As a result of increasing its hardness at a high content of 91i%, it was possible to improve the machining characteristics of a high-purity gold alloy. In particular, by making a high-purity gold alloy, we were able to increase its mechanical strength without impairing the electrical, chemical, or thermal properties of the gold material. I was able to use it as a material. In addition, since it has high toughness and maintains its quality as a high-purity gold alloy, it does not deform or cause scratches and is used for ornaments such as pure gold nets, pure gold crafts, and decorative clips. I was able to do that. Furthermore, because it is a high-grade, high-purity gold alloy with excellent corrosion resistance and moderate hardness, it could be used as stamp material for important official and private seals.

Claims (1)

【特許請求の範囲】 1、金母材に微量のアルミニウム又はニッケルと、微量
のルテニウム又はゲルマニウムとが添加され、且つこれ
をが1400℃以上の高温に保持され又は反復して略1
400℃で溶解〜冷却凝固されて、組成が 金99.9重量%と、 アルミニウム0.07〜0.081重量%又はニッケル
0.072〜0.063重量%と、 残部がルテニウム又はゲルマニウムとされている高靭性
を有する高純度金合金。
[Claims] 1. A trace amount of aluminum or nickel and a trace amount of ruthenium or germanium are added to the gold base material, and this is maintained at a high temperature of 1400°C or higher or repeatedly heated to about 1
It is melted at 400°C and solidified by cooling, and the composition is 99.9% by weight of gold, 0.07 to 0.081% by weight of aluminum or 0.072 to 0.063% by weight of nickel, and the balance is ruthenium or germanium. High purity gold alloy with high toughness.
JP15220589A 1989-06-16 1989-06-16 High purity gold alloy Expired - Lifetime JPH0678578B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP15220589A JPH0678578B2 (en) 1989-06-16 1989-06-16 High purity gold alloy

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP15220589A JPH0678578B2 (en) 1989-06-16 1989-06-16 High purity gold alloy

Publications (2)

Publication Number Publication Date
JPH0320425A true JPH0320425A (en) 1991-01-29
JPH0678578B2 JPH0678578B2 (en) 1994-10-05

Family

ID=15535363

Family Applications (1)

Application Number Title Priority Date Filing Date
JP15220589A Expired - Lifetime JPH0678578B2 (en) 1989-06-16 1989-06-16 High purity gold alloy

Country Status (1)

Country Link
JP (1) JPH0678578B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4939266A (en) * 1982-06-01 1990-07-03 Rohm And Haas Company Nitrosamine-free 3-isothiazolone
JPH0770671A (en) * 1993-09-06 1995-03-14 Mitsubishi Materials Corp Gold ornament material hardened by alloying with small amount of component
JP2016020526A (en) * 2014-07-14 2016-02-04 株式会社グローバルコーポレーション 999 gold alloy and 999 silver alloy having high hardness and high compressive strength and manufacturing method thereof

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4939266A (en) * 1982-06-01 1990-07-03 Rohm And Haas Company Nitrosamine-free 3-isothiazolone
JPH0770671A (en) * 1993-09-06 1995-03-14 Mitsubishi Materials Corp Gold ornament material hardened by alloying with small amount of component
US6123786A (en) * 1993-09-06 2000-09-26 Mitsubishi Materials Corporation Gold materials for accessories hardened with minor alloying components
JP2016020526A (en) * 2014-07-14 2016-02-04 株式会社グローバルコーポレーション 999 gold alloy and 999 silver alloy having high hardness and high compressive strength and manufacturing method thereof

Also Published As

Publication number Publication date
JPH0678578B2 (en) 1994-10-05

Similar Documents

Publication Publication Date Title
JP7386194B2 (en) High strength, uniform copper-nickel-tin alloy and manufacturing process
KR101606525B1 (en) Aluminum alloy for die casting having excellent corrosion resistance
JPH0819496B2 (en) Method for manufacturing aluminum alloy parts that retains high fatigue strength even after being kept at high temperature for a long time
KR900006702B1 (en) Copper-nickel-tin-cobalt spinodal alloy and the making process a the articles
JPH0320425A (en) High purity gold alloy
CN109136634B (en) High-performance copper alloy material and preparation method thereof
JP2534073B2 (en) Copper alloy for electronic component construction and method for producing the same
JPS5918457B2 (en) Magnesium-based alloy with high mechanical strength and low corrosion tendency
JP2804944B2 (en) Method for producing pure platinum for decoration having high hardness
JP3407054B2 (en) Copper alloy with excellent heat resistance, strength and conductivity
JPH0356295B2 (en)
JP3626507B2 (en) High strength and high ductility TiAl intermetallic compound
US4743316A (en) Rapidly solidified zirconium modified nickel aluminide of improved strength
JPH0649571A (en) Zinc alloy for casting free from secular dimensional change, cast parts and method for heat-treating cast parts
KR920007884B1 (en) Copper alloy and a process for the production of a continous casting mould by this copper alloy
JPS6326192B2 (en)
JPS6362854A (en) Production of processed product of corrosion and oxidation resistant ni-al-si-b alloy
JP2003328059A (en) Hardening gold alloy
JP3636731B2 (en) Cu-Ni-Si alloy
KR0182223B1 (en) Cu-cr-zr-mg-mischmetal alloy and the heat treatment thereof
JPS6341977B2 (en)
KR100205698B1 (en) Method of cu-cr-xi micro composite material
US2829970A (en) Beryllium containing nickel, manganese, copper alloys
JPH036214B2 (en)
JP3273993B2 (en) Method for producing ductile Ni3Al alloy and Ni3Al-B alloy