JPH03202200A - Deep shaft and its operation - Google Patents

Deep shaft and its operation

Info

Publication number
JPH03202200A
JPH03202200A JP1338070A JP33807089A JPH03202200A JP H03202200 A JPH03202200 A JP H03202200A JP 1338070 A JP1338070 A JP 1338070A JP 33807089 A JP33807089 A JP 33807089A JP H03202200 A JPH03202200 A JP H03202200A
Authority
JP
Japan
Prior art keywords
cross
deep shaft
riser
section
reverse
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP1338070A
Other languages
Japanese (ja)
Other versions
JPH0677751B2 (en
Inventor
Shunji Oda
小田 俊司
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Engineering Corp
Original Assignee
NKK Corp
Nippon Kokan Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NKK Corp, Nippon Kokan Ltd filed Critical NKK Corp
Priority to JP1338070A priority Critical patent/JPH0677751B2/en
Publication of JPH03202200A publication Critical patent/JPH03202200A/en
Publication of JPH0677751B2 publication Critical patent/JPH0677751B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W10/00Technologies for wastewater treatment
    • Y02W10/10Biological treatment of water, waste water, or sewage

Landscapes

  • Aeration Devices For Treatment Of Activated Polluted Sludge (AREA)

Abstract

PURPOSE:To prevent accumulation of sand, etc., and save energy by periodically driving a deep shaft having an area ratio of SD/SR satisfying the relation, 1/20<=SD/SR<=1/4, where SD is a down commer cross section and SR is a riser cross section in waste water treatment of raw water having BOD at most 200mg/l. CONSTITUTION:A deep shaft is applied to raw water having low BOD at most 200mg/l and having an area ratio of SD/SR satisfying the relation, 1/20<=SD/SR<=1/4, where SD is a down commer cross section and SR is a riser cross section. At the time of reverse driving, air supply to a riser gas spraying tube 4 is stopped. Owing to inertia of a liquid, regular circulation (a) continues for a moment but soon it turns to a reverse circulation (b) by blowing air from the down air spraying tube 5. This reverse operation period is carried out during night when load is low and normal operation is carried out during day time when load is high. In this way, necessary air supply amount is decreased and energy saving is achieved.

Description

【発明の詳細な説明】 [産業上の利用分野〕 本発明は、低濃度の汚水処理に適用されるディープシャ
フト及び間欠逆循環運転に係るデイーブンヤフトの運転
方法に関する。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Application Field] The present invention relates to a deep shaft applied to the treatment of low-concentration sewage and a method of operating a debenyaft relating to intermittent reverse circulation operation.

[従来の技術] 従来のディープシャフトの概略構成を第3図に示す。図
において、1はディープシャフトの外筒、2は内筒、3
はヘッドタンク、4は循環流を発生させるためのライザ
ー散気管、5は曝気用空気の吹き込みを行うためのダウ
ン散気管、6は外筒1と内筒2の間の通路すなわちライ
ザー、7は内筒2内の通路すなわちダウンカマーである
[Prior Art] FIG. 3 shows a schematic configuration of a conventional deep shaft. In the figure, 1 is the outer cylinder of the deep shaft, 2 is the inner cylinder, and 3
is a head tank, 4 is a riser diffuser pipe for generating a circulation flow, 5 is a down diffuser pipe for blowing aeration air, 6 is a passage between the outer cylinder 1 and the inner cylinder 2, that is, a riser, and 7 is a riser pipe. This is a passage within the inner cylinder 2, that is, a downcomer.

上記のディープシャフトにおいて、原水を供給し、まず
ライザー散気管4よりライザー6に地上より数十m下方
で空気を吹き込むと、エアリフト効果により図示矢印の
ごとく循環流が形成される。
In the deep shaft described above, when raw water is supplied and air is first blown into the riser 6 from the riser diffuser 4 several tens of meters below the ground, a circulating flow is formed as shown by the arrows due to the air lift effect.

循環流が安定したのち、次にダウン散気管5よリダウン
カマー7に空気を吹き込む。このとき気泡の上昇速度よ
りも下降流速が大きいので、気泡はディープシャフト底
部まで引き込まれ、反転してライザー6内を上昇する。
After the circulating flow is stabilized, air is then blown into the downcomer 7 through the down diffuser 5. At this time, since the descending velocity of the bubbles is greater than the ascending velocity of the bubbles, the bubbles are drawn to the bottom of the deep shaft, reverse, and rise inside the riser 6.

そして、ダウンカマー7とライザー6の空隙率(液中に
おける気体部分の比率)の差によってみかけの比重差が
生じ、循環流が維持され定常循環となる。
The difference in porosity (ratio of gas portion in the liquid) between the downcomer 7 and the riser 6 causes an apparent difference in specific gravity, and the circulating flow is maintained, resulting in steady circulation.

ディープシャフトの運転では、下降流速VDは(1〉 (2) VD≧1.2m/see、上昇流速VRはVR≧0.7
m/seeを維持するよう基準が定められている。これ
らの基準値は下降流速の場合、気泡を同伴させる必要の
ためであり、上昇流速の場合、ディープシャフトの底部
に砂、石等が堆積するのを防止するためである。この場
合において、ダウンカマー断面積S 対ライザー断面積
SRの面積り 比は普通1:1.5〜3に設計されている。
In deep shaft operation, the downward flow velocity VD is (1> (2) VD≧1.2m/see, and the upward flow velocity VR is VR≧0.7.
Standards are set to maintain m/see. These reference values are for the need to entrain air bubbles in the case of a downward flow velocity, and to prevent sand, stones, etc. from accumulating at the bottom of the deep shaft in the case of an upward flow velocity. In this case, the area ratio of the downcomer cross-sectional area S to the riser cross-sectional area SR is usually designed to be 1:1.5-3.

[発明が解決しようとする課題] しかし、低濃度の下水等の汚水処理において、循環のた
めに必要な空気量が酸素供給に必要な空気量を上回るよ
うな運転方法はエネルギーの浪費となる。
[Problems to be Solved by the Invention] However, in treating sewage such as low-concentration sewage, an operating method in which the amount of air required for circulation exceeds the amount of air required for oxygen supply wastes energy.

そこで、このような場合の一方策として、内筒2の断面
積を小さくする方法が考えられる。例えば、S  :S
  −1:9に設計する。
Therefore, one possible solution in such a case is to reduce the cross-sectional area of the inner cylinder 2. For example, S:S
−1:9 design.

R この方法によれば、ダウンカマー7の循環流量が減るの
で、循環のために必要な空気量を減少させることかでき
る。
R According to this method, since the circulation flow rate of the downcomer 7 is reduced, the amount of air required for circulation can be reduced.

しかしながら、下降流速V として最小限VD−1,2
m/seeとすると、このとき上昇流速vR−0,13
m/seeとなって上記基準値を満たさなくなり、砂等
の堆積防止ができなくなる。
However, as the downward flow velocity V, the minimum VD-1,2
m/see, then the rising flow velocity vR-0,13
m/see, which no longer satisfies the above standard value, and it becomes impossible to prevent the accumulation of sand, etc.

そこで本発明は、低濃度の汚水処理に適用され、かつ砂
等の堆積防止をはかりつつ省エネルギーの運転となるデ
ィープシャフト及びその運転方性を提供することを目的
とする。
SUMMARY OF THE INVENTION Therefore, an object of the present invention is to provide a deep shaft that can be applied to the treatment of low-concentration sewage and that can be operated in an energy-saving manner while preventing the accumulation of sand and the like, and its operating method.

[課題を解決するための手段] 上記の目的を達成するために、本発明に係るディープシ
ャフトは、原水の濃度がBOD (生物化学的酸素要求
量)で200mg/ρ以下の低濃度のものに対して適用
するものであり、しかもダウンカマー断面積SD対ライ
ザー断面積SRの面積比を、 1/20≦SD/5R51/4 としたものである。
[Means for Solving the Problems] In order to achieve the above object, the deep shaft according to the present invention has a low concentration of raw water with a BOD (biochemical oxygen demand) of 200 mg/ρ or less. Moreover, the area ratio of the downcomer cross-sectional area SD to the riser cross-sectional area SR is set as follows: 1/20≦SD/5R51/4.

また、本発明に係るディープシャフトの運転方法は、上
記構成のディープシャフトを、負荷の高い期間は正規循
環の通常運転を行い、負荷の低い期間に逆循環となる間
欠運転を行うこととしたも(3) (4) のである。
Further, the deep shaft operating method according to the present invention is such that the deep shaft having the above configuration is operated in normal operation with normal circulation during periods of high load, and intermittently operated with reverse circulation during periods with low load. (3) (4).

[作 用コ 前述のように、ダウンカマー断面積SDを小さくすると
下降流量が減るので、循環のために必要な空気量を減ら
すことができる。このとき、必要な下降流速VDを最小
限VD−1,2m/secにおさえようとすると、上昇
流速VRはライザー断面積SRの増加に伴い基準値を満
たさなくなる。
[Function] As mentioned above, reducing the downcomer cross-sectional area SD reduces the descending flow rate, so the amount of air required for circulation can be reduced. At this time, if an attempt is made to suppress the required downward flow velocity VD to the minimum VD-1 or 2 m/sec, the upward flow velocity VR no longer satisfies the reference value as the riser cross-sectional area SR increases.

そこで、負荷の高い期間、例えば昼間においては通常の
運転、つまり液体の流れ方向がダウンカマーでは下向き
、ライザーでは上向きとなる正規循環の運転を行う。こ
の結果、上昇流速■、が上記のように低くなるため、デ
ィープシャフトの底部に砂等が堆積するのを避けられな
い。かかる堆積物を除去するには、液体の流れ方向が上
と反対になる逆循環の運転を行ったほうが吹き込む空気
量も少なくてすみ都合がよい。したがって、負荷の低い
期間、例えば夜間において逆循環の運転を行う。ただし
、逆循環の運転は堆積物の排出のみを目的として行うも
のであるから、上昇流速この場合vR−0,7m/se
eを満たすだけの空気量で足りることになるが、この逆
循環の運転を続行するとディープシャフト内が嫌気性と
なるため、夜間の2〜3時間位間欠的に行えばよい。
Therefore, during periods of high load, for example during the day, normal operation is performed, that is, normal circulation operation in which the flow direction of the liquid is downward in the downcomer and upward in the riser. As a result, the upward flow velocity (1) becomes low as described above, and it is inevitable that sand and the like will accumulate at the bottom of the deep shaft. In order to remove such deposits, it is convenient to perform a reverse circulation operation in which the flow direction of the liquid is opposite to the upward direction, since the amount of air blown in can be reduced. Therefore, reverse circulation operation is performed during low load periods, for example at night. However, since the reverse circulation operation is performed only for the purpose of removing sediment, the upward flow velocity in this case is vR-0.7 m/sec.
An amount of air sufficient to satisfy e is sufficient, but if this reverse circulation operation is continued, the inside of the deep shaft will become anaerobic, so it may be performed intermittently for about 2 to 3 hours at night.

よって、本発明の適用されるディープシャフトは空気供
給量の低減を目的とするものであるため、低濃度の、B
ODで200■/ρ以下の原水を対象とするものに係り
、ダウンカマー断面積SD対ライザー断面積Spの面積
比が、 1/20≦S o / S R≦1/4の範囲のものが
適当である。
Therefore, since the deep shaft to which the present invention is applied is intended to reduce the amount of air supplied,
Regarding raw water with an OD of 200■/ρ or less, the area ratio of the downcomer cross-sectional area SD to the riser cross-sectional area Sp is in the range of 1/20≦S o / S R ≦1/4. Appropriate.

SD/SRの比が、1/4を越えると循環に必要な空気
量が増し、一方1/20未満では下降流速V、は基準値
を満足するとしても全体的に酸素不足となるため、結局
曝気のための空気量の増加をもたらし、いずれも本発明
の省エネルギー効果を失うからである。
When the SD/SR ratio exceeds 1/4, the amount of air required for circulation increases, while when it is less than 1/20, even if the downward flow velocity V satisfies the standard value, there will be an overall lack of oxygen, so eventually This is because the amount of air for aeration increases, and in either case, the energy saving effect of the present invention is lost.

[実施例コ 第1図は本発明によるディープシャフトの構成図で、第
2図はその横断面図である。構成要素は(5) (6) 従来例を示した第3図と同じであるので、同一符号であ
られす。
[Embodiment] Fig. 1 is a block diagram of a deep shaft according to the present invention, and Fig. 2 is a cross-sectional view thereof. The components (5) and (6) are the same as in Figure 3 showing the conventional example, so they are designated by the same reference numerals.

通常運転時の液体の流れは実線の矢印aで示し、逆運転
時のそれは破線すで示す。また、逆運転時にはライザー
散気管4への空気供給を止める。すると、しばらくの間
は液体の慣性により正規循環aを続けるが、やがてダウ
ン散気管5からの空気吹き込みにより反転し逆循環すと
なる。この逆運乾期間は負荷の低い夜間に2〜3時間時
間長うもので、負荷の高い昼間では通常運転を行う。
The flow of liquid during normal operation is shown by a solid arrow a, and that during reverse operation is shown by a broken line. Also, during reverse operation, the air supply to the riser diffuser pipe 4 is stopped. Then, the normal circulation a continues for a while due to the inertia of the liquid, but soon the air is blown from the down diffuser pipe 5, causing the liquid to reverse and circulate in the opposite direction. This reverse drying period lasts for 2 to 3 hours during the night when the load is low, and normal operation is performed during the day when the load is high.

次に、原水濃度BOD−100■/jllの場合におい
て、ダウンカマー7とライザー6の断面積比S  /S
  と、下降流速vD−1,2m/seeのDI? ときの上昇流速V R、及び空気量の低減率(通常運転
時において)との関係を示すと第1表のようになる。
Next, in the case of raw water concentration BOD-100■/jll, the cross-sectional area ratio of downcomer 7 and riser 6 is S /S
And DI of descending flow velocity vD-1,2m/see? Table 1 shows the relationship between the rising flow velocity V R and the air amount reduction rate (during normal operation).

第1表 また、逆運転時においてはさらに空気供給量を減らすこ
とができるので第1表の空気量低減率はさらに低下する
ことになる。
Table 1 Also, during reverse operation, the air supply amount can be further reduced, so the air amount reduction rate shown in Table 1 is further reduced.

そして、逆循環すによって、ダウンカマー7における上
昇流速が基準値(0,7m/see )を満足するので
、ディープシャフトの底部に堆積した砂、石等を排出す
ることができる。
By performing reverse circulation, the upward flow velocity in the downcomer 7 satisfies the standard value (0.7 m/see), so that sand, stones, etc. accumulated at the bottom of the deep shaft can be discharged.

[発明の効果] 以上のように本発明によれば、低濃度の汚水処理に適用
されダウンカマ御所面積SD対ライザー断面積SRの面
積比が所定の範囲内にあるディープシャフトの構成とす
ることにより、循環に必要な空気供給量を減らすことが
可能になり、省エネルギー化を実現できる。
[Effects of the Invention] As described above, according to the present invention, the deep shaft is configured to be applied to low-concentration sewage treatment and the area ratio of the downcomer area SD to the riser cross-sectional area SR is within a predetermined range. , it becomes possible to reduce the amount of air supply required for circulation, resulting in energy savings.

(7〉 (8) また、かかるディープシャフトを負荷の高い期間では通
常運転し、負荷の低い期間では間欠的に逆循環の運転を
行うことにより、省エネルギーの運転で、かつディープ
シャフト底部の堆積物を排除できる。
(7> (8) In addition, by operating such a deep shaft normally during periods of high load and intermittently performing reverse circulation operation during periods of low load, it is possible to achieve energy-saving operation and reduce the amount of deposits at the bottom of the deep shaft. can be eliminated.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明によるディープシャフトの一実施例を示
す構成図、第2図は第1図の横断面図、第3図は従来の
ディープシャフトの構成図である。 1・・・外筒 2・・・内筒 3・・ヘッドタンク 4・・・ライザー散気管 5・・・ダウン散気管 6・・・ライザー 7・・・ダウンカマー
FIG. 1 is a configuration diagram showing one embodiment of a deep shaft according to the present invention, FIG. 2 is a cross-sectional view of FIG. 1, and FIG. 3 is a configuration diagram of a conventional deep shaft. 1... Outer cylinder 2... Inner cylinder 3... Head tank 4... Riser diffuser pipe 5... Down diffuser pipe 6... Riser 7... Downcomer

Claims (2)

【特許請求の範囲】[Claims] (1)原水濃度がBODで200mg/l以下の低濃度
の汚水処理に適用されるものであって、ダウンカマー断
面積S_D対ライザー断面積S_Rの面積比を、 1/20≦S_D/S_R≦1/4 としたディープシャフト。
(1) Applicable to low-concentration wastewater treatment with a raw water concentration of 200 mg/l or less in BOD, the area ratio of downcomer cross-sectional area S_D to riser cross-sectional area S_R is 1/20≦S_D/S_R≦ 1/4 deep shaft.
(2)請求項1記載のディープシャフトを、負荷の高い
期間は正規循環の通常運転を行い、負荷の低い期間に逆
循環となる間欠運転を行うディープシャフトの運転方法
(2) A method for operating a deep shaft according to claim 1, wherein the deep shaft is operated in normal operation with regular circulation during periods of high load, and intermittently operated with reverse circulation during periods of low load.
JP1338070A 1989-12-28 1989-12-28 How to operate the deep shaft Expired - Lifetime JPH0677751B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1338070A JPH0677751B2 (en) 1989-12-28 1989-12-28 How to operate the deep shaft

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1338070A JPH0677751B2 (en) 1989-12-28 1989-12-28 How to operate the deep shaft

Publications (2)

Publication Number Publication Date
JPH03202200A true JPH03202200A (en) 1991-09-03
JPH0677751B2 JPH0677751B2 (en) 1994-10-05

Family

ID=18314628

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1338070A Expired - Lifetime JPH0677751B2 (en) 1989-12-28 1989-12-28 How to operate the deep shaft

Country Status (1)

Country Link
JP (1) JPH0677751B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012152747A (en) * 2012-04-10 2012-08-16 Kobelco Eco-Solutions Co Ltd Biological treatment method and biological treatment apparatus
JP2012152746A (en) * 2012-04-10 2012-08-16 Kobelco Eco-Solutions Co Ltd Biological treatment method and biological treatment apparatus
JP2012152745A (en) * 2012-04-10 2012-08-16 Kobelco Eco-Solutions Co Ltd Biological treatment method and biological treatment apparatus
CN104310575A (en) * 2014-10-29 2015-01-28 上海广联建设发展有限公司 Deep mine biological reaction device for wastewater aerobic biological treatment

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS50154165A (en) * 1974-06-05 1975-12-11

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS50154165A (en) * 1974-06-05 1975-12-11

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012152747A (en) * 2012-04-10 2012-08-16 Kobelco Eco-Solutions Co Ltd Biological treatment method and biological treatment apparatus
JP2012152746A (en) * 2012-04-10 2012-08-16 Kobelco Eco-Solutions Co Ltd Biological treatment method and biological treatment apparatus
JP2012152745A (en) * 2012-04-10 2012-08-16 Kobelco Eco-Solutions Co Ltd Biological treatment method and biological treatment apparatus
CN104310575A (en) * 2014-10-29 2015-01-28 上海广联建设发展有限公司 Deep mine biological reaction device for wastewater aerobic biological treatment

Also Published As

Publication number Publication date
JPH0677751B2 (en) 1994-10-05

Similar Documents

Publication Publication Date Title
US5888394A (en) Method and apparatus for sewage water treatment
JPH03202200A (en) Deep shaft and its operation
CN207537223U (en) A kind of self-loopa activated biofiler
JPH10290994A (en) Septic tank
JPH1119683A (en) Sewage treatment device
CN205710071U (en) A kind of high tower aerobic reactor and special aerator thereof
CN206109142U (en) Sewage treatment integrated device
CN205528293U (en) Bury formula integrated device small town treatment of domestic sewage
JPH0647598Y2 (en) Sewage treatment equipment
JP2770444B2 (en) Operation control method of blower for aeration
KR200188801Y1 (en) A scum treatment structure for a septic tank
JPS641199B2 (en)
CN207551996U (en) A kind of energy saving compound sewage processing equipment
KR200251855Y1 (en) Biological wastewater treatment system
CN208857091U (en) A kind of double-face flow-guiding integrated machine for sewage treatment of stable effluent quality
JPH08173756A (en) Wet type flue gas desulfurization facility
KR100423813B1 (en) Biological wastewater disposal plant
JPS6221359Y2 (en)
JPS6352558B2 (en)
JPH0753756Y2 (en) Sewage septic tank
JPS635831Y2 (en)
RU43258U1 (en) Averager
CN110642368A (en) Purifying equipment and two-chamber type air stripping equipment thereof
CN2542656Y (en) Continuous or discontinuous running internal electrolytic device for treatment for sewage
SU1100241A1 (en) System for purifying effluents