JPH03202459A - Treatment for silicon steel - Google Patents

Treatment for silicon steel

Info

Publication number
JPH03202459A
JPH03202459A JP34384689A JP34384689A JPH03202459A JP H03202459 A JPH03202459 A JP H03202459A JP 34384689 A JP34384689 A JP 34384689A JP 34384689 A JP34384689 A JP 34384689A JP H03202459 A JPH03202459 A JP H03202459A
Authority
JP
Japan
Prior art keywords
silicon steel
powdered
treatment
thickness
silicon
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP34384689A
Other languages
Japanese (ja)
Other versions
JPH0447031B2 (en
Inventor
Koji Hirose
広瀬 孝二
Kiyomitsu Suga
須賀 清光
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Seikosha KK
Original Assignee
Seikosha KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Seikosha KK filed Critical Seikosha KK
Priority to JP34384689A priority Critical patent/JPH03202459A/en
Publication of JPH03202459A publication Critical patent/JPH03202459A/en
Publication of JPH0447031B2 publication Critical patent/JPH0447031B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Solid-Phase Diffusion Into Metallic Material Surfaces (AREA)

Abstract

PURPOSE:To improve the mechanical properties and magnetic properties of a silicon steel by embedding a silicon steel having a carburized layer of the prescribed thickness in the surface in a powder mixture of powdered Cr or/and V or/and Ti and catalyst, carrying out heating, and forming a layer of the carbides of the above metals with the prescribed thickness in the surface. CONSTITUTION:Gas carburizing is applied, e.g., to a printing lever composed of a silicon steel with 2.8-6.5% silicon content, by which a carburized layer of 20-200mum thickness is formed in the surface. Subsequently, the above silicon steel having the carburized layer is embedded in a powder mixture of powdered Cr, powdered V, or powdered Ti or a combination of them and catalyst (e.g. NH4Cl) and heated to undergo solid diffusion treatment, by which a layer of the carbides of the above metals of 2-20mum thickness can be formed in the surface of the silicon steel. By this method, the mechanical properties of the silicon steel surface can be sufficiently improved, and also superior magnetic properties can be provided.

Description

【発明の詳細な説明】 [産業上の利用分野コ この発明は、ケイ素鋼の機械的特性を改善するための処
理方法に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a treatment method for improving the mechanical properties of silicon steel.

[従来の技術] ワイヤドツトプリンタのプリンタヘッドでは、印字ワイ
ヤの後端に印字レバーを配置し、印字レバーを磁気によ
る吸引1反発により駆動して印字ワイヤを打撃し、この
印字ワイヤにより印字を行っている。印字レバーは磁気
特性として高透磁率。
[Prior Art] In the printer head of a wire dot printer, a printing lever is arranged at the rear end of the printing wire, and the printing lever is driven by magnetic attraction and repulsion to strike the printing wire, and printing is performed using this printing wire. There is. The printing lever has high magnetic permeability as a magnetic property.

高磁束密度、低保磁力が要求されるために、ケイ素鋼や
電磁軟鉄が使用される。なかでもケイ素鋼は磁気応答性
等後れた磁気特性を有するために、プリンタの高速印字
化等に対応させることも可能であるが、ケイ素鋼や電磁
軟鉄は母材硬度がビッカース硬度100〜300 Hv
と低いので、上述のように印字ワイヤを打撃するレバー
として用いるためには、耐摩耗性等の機械的特性を向上
させなければならない。しかし、ケイ素鋼は表面浸炭焼
入や浸炭窒化焼入を施すことができないので、従来はニ
ッケルメッキを行っていた。このニッケルメッキは例え
ばホウ素又はリン成分が適当量含有された無電解メツキ
であり、メツキ後の加熱処理によりメツキ硬度を700
〜1000Hv程度にしていた。
Silicon steel and electromagnetic soft iron are used because high magnetic flux density and low coercive force are required. Among them, silicon steel has inferior magnetic properties such as magnetic response, so it can be used for high-speed printing of printers, but silicon steel and electromagnetic soft iron have a base material hardness of 100 to 300 Vickers hardness. Hv
Therefore, in order to use it as a lever for striking the printing wire as described above, it is necessary to improve mechanical properties such as abrasion resistance. However, since silicon steel cannot be subjected to surface carburizing and quenching or carbonitriding, it has conventionally been nickel plated. This nickel plating is, for example, electroless plating containing an appropriate amount of boron or phosphorus, and the plating hardness is increased to 700 by heat treatment after plating.
It was set to about ~1000Hv.

〔解決しようとする課題] しかし700〜1000Hv程度の硬度では耐摩耗性等
の耐久性が十分ではなく、印字レバーのように強い打撃
力が作用する部材や繰返しの摺動作用が生じる部材には
用いることができなかった。
[Problem to be solved] However, a hardness of about 700 to 1000 Hv does not have sufficient durability such as wear resistance, and is not suitable for parts that are subjected to strong impact force such as printing levers or parts that undergo repeated sliding movements. could not be used.

印字レバーに用いる場合、径0.3〜0.2mmのワイ
ヤの後端部を直接打撃できず、ワイヤの後端部にワイヤ
ビン等を取り付けて径を大きくしてこのワイヤビン部を
打撃するようにしていた。従ってこの場合は印字ワイヤ
の重量が増し、印字速度の高速化の妨げとなり、印字ワ
イヤのコストアップになっていた。
When used as a printing lever, the rear end of a wire with a diameter of 0.3 to 0.2 mm cannot be directly struck, so a wire bin or the like is attached to the rear end of the wire to increase the diameter and the wire bin is struck. was. Therefore, in this case, the weight of the printing wire increases, which hinders an increase in printing speed and increases the cost of the printing wire.

そこで本発明の目的は、ケイ素鋼の機械的特性並びに磁
気的特性を改善するための処理方法を提供することにあ
る。
SUMMARY OF THE INVENTION It is therefore an object of the present invention to provide a treatment method for improving the mechanical and magnetic properties of silicon steel.

[課題を解決するための手段] 上記目的を達成するために、本発明のケイ素鋼の処理方
法は、ケイ素成分が2,8%〜6.5%のケイ素鋼を浸
炭処理して表面に20〜200μmの厚みの浸炭層を形
成し、粉末クロム又は粉末バナジウム又は粉末チタン又
はこれらの組合せと触媒との混合粉中にこのケイ素鋼を
埋込・加熱する固体拡散処理を施してケイ素鋼の表面に
2〜10μmの厚みの上記金属の炭化物層を形成するも
のである。
[Means for Solving the Problems] In order to achieve the above object, the silicon steel treatment method of the present invention carburizes silicon steel with a silicon content of 2.8% to 6.5% to give a surface coating of 20%. A carburized layer with a thickness of ~200 μm is formed, and a solid diffusion treatment is performed to embed the silicon steel in a mixed powder of powdered chromium, powdered vanadium, powdered titanium, or a combination of these and a catalyst, and then heat the surface of the silicon steel. A carbide layer of the above-mentioned metal having a thickness of 2 to 10 μm is formed on the substrate.

[実施例] 以下、本発明の具体的な実施例について詳細に説明する
[Examples] Hereinafter, specific examples of the present invention will be described in detail.

被処理部材としてケイ素成分が3%の市販のケイ素鋼を
使用し、磁気による吸引1反発により駆動させてプリン
タヘッドの印字ワイヤを直接打撃する印字レバーを製作
して以下に記す処理を施した。
A commercially available silicon steel with a silicon content of 3% was used as the member to be treated, and a printing lever was manufactured that was driven by magnetic attraction and repulsion to directly strike the printing wire of the printer head, and was subjected to the following processing.

実施例1 この印字レバーを850℃で45分間ガス浸炭して、1
00μmの厚みの浸炭層を形成した。
Example 1 This printing lever was gas carburized at 850°C for 45 minutes, and 1
A carburized layer with a thickness of 0.00 μm was formed.

次に粉末クロムと粉末アルミナと塩化アンモニウムとが
適当量調合された混合粉中に、浸炭処理された上記印字
レバーを埋込み、アルゴン気流中にて1050℃で45
分間保つ固体拡散処理を行った。以下、この処理方法を
「処理条件B」といつO この処理条件Bで処理された印字レバーの表面には、5
〜6μmの炭化クロム層が形成され、表面硬度は140
0〜1700Hvであった。
Next, the carburized printing lever was embedded in a mixed powder containing appropriate amounts of powdered chromium, powdered alumina, and ammonium chloride, and heated to 45°C at 1050°C in an argon stream.
A solid diffusion treatment was performed, which was maintained for a minute. Hereinafter, this processing method will be referred to as "processing condition B".
A ~6 μm chromium carbide layer is formed, and the surface hardness is 140
It was 0-1700Hv.

また上記の100μmの厚みの浸炭層が形成された印字
レバーを、アルゴン気流中にて1050℃で90分保つ
固体拡散処理を行った。以下、この処理方法を処理条件
Cという。これによると、印字レバーの表面に8〜10
μmの炭化クロム層が形成され、表面硬度は処理時間が
45分の場合と同じく、1400〜1700Hvであっ
た。
Further, the printing lever on which the carburized layer with a thickness of 100 μm was formed was subjected to solid diffusion treatment in which the print lever was kept at 1050° C. for 90 minutes in an argon stream. Hereinafter, this processing method will be referred to as processing condition C. According to this, 8 to 10
A chromium carbide layer of μm thickness was formed, and the surface hardness was 1400 to 1700 Hv, the same as when the treatment time was 45 minutes.

また同様の条件で処理温度を1000℃、処理時間を4
5分とした場合には、表面に2μmの炭化クロム層が形
成された。
In addition, under the same conditions, the treatment temperature was 1000℃ and the treatment time was 4.
When the heating time was 5 minutes, a 2 μm thick chromium carbide layer was formed on the surface.

第1図に、横軸を処理条件とし、縦軸を最大透磁率、保
磁力として、各処理条件により得られた製品の磁気特性
を比較して示している。このグラフ中で、処理条件Aは
ケイ素鋼の磁気特性をよくするために従来普通片われて
いる真空磁性焼鈍であって、これは、ケイ素鋼を850
℃で45分保つ処理を行ったものである。
FIG. 1 shows a comparison of the magnetic properties of products obtained under each treatment condition, with the horizontal axis representing the processing conditions and the vertical axis representing maximum magnetic permeability and coercive force. In this graph, processing condition A is vacuum magnetic annealing, which is conventionally used to improve the magnetic properties of silicon steel.
The sample was kept at ℃ for 45 minutes.

この第1図示のグラフで、従来の処理条件Aのものと、
本発明の処理条件B及びCのものとを対比してみると、
処理条件B及びCは、最大透磁率が上昇し、保磁力が大
幅に低下していることが判る。印字レバーとして用いる
ために、磁気特性としては、最大透磁率が大きい程よく
、保磁力は小さいほどよいので、本発明に係る処理を行
うと、最大透磁率と保磁力が共に大幅に改善され、磁気
特性が向上する結果が得られた。
In the graph shown in the first figure, under the conventional processing condition A,
Comparing the processing conditions B and C of the present invention,
It can be seen that under treatment conditions B and C, the maximum magnetic permeability increases and the coercive force significantly decreases. In order to use it as a printing lever, the higher the maximum magnetic permeability, the better the magnetic properties, and the lower the coercive force, the better. Therefore, by performing the treatment according to the present invention, both the maximum magnetic permeability and the coercive force are greatly improved, and the magnetic properties are The results showed that the characteristics were improved.

実施例2 上例と同様にして100μmの厚みの浸炭層を形成した
印字レバーを、粉末バナジウム中に埋没し、上記と同様
の処理条件B及びCで固体拡散処理を行った。この処理
により表面に炭化バナジウム層が形成され、表面硬度2
500〜2800H■が得られた。
Example 2 A printing lever on which a 100 μm thick carburized layer was formed in the same manner as in the above example was buried in powdered vanadium, and solid diffusion treatment was performed under the same treatment conditions B and C as described above. This treatment forms a vanadium carbide layer on the surface, resulting in a surface hardness of 2
500-2800H■ was obtained.

実施例3 上例と同様にして100μmの厚みの浸炭層を形成した
印字レバーを、粉末チタン中に埋没し、上記と同様の処
理条件B及びCで固体拡散処理を行った。この処理によ
り表面に炭化チタン層が形成され、表面硬度3000H
vが得られた。
Example 3 A printing lever on which a 100 μm thick carburized layer was formed in the same manner as in the above example was buried in powdered titanium, and solid diffusion treatment was performed under the same treatment conditions B and C as described above. This treatment forms a titanium carbide layer on the surface, resulting in a surface hardness of 3000H.
v was obtained.

第2図は横軸を処理温度とし、縦軸を最大透磁率とし、
ケイ素成分が異なるケイ素鋼について、上側と同様にし
て100μmの厚みの浸炭層を形成した印字レバーを、
980℃、1020℃、1050℃の処理温度で45分
間の固体拡散処理を行った場合のそれぞれの透磁率の変
化を示したものである。市販の3%ケイ素鋼を使用した
ものでは、1000℃以上に加熱して固体拡散処理を行
うと、最大透磁率が著しく向上するが、2.5%及び1
%のケイ素鋼では最大透磁率の改善はほとんど見られな
い。ケイ素成分が2.8%以上、望ましくは3%以上の
ケイ素鋼に関して本発明の処理方法を行なうと磁気特性
の改善が見られる。またこのグラフから、固体拡散処理
を十分に行わせるのに、処理温度は1000℃以上が望
ましいことが判る。
In Figure 2, the horizontal axis is the processing temperature, the vertical axis is the maximum magnetic permeability,
For silicon steel with different silicon components, a printing lever with a 100 μm thick carburized layer formed in the same way as the upper side,
It shows the change in magnetic permeability when solid diffusion treatment was performed for 45 minutes at treatment temperatures of 980°C, 1020°C, and 1050°C. For commercially available 3% silicon steel, the maximum magnetic permeability increases significantly when heated to 1000°C or higher and subjected to solid diffusion treatment, but 2.5% and 1% silicon steel significantly improves maximum permeability.
% silicon steel shows almost no improvement in maximum permeability. When the treatment method of the present invention is applied to silicon steel having a silicon content of 2.8% or more, preferably 3% or more, the magnetic properties are improved. Further, from this graph, it can be seen that the treatment temperature is desirably 1000° C. or higher in order to sufficiently perform the solid diffusion treatment.

本発明に係る処理方法は、上記例の他、着磁ヨークなど
十分な磁気特性と耐摩耗性とを合わせ持つことが要求さ
れる部品の表面処理に最適である。
In addition to the above examples, the treatment method according to the present invention is most suitable for surface treatment of parts such as magnetizing yokes that are required to have both sufficient magnetic properties and wear resistance.

なお本発明において、ケイ素成分が2.8%〜6.5%
のケイ素鋼に限定しているのは、前述のように、ケイ素
成分が2.8%未満では良好な磁気特性は得られず、ま
たケイ素成分量を増やしていくと磁気特性が向上するが
、6.5%で最高になることが知られており、それ以上
はケイ素成分量が増えるに従って鋼が脆くなり使用しに
くくなるためである。
In the present invention, the silicon component is 2.8% to 6.5%.
As mentioned above, if the silicon content is less than 2.8%, good magnetic properties cannot be obtained, and as the silicon content is increased, the magnetic properties improve. It is known that the silicon content reaches its maximum at 6.5%, and as the silicon content increases, the steel becomes brittle and difficult to use.

浸炭処理の方法は固体浸炭法、液体浸炭法、ガス浸炭法
等、種々の方法で行うことができる。
The carburizing treatment can be carried out using various methods such as solid carburizing, liquid carburizing, and gas carburizing.

浸炭層の厚みを20〜200μmとするのは、20μm
より少ないと固体拡散処理時に必要量の金属炭化物を得
るための炭素量を補給できないからであり、また200
μmより多いと、浸炭処理によりケイ素鋼内部に入った
炭素が、固体拡散処理の際に金属炭化物形成の反応に完
全に費されず、さらにケイ素鋼内部への拡散で余った炭
素が粒界面に残り、磁気特性が悪化するからである。
The thickness of the carburized layer is 20 μm to 200 μm.
This is because if it is smaller than 200
If the amount exceeds μm, the carbon that has entered the silicon steel during the carburizing process will not be completely used in the reaction to form metal carbides during the solid-state diffusion process, and the excess carbon that has diffused into the silicon steel will form at the grain interface. Otherwise, the magnetic properties will deteriorate.

固体拡散処理に用いられる金属は粉末クロム又は粉末バ
ナジウム又は粉末チタンのいずれか一つを単独で用いて
もよく、またこれらのうちから適宜選択して混合して用
いてもよい。触媒としては粉末塩化アンモニウム等が用
いられる。
As for the metal used in the solid diffusion treatment, any one of powdered chromium, powdered vanadium, or powdered titanium may be used alone, or an appropriate mixture of these may be selected and used. Powdered ammonium chloride or the like is used as the catalyst.

金属炭化物層の厚さは2〜10μmとしている。The thickness of the metal carbide layer is 2 to 10 μm.

これは2μm未満では強い打撃力が作用する部材や繰返
しの摺動作用が生じる部材等に使用するのに十分な機械
的特性が得られないからであり、方実用的に十分な機械
的特性を得るためには10μmあれば十分であるからで
ある。
This is because if the thickness is less than 2 μm, sufficient mechanical properties cannot be obtained for use in parts that are subjected to strong impact forces or parts that undergo repeated sliding motions. This is because 10 μm is sufficient to obtain the desired thickness.

[効果コ 以上に述べた本発明の処理方法によってケイ素鋼を処理
すると、その表面の機械的特性が十分に改善され、しか
も優れた磁気特性を備えたものとすることができる。
[Effects] When silicon steel is treated by the treatment method of the present invention described above, the mechanical properties of its surface are sufficiently improved, and it can also be made to have excellent magnetic properties.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は従来の処理条件Aと本発明の処理条件B及びC
による製品の磁気特性を対比して示すグラフ、第2図は
ケイ素成分の異なるケイ素鋼を各温度条件で処理した場
合の透磁率を対比して示すグラフである。 以  上
Figure 1 shows conventional processing conditions A and processing conditions B and C of the present invention.
FIG. 2 is a graph showing a comparison of the magnetic properties of products according to the above, and FIG. 2 is a graph showing a comparison of magnetic permeability when silicon steels with different silicon components are treated under various temperature conditions. that's all

Claims (1)

【特許請求の範囲】 ケイ素成分が2.8%〜6.5%のケイ素鋼を浸炭処理
して表面に20〜200μmの厚みの浸炭層を形成し、 粉末クロム又は粉末バナジウム又は粉末チタン又はこれ
らの組合せと触媒との混合粉中に上記ケイ素鋼を埋込・
加熱する固体拡散処理を施して上記ケイ素鋼の表面に2
〜10μmの厚みの上記金属の炭化物層を形成する ことを特徴とするケイ素鋼の処理方法。
[Claims] Silicon steel containing 2.8% to 6.5% of silicon is carburized to form a carburized layer with a thickness of 20 to 200 μm on the surface, and powdered chromium, powdered vanadium, powdered titanium, or these The above silicon steel is embedded in a mixed powder of a combination of and a catalyst.
2 on the surface of the silicon steel by applying a heating solid diffusion treatment.
A method for treating silicon steel, characterized in that a carbide layer of the above metal is formed with a thickness of ~10 μm.
JP34384689A 1989-12-28 1989-12-28 Treatment for silicon steel Granted JPH03202459A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP34384689A JPH03202459A (en) 1989-12-28 1989-12-28 Treatment for silicon steel

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP34384689A JPH03202459A (en) 1989-12-28 1989-12-28 Treatment for silicon steel

Publications (2)

Publication Number Publication Date
JPH03202459A true JPH03202459A (en) 1991-09-04
JPH0447031B2 JPH0447031B2 (en) 1992-07-31

Family

ID=18364691

Family Applications (1)

Application Number Title Priority Date Filing Date
JP34384689A Granted JPH03202459A (en) 1989-12-28 1989-12-28 Treatment for silicon steel

Country Status (1)

Country Link
JP (1) JPH03202459A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008013820A (en) * 2006-07-06 2008-01-24 Honda Motor Co Ltd Wear-resistant component, and its manufacturing method
JP2012505969A (en) * 2008-10-16 2012-03-08 ボーグワーナー インコーポレーテッド Steel article coated with carbide of group 5 metal source and method for producing the same
WO2014174976A1 (en) * 2013-04-22 2014-10-30 オムロン株式会社 Magnetic components, and electronic components provided with magnetic components
WO2014174975A1 (en) * 2013-04-22 2014-10-30 オムロン株式会社 Magnetic component, electronic component using magnetic component, and production method for magnetic component
CN111041360A (en) * 2019-12-16 2020-04-21 宁国市铸丰钢球铸造有限公司 Wear-resistant hammer head and manufacturing method thereof

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008013820A (en) * 2006-07-06 2008-01-24 Honda Motor Co Ltd Wear-resistant component, and its manufacturing method
JP2012505969A (en) * 2008-10-16 2012-03-08 ボーグワーナー インコーポレーテッド Steel article coated with carbide of group 5 metal source and method for producing the same
US8864917B2 (en) 2008-10-16 2014-10-21 Borgwarner Inc. Group 5 metal source carbide coated steel article and method for making same
WO2014174976A1 (en) * 2013-04-22 2014-10-30 オムロン株式会社 Magnetic components, and electronic components provided with magnetic components
WO2014174975A1 (en) * 2013-04-22 2014-10-30 オムロン株式会社 Magnetic component, electronic component using magnetic component, and production method for magnetic component
JP2014216354A (en) * 2013-04-22 2014-11-17 オムロン株式会社 Magnetic component, electronic component using the magnetic component, and method for producing the magnetic component
JP2014214319A (en) * 2013-04-22 2014-11-17 オムロン株式会社 Magnetic component, and electronic component including magnetic component
CN111041360A (en) * 2019-12-16 2020-04-21 宁国市铸丰钢球铸造有限公司 Wear-resistant hammer head and manufacturing method thereof

Also Published As

Publication number Publication date
JPH0447031B2 (en) 1992-07-31

Similar Documents

Publication Publication Date Title
EP2394072B1 (en) Method for producing a brake disc
US9260775B2 (en) Low alloy steel carburization and surface microalloying process
Chatterjee-Fischer Internal oxidation during carburizing and heat treating
US4202710A (en) Carburization of ferrous alloys
JP4789141B2 (en) Manufacturing method of iron parts
JPH0625823A (en) Parts made of carburized steel excellent in pitting resistance
JPH03202459A (en) Treatment for silicon steel
JPS61264170A (en) Pin for chain
Chudina et al. Surface alloying of carbon tool steels using laser heating
US4796575A (en) Wear resistant slide member made of iron-base sintered alloy
JPS6224499B2 (en)
JP3557327B2 (en) Steel member manufacturing method
WO2002053793A1 (en) Duplex process of diffusion forming of hard carbide layers on metallic materials
JPH0881737A (en) Rocker arm excellent in sliding property and production thereof
JPH0559427A (en) Production of wear resistant steel
JP2002275526A (en) Method for producing steel material
US6428849B1 (en) Method for the co-deposition of silicon and nitrogen on stainless steel surface
JPS59110727A (en) Preparation of hot molded spring
JP2607668B2 (en) Surface hardening method for iron-based metallic materials
JP3736717B2 (en) Manufacturing method of high strength steel
JPH0826447B2 (en) Steel parts with excellent bending fatigue strength and manufacturing method thereof
JP3080289B2 (en) Manufacturing method of wear-resistant member
JPS60194046A (en) Wire for dot printer and its production
JPH02279347A (en) Wire for impact dot head
JPH02310343A (en) Wear-resistant parts