JPH03202140A - Method for growing large cubic boron nitride single crystal - Google Patents

Method for growing large cubic boron nitride single crystal

Info

Publication number
JPH03202140A
JPH03202140A JP34436989A JP34436989A JPH03202140A JP H03202140 A JPH03202140 A JP H03202140A JP 34436989 A JP34436989 A JP 34436989A JP 34436989 A JP34436989 A JP 34436989A JP H03202140 A JPH03202140 A JP H03202140A
Authority
JP
Japan
Prior art keywords
crystal
boron nitride
cubic boron
single crystal
diamond
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP34436989A
Other languages
Japanese (ja)
Other versions
JPH0478336B2 (en
Inventor
Nobuo Yamaoka
山岡 信夫
Minoru Akaishi
實 赤石
Hisao Kanda
久生 神田
Haruhiko Sei
清 晴彦
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute for Research in Inorganic Material
Original Assignee
National Institute for Research in Inorganic Material
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by National Institute for Research in Inorganic Material filed Critical National Institute for Research in Inorganic Material
Priority to JP34436989A priority Critical patent/JPH03202140A/en
Publication of JPH03202140A publication Critical patent/JPH03202140A/en
Publication of JPH0478336B2 publication Critical patent/JPH0478336B2/ja
Granted legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J3/00Processes of utilising sub-atmospheric or super-atmospheric pressure to effect chemical or physical change of matter; Apparatus therefor
    • B01J3/06Processes using ultra-high pressure, e.g. for the formation of diamonds; Apparatus therefor, e.g. moulds or dies
    • B01J3/062Processes using ultra-high pressure, e.g. for the formation of diamonds; Apparatus therefor, e.g. moulds or dies characterised by the composition of the materials to be processed
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2203/00Processes utilising sub- or super atmospheric pressure
    • B01J2203/06High pressure synthesis
    • B01J2203/0605Composition of the material to be processed
    • B01J2203/062Diamond
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2203/00Processes utilising sub- or super atmospheric pressure
    • B01J2203/06High pressure synthesis
    • B01J2203/0605Composition of the material to be processed
    • B01J2203/0645Boronitrides
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2203/00Processes utilising sub- or super atmospheric pressure
    • B01J2203/06High pressure synthesis
    • B01J2203/065Composition of the material produced
    • B01J2203/066Boronitrides
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2203/00Processes utilising sub- or super atmospheric pressure
    • B01J2203/06High pressure synthesis
    • B01J2203/0675Structural or physico-chemical features of the materials processed
    • B01J2203/068Crystal growth

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Crystals, And After-Treatments Of Crystals (AREA)

Abstract

PURPOSE:To obtain a large cubic boron nitride single crystal difficult to obtain heretofore by using a diamond single crystal as a seed crystal and growing a cubic boron nitride single crystal on the outer peripheral surface thereof. CONSTITUTION:In a single crystal growing container 1, a boron nitride raw material 2 is placed on a high temp. part and a diamond crystal 4 as a seed crystal is placed on a low temp. part so that a solvent 3 (e.g; lithium boronitride) capable of dissolving boron nitride is held between both parts and the raw material 2 is treated under the condition of high temp. (e.g; 1300-2000 deg.C) and high pressure (e.g; 4-7 GPa) of the thermodynamically stable region of cubic boron nitride. By this method, a cubic boron nitrode single crystal whose crystal surface and crystal azimuth coincide with those of the diamond crystal is grown on the outer peripheral surface of the diamond crystal being a nucleus. As a result, a large cubic boron nitride single crystal of high quality utilizable as a superprecise cutting tool material incapable of being obtained heretofore can be grown.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、立方晶窒化ホウ素単結晶の育成方法に係り、
特に工具鋼やステンレス鋼等の鉄系材料の超精密切削工
具材料として使用可能な、高品質で大型の立方晶窒化ホ
ウ素単結晶の育成方法に関する。
[Detailed Description of the Invention] (Industrial Application Field) The present invention relates to a method for growing a cubic boron nitride single crystal,
In particular, the present invention relates to a method for growing high-quality, large-sized cubic boron nitride single crystals that can be used as ultra-precision cutting tool materials for ferrous materials such as tool steel and stainless steel.

(従来の技術及び解決しようとする課題)立方晶窒化ホ
ウ素の大型結晶育成法の一つとして、例えば、「ジャー
ナル・アプライド・フィジックス(Journal A
pplied Physics)」、 Vol。
(Prior art and problems to be solved) As one of the methods for growing large crystals of cubic boron nitride, for example, "Journal Applied Physics (Journal A
pplied Physics)”, Vol.

61、No、8(1987)p、2822〜2825に
示されるような方法が知られている。
61, No. 8 (1987) p. 2822-2825 is known.

この方法は、高温・高圧下で密閉された育成容器中に高
温部と低温部を作り、窒化ホウ素を溶解し得る溶媒を挾
んで、高温部に原料窒化ホウ素供給源を置き、低温部に
立方晶窒化ホウ素の単結晶からなる種結晶を置き、温度
による溶解度差を利用して、低温部に置いた前記種結晶
上に立方晶窒化ホウ素単結晶を育成する温度差法である
In this method, a high-temperature section and a low-temperature section are created in a growth container that is sealed at high temperature and high pressure, a solvent capable of dissolving boron nitride is placed between them, a source of boron nitride is placed in the high-temperature section, and a cubic chamber is placed in the low-temperature section. This is a temperature difference method in which a seed crystal consisting of a single crystal of crystalline boron nitride is placed, and a cubic boron nitride single crystal is grown on the seed crystal placed in a low-temperature part by utilizing the solubility difference due to temperature.

しかし、この方法では、種結晶に立方晶窒化ホウ素結晶
が用いられるが、溶媒中に設置されるため、結晶育成が
種結晶面上に進行する前に種結晶自身の溶解が進行する
。そこで、種結晶の溶解を少しでも抑えるため、種結晶
は、第1図に示すように容器1の上端に設けられた小さ
な穴に配置される。この場合、育成方向は種結晶の溶媒
側に限られる。また、このようにしても、種結晶は、溶
媒に接しているため、表面が溶解を受けて荒れ、良質結
晶の育成が妨げられる。更に、種結晶として使用する砥
粒用窒化ホウ素は、大きさが通常0゜2111mと小さ
く、上記溶解を受けやすいと共に結晶性も良くない。
However, in this method, a cubic boron nitride crystal is used as a seed crystal, but because it is placed in a solvent, the seed crystal itself dissolves before crystal growth progresses on the seed crystal surface. Therefore, in order to suppress dissolution of the seed crystal as much as possible, the seed crystal is placed in a small hole provided at the upper end of the container 1, as shown in FIG. In this case, the growth direction is limited to the solvent side of the seed crystal. Moreover, even if this is done, since the seed crystal is in contact with the solvent, the surface will be roughened by dissolution, and growth of high-quality crystals will be hindered. Furthermore, boron nitride for abrasive grains used as a seed crystal has a small size, usually 0°2111 m, and is susceptible to the above-mentioned dissolution and has poor crystallinity.

上述の理由から、大型良質単結晶の育成をより困難とし
、その結果、その潜在能力を期待されながら産業界で利
用できない原因となっている5本発明は、上記従来技術
の欠点を解消し、従来得ることのできなかった超精密切
削工具材料として利用可能な、高品質で大型の立方晶窒
化ホウ素単結晶を育成し得る方法を提供することを目的
とするものである。
For the above-mentioned reasons, it has become more difficult to grow large, high-quality single crystals, and as a result, although their potential is expected, they cannot be used in industry. The purpose of the present invention is to provide a method for growing high-quality, large-sized cubic boron nitride single crystals that can be used as materials for ultra-precision cutting tools that could not be obtained conventionally.

(課題を解決するための手段) 本発明者等は、前記目的を達成すべく鋭意研究を重ねた
結果、種結晶として、従来用いられてきた砥粒用立方晶
窒化ホウ素単結晶の代わりに、ダイヤモンド単結晶が使
用できることを見い出し、ここに本発明をなしたもので
ある。
(Means for Solving the Problems) As a result of intensive research to achieve the above object, the present inventors have developed a seed crystal, instead of the conventionally used cubic boron nitride single crystal for abrasive grains. It was discovered that a diamond single crystal could be used, and the present invention was created based on this discovery.

ホウ素原料を置き、低温部に種結晶としてダイヤモンド
結晶を置き、立方晶窒化ホウ素の熱力学的安定域の高温
・高圧下で処理することにより、ダイヤモンド結晶を核
として、その外周面上にそれと結晶面、結晶方位が一致
した立方晶窒化ホウ素単結晶を育成することを特徴とす
る立方晶窒化ホウ素大型単結晶の育成方法を要旨とする
ものである。
A boron raw material is placed, a diamond crystal is placed as a seed crystal in a low-temperature part, and the process is carried out under high temperature and high pressure within the thermodynamic stability range of cubic boron nitride. The gist of this invention is a method for growing a large cubic boron nitride single crystal, which is characterized by growing a cubic boron nitride single crystal with matching planes and crystal orientations.

以下に本発明を更に詳細に説明する。The present invention will be explained in more detail below.

(作用) ダイヤモンドの単結晶は、天然品、合成品に拘らず、良
質で大型のものが比較的簡単に入手でき、また、一般に
立方晶窒化ホウ素単結晶の育成に使用する溶媒に侵され
ない。更に、ダイヤモンドは立方晶窒化ホウ素と同一の
結晶構造をとり、格子定数も1%程度異なるに過ぎない
(Function) Diamond single crystals, whether natural or synthetic, are relatively easy to obtain in good quality and large sizes, and are generally not affected by the solvent used to grow cubic boron nitride single crystals. Furthermore, diamond has the same crystal structure as cubic boron nitride, and the lattice constant is only about 1% different.

このため、ダイヤモンド結晶を種結晶に用いると、育成
溶媒に侵されることなく、また大きな歪3− − みを伴うことなく、ダイヤモンド結晶上に立方晶窒化ホ
ウ素の良質単結晶を育成させることが可能となる。
Therefore, when a diamond crystal is used as a seed crystal, it is possible to grow a high-quality single crystal of cubic boron nitride on the diamond crystal without being attacked by the growth solvent or accompanied by large strains. becomes.

ダイヤモンド結晶を種結晶にした立方晶窒化ホウ素結晶
の育成は、具体的には、次の方法によって行われる。
Specifically, the growth of a cubic boron nitride crystal using a diamond crystal as a seed crystal is performed by the following method.

第1図及び第2図は単結晶育成容器構成を示しており、
高圧・高温下で密閉された、例えば、モリブデン製の育
成容器1中に、高温部と低温部を作り、高温部に窒化ホ
ウ素原料2を置き、窒化ホウ素を溶解し得る溶媒3、例
えば、ホウ窒化リチウム(Li2 B N2)を挾んで
、低温部に種結晶4としてダイヤモンド結晶を置く。
Figures 1 and 2 show the configuration of the single crystal growth container.
A high temperature section and a low temperature section are created in a growth container 1 made of, for example, molybdenum, which is sealed under high pressure and high temperature, a boron nitride raw material 2 is placed in the high temperature section, and a solvent 3 that can dissolve boron nitride, such as boron, is placed in the high temperature section. A diamond crystal is placed as a seed crystal 4 in the low temperature part, sandwiching lithium nitride (Li2 B N2).

種結晶であるダイヤモンド結晶の大きさは、任意に選ぶ
ことができる。種結晶としてはダイヤモンドの単結晶の
ほか、ホウ素をドープした半導体ダイヤモンド結晶も使
用可能である。
The size of the diamond crystal serving as the seed crystal can be arbitrarily selected. As a seed crystal, in addition to a diamond single crystal, a semiconductor diamond crystal doped with boron can also be used.

また、ダイヤモンド結晶の配置の仕方は、第1図に示す
従来法のように育成容器の上部の小さな穴に置いても、
或いは第2図に示すように育成容器内上端に置いても、
いずれでもよいが、より大型の単結晶育成という面から
すると、後者の方が任意の大きさの種結晶を利用できる
ので好ましい。
In addition, the diamond crystals can be placed in a small hole at the top of the growth container as in the conventional method shown in Figure 1.
Alternatively, as shown in Figure 2, you can place it at the top of the growth container.
Either method may be used, but from the standpoint of growing a larger single crystal, the latter method is preferable because a seed crystal of any size can be used.

育成圧力、温度は、立方晶窒化ホウ素が熱力学的に安定
な圧力(4〜7GPa)及び温度(1300〜2000
℃)の範囲で行う。好ましくは5〜6GPaの圧力、1
600−1800℃の温度である。
The growth pressure and temperature are the pressure (4 to 7 GPa) and temperature (1300 to 2000 GPa) at which cubic boron nitride is thermodynamically stable.
(℃) range. Preferably a pressure of 5 to 6 GPa, 1
The temperature is 600-1800°C.

所定の高温・高圧で処理することにより、温度による溶
解度差を利用して、低温部に置いたダイヤモンド単結晶
上に立方晶窒化ホウ素単結晶を析出成長させることがで
きる。
By processing at a predetermined high temperature and high pressure, a cubic boron nitride single crystal can be precipitated and grown on a diamond single crystal placed in a low-temperature part by utilizing the solubility difference due to temperature.

育成された単結晶は、種結晶(ダイヤモンド結晶)を核
とし、その外周面上にそれと結晶面、結晶方位が完全に
一致して包接されている。
The grown single crystal has a seed crystal (diamond crystal) as its core, and is enclosed on its outer peripheral surface with the crystal plane and crystal orientation completely matching.

種結晶(ダイヤモンド結晶)と育成結晶(立方晶窒化ホ
ウ素単結晶)との両者間の接合強度は強く、このため、
種結晶を包接したまま、育成結晶を超精密切削工具材料
として利用することができる。
The bonding strength between the seed crystal (diamond crystal) and the growing crystal (cubic boron nitride single crystal) is strong, and therefore,
The grown crystal can be used as an ultra-precision cutting tool material while containing the seed crystal.

(実施例) 次に本発明の実施例を示す。(Example) Next, examples of the present invention will be shown.

失凰鮭よ 従来法で種結晶として立方晶窒化ホウ素単結晶を用いた
育成実験に通常使用している育成容器構成を用いて、単
結晶育成実験を行った。
A single-crystal growth experiment was conducted using a growth container configuration that is commonly used in conventional growth experiments using cubic boron nitride single crystals as seed crystals.

この育成容器は、第1図に示すように、種結晶(立方晶
窒化ホウ素単結晶)の溶解をできるだけ防ぐために、容
器1の上部に種結晶4を配置するための小さな穴が設け
られている。
As shown in Fig. 1, this growth container is provided with a small hole in the upper part of the container 1 for placing the seed crystal 4 in order to prevent the seed crystal (cubic boron nitride single crystal) from dissolving as much as possible. .

本例では、上記育成容器構成において、原料2として立
方晶窒化ホウ素砥粒粉末(昭和電工製。
In this example, in the above-mentioned growth container configuration, the raw material 2 is cubic boron nitride abrasive grain powder (manufactured by Showa Denko).

5BN−T、#325−400)を用い、溶媒3として
Li、BN2を用い、種結晶4として平均粒径Q 、 
5 mmの砥粒用ダイヤモンド単結晶を用いて、圧力が
5.50Pa、原料部の温度が約1700℃となるよう
に加圧・加熱し、そのままの状態で3時間保持した。
5BN-T, #325-400), Li and BN2 were used as the solvent 3, and the average particle size Q was used as the seed crystal 4.
Using a 5 mm diamond single crystal for abrasive grains, the material was pressurized and heated to a pressure of 5.50 Pa and a temperature of about 1700° C., and the material was kept in that state for 3 hours.

その結果、種結晶であるダイヤモンド単結晶上に、これ
を包接する形で、厚さ0.1〜0.3mmの立方晶窒化
ホウ素の単結晶が育成された。育成された結晶は、自形
面を持つもので、結晶面の方位は種結晶であるダイヤモ
ンドの自形面と完全に一致していた。育成結晶の破面を
走査型電子顕微鏡間 で観察したところ、第3図に示すように、臂弊面の違い
から接合面が見られた。上側が種結晶領域で、下側が育
成結晶領域であり、それらの接合面は一様であって破壊
は生じておらず、両者が原子オーダーで強固に結合し、
完全に一体化していることが確かめられた。
As a result, a cubic boron nitride single crystal having a thickness of 0.1 to 0.3 mm was grown on and surrounding the diamond single crystal as the seed crystal. The grown crystal had an euhedral plane, and the orientation of the crystal plane completely matched the euhedral plane of the seed crystal, diamond. When the fractured surface of the grown crystal was observed using a scanning electron microscope, a bonding surface was observed due to the difference in the arm and back surfaces, as shown in FIG. The upper side is the seed crystal region, the lower side is the growing crystal region, and their bonding surfaces are uniform and no breakage occurs, and the two are strongly bonded on the atomic order.
It was confirmed that they were completely integrated.

失亀虹至 第2図に示すように、容器上部に穴のおいていない育成
容器を用い、種結晶4として粒径約211I11で温度
差法により育成した自形面の良く発達した合成ダイヤモ
ンド単結晶を容器上端に置き、他の構成は実施例1と同
一にして、育成時間15時間で育成実験を行った。
As shown in Figure 2, a synthetic diamond monomer with a well-developed euhedral surface was grown as a seed crystal 4 by the temperature difference method with a grain size of approximately 211I11 using a growth container without a hole in the upper part of the container. The crystal was placed at the top of the container, the other configuration was the same as in Example 1, and a growth experiment was conducted for a growth time of 15 hours.

その結果、実施例1と同様に、種結晶であるダイヤモン
ドを包接するように、厚さ約2mmの立方晶窒化ホウ素
の単結晶膜を持った粒径約5m+nの結晶が育成された
。結晶は自形面を持つもので、結7 8− 晶面の方位は種結晶であるダイヤモンドの自形面と一致
していた。また、実施例」と同様、立方晶窒化ホウ素の
成長層とダイヤモンド種結晶の境界は強く結合していた
As a result, as in Example 1, crystals with a grain size of about 5 m+n and having a single crystal film of cubic boron nitride with a thickness of about 2 mm were grown so as to include the diamond seed crystal. The crystal had an euhedral plane, and the orientation of the crystal 7 8 - crystal plane coincided with the euhedral plane of the diamond, which was the seed crystal. Further, as in Example 1, the boundary between the cubic boron nitride growth layer and the diamond seed crystal was strongly bonded.

(発明の効果) 以上詳述したように、本発明によれば、ダイヤモンド単
結晶を種結晶として用い、その外周面に立方晶窒化ホウ
素単結晶を育成するので、一種の複合結晶ではあるが、
従来得ることの難しかった大型立方晶窒化ホウ素単結晶
を得ることが可能である。この育成単結晶は、種結晶と
育成結晶間の接合面が完全に一体化しており、接合面を
起点にして破壊が生じていないものである。
(Effects of the Invention) As detailed above, according to the present invention, a diamond single crystal is used as a seed crystal and a cubic boron nitride single crystal is grown on its outer peripheral surface, so although it is a kind of composite crystal,
It is possible to obtain large cubic boron nitride single crystals, which have been difficult to obtain in the past. In this grown single crystal, the joint surfaces between the seed crystal and the grown crystal are completely integrated, and no breakage occurs starting from the joint surface.

切削加工具として利用した場合、結晶全体の強度が高く
、切削加工点における被削材との耐摩耗性が充分得られ
るので、超精密切削工具として好適である。
When used as a cutting tool, the crystal as a whole has high strength and provides sufficient wear resistance with the work material at the cutting point, making it suitable as an ultra-precision cutting tool.

また、本発明によって得られる単結晶は、本質的にヘテ
ロエピタキシャル成長による接合結晶であるので、結晶
を半導体化させることにより電子・光学素子として利用
することも可能となる。例えば、種結晶として、ホウ素
をドープしたp型半導体ダイヤモンド結晶を用い、溶媒
中にシリコンを混入させてn型の半導体立方晶窒化ホウ
素単結晶を育成させると、p−n接合ダイオードができ
る。
Further, since the single crystal obtained by the present invention is essentially a bonded crystal formed by heteroepitaxial growth, it can also be used as an electronic/optical element by converting the crystal into a semiconductor. For example, if a p-type semiconductor diamond crystal doped with boron is used as a seed crystal and silicon is mixed in a solvent to grow an n-type semiconductor cubic boron nitride single crystal, a p-n junction diode is produced.

これは、極端条件下で使用可能な電子素子として。It can be used as an electronic device under extreme conditions.

また紫外線領域の発光素子として期待される。It is also expected to be used as a light-emitting element in the ultraviolet region.

【図面の簡単な説明】[Brief explanation of drawings]

第1図及び第2図は立方晶窒化ホウ素単結晶を育成する
ための育成容器の構成を示す図で、第1図は育成容器の
上部に設けた小さい穴に種結晶を置く場合を示し、第2
図は種結晶を直接育成容器上部に置く場合を示し、 第3図は実施例で育成した立方晶窒化ホウ素単結晶破面
の走査型電子顕微鏡写真である。 1・・・モリブデン製育成容器、2・・・窒化ホウ素原
料、3・・・育成溶媒、4・・・種結晶。 第 2 図 第 図
Figures 1 and 2 are diagrams showing the structure of a growth container for growing cubic boron nitride single crystals, and Figure 1 shows the case where a seed crystal is placed in a small hole provided at the top of the growth container. Second
The figure shows the case where a seed crystal is directly placed on the top of the growth container, and FIG. 3 is a scanning electron micrograph of a fractured surface of a cubic boron nitride single crystal grown in an example. DESCRIPTION OF SYMBOLS 1... Molybdenum growth container, 2... Boron nitride raw material, 3... Growth solvent, 4... Seed crystal. Figure 2

Claims (1)

【特許請求の範囲】[Claims] 単結晶育成容器において、窒化ホウ素を溶解し得る溶媒
を挾んで高温部に窒化ホウ素原料を置き、低温部に種結
晶としてダイヤモンド結晶を置き、立方晶窒化ホウ素の
熱力学的安定域の高温・高圧下で処理することにより、
ダイヤモンド結晶を核として、その外周面上にそれと結
晶面、結晶方位が一致した立方晶窒化ホウ素単結晶を育
成することを特徴とする立方晶窒化ホウ素大型単結晶の
育成方法。
In a single crystal growth vessel, a boron nitride raw material is placed in the high temperature section with a solvent capable of dissolving boron nitride in between, and a diamond crystal is placed as a seed crystal in the low temperature section, and the temperature and pressure within the thermodynamic stability range of cubic boron nitride are increased. By processing below,
A method for growing a large cubic boron nitride single crystal, which is characterized by using a diamond crystal as a core and growing a cubic boron nitride single crystal on the outer peripheral surface of the diamond crystal whose crystal plane and crystal orientation coincide with that of the diamond crystal.
JP34436989A 1989-12-28 1989-12-28 Method for growing large cubic boron nitride single crystal Granted JPH03202140A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP34436989A JPH03202140A (en) 1989-12-28 1989-12-28 Method for growing large cubic boron nitride single crystal

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP34436989A JPH03202140A (en) 1989-12-28 1989-12-28 Method for growing large cubic boron nitride single crystal

Publications (2)

Publication Number Publication Date
JPH03202140A true JPH03202140A (en) 1991-09-03
JPH0478336B2 JPH0478336B2 (en) 1992-12-10

Family

ID=18368707

Family Applications (1)

Application Number Title Priority Date Filing Date
JP34436989A Granted JPH03202140A (en) 1989-12-28 1989-12-28 Method for growing large cubic boron nitride single crystal

Country Status (1)

Country Link
JP (1) JPH03202140A (en)

Also Published As

Publication number Publication date
JPH0478336B2 (en) 1992-12-10

Similar Documents

Publication Publication Date Title
CN100577894C (en) Large area, uniformly low dislocation density GaN substrate and process for making the same
Dwiliński et al. On GaN crystallization by ammonothermal method
US7078731B2 (en) Gallium nitride crystals and wafers and method of making
US7097707B2 (en) GaN boule grown from liquid melt using GaN seed wafers
JP4942270B2 (en) Crystalline gallium nitride and method of forming crystalline gallium nitride
Korostelin et al. Vapour growth and characterization of bulk ZnSe single crystals
JP2007015918A (en) Method for reducing defect concentration in crystal
US6844084B2 (en) Spinel substrate and heteroepitaxial growth of III-V materials thereon
JP4184441B2 (en) Mechanical and chemical polishing of crystals and epitaxial layers of GaN and Ga ▲ lower 1-xy ▼ Al ▲ lower x ▼ In ▲ lower y ▼ N
US6153165A (en) Single crystal and method of producing the same
US6187279B1 (en) Single crystal SIC and method of producing the same
Syväjärvi et al. Anisotropic etching of SiC
CN102969241A (en) Annealing method for reducing epitaxial film defects and epitaxial film obtained by using same
Bockowski Growth and doping of GaN and AlN single crystals under high nitrogen pressure
KR100288473B1 (en) SINGLE CRYSTAL SiC AND PROCESS FOR PREPARING THE SAME
JPH03202140A (en) Method for growing large cubic boron nitride single crystal
Hanser et al. Growth and fabrication of 2 inch free-standing GaN substrates via the boule growth method
Bean et al. Epitaxial CdTe films on GaAs/Si and GaAs substrates
JPH1112100A (en) Single crystal sic and its production
JP2006265149A (en) Method for producing dast crystal and method for planting seed crystal
WO2021210398A1 (en) Method for producing aluminum nitride substrate, aluminum nitride substrate, and method for suppressing introduction of dislocation into aluminum nitride growth layer
WO2021210397A1 (en) Method for manufacturing semiconductor substrate, semiconductor substrate, and method for suppressing introduction of displacement to growth layer
WO2023188575A1 (en) Group iii element nitride substrate and production method for group iii element nitride substrate
JP2932559B2 (en) Synthesis method of large diamond single crystal
WO2023188574A1 (en) Group iii element nitride substrate and production method for group iii element nitride substrate

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term