JPH03201808A - Temperature compensation oscillator - Google Patents

Temperature compensation oscillator

Info

Publication number
JPH03201808A
JPH03201808A JP34400589A JP34400589A JPH03201808A JP H03201808 A JPH03201808 A JP H03201808A JP 34400589 A JP34400589 A JP 34400589A JP 34400589 A JP34400589 A JP 34400589A JP H03201808 A JPH03201808 A JP H03201808A
Authority
JP
Japan
Prior art keywords
voltage
bias
temperature
circuit
oscillation frequency
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP34400589A
Other languages
Japanese (ja)
Other versions
JP3058425B2 (en
Inventor
Kuichi Kubo
九一 久保
Tsutomu Yamakawa
務 山川
Hiroshi Yoshida
浩 吉田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nihon Dempa Kogyo Co Ltd
Original Assignee
Nihon Dempa Kogyo Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nihon Dempa Kogyo Co Ltd filed Critical Nihon Dempa Kogyo Co Ltd
Priority to JP1344005A priority Critical patent/JP3058425B2/en
Publication of JPH03201808A publication Critical patent/JPH03201808A/en
Application granted granted Critical
Publication of JP3058425B2 publication Critical patent/JP3058425B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Oscillators With Electromechanical Resonators (AREA)

Abstract

PURPOSE:To enable the fine control of an oscillation frequency corresponding to a bias voltage value by providing a high input impedance amplifier, which applies an output to a voltage capacity converting element, and a pull-up circuit to pull-up a potential to an almost midpoint potential in the variable range of a bias voltage. CONSTITUTION:At an oscillator to execute temperature compensation by impressing a temperature compensating voltage Vt to a voltage capacity converting element 14 which controls the oscillation frequency, a bias circuit to execute the fine control of the oscillation frequency is formed by a high input impedance amplifier 17, which connects the input to a bias input terminal 18 and applies the output to the voltage capacity converting element 14, and the pull-up circuit to pull up the input of this high input impedance amplifier 17 to the almost midpoint potential in the various range of the bias voltage. Thus, the fine control of the oscillation frequency can be executed by the bias voltage and the oscillation frequency can be automatically tuned to an objective frequency without exerting the influence of a bias source characteristic upon a temperature compensating characteristic.

Description

【発明の詳細な説明】 (発明の技術分野) 本発明は、温度変化による発振周波数の変化を補償する
温度補償発振器に係わり、特にバイアス電圧値に応じて
発振周波数を微調整するバイアス回路の改良に関する。
DETAILED DESCRIPTION OF THE INVENTION (Technical Field of the Invention) The present invention relates to a temperature compensated oscillator that compensates for changes in oscillation frequency due to temperature changes, and in particular to improvements in a bias circuit that finely adjusts the oscillation frequency according to a bias voltage value. Regarding.

(発明の技術的背景とその問題点) 近時、周波数、時間等の基準として水晶発振器が広く用
いられている。ところで水晶発振器に用いる水晶振動子
は一般に温度係数を持ち、温度の変化によって周波数も
変化する。たとえは、数MHzないし十数MHz程度の
周波数で使用する一般的なATカットの水晶振動子は、
第3図に示すような略3次曲線状の温度係数を示し、そ
の特性は切断角度に応じて微細に変化し、変極点は25
℃前後になる。
(Technical background of the invention and its problems) Recently, crystal oscillators have been widely used as standards for frequency, time, etc. Incidentally, a crystal resonator used in a crystal oscillator generally has a temperature coefficient, and its frequency changes with changes in temperature. For example, a typical AT-cut crystal oscillator used at a frequency of several MHz to several dozen MHz is
As shown in Figure 3, the temperature coefficient has a substantially cubic curve shape, its characteristics change minutely depending on the cutting angle, and the inflection point is 25.
It will be around ℃.

一方、電子機器の高精度化がすすむにつれて水晶発振器
にあっても発振周波数は、より安定であることを要求さ
れる傾向にある。
On the other hand, as electronic devices become more precise, even crystal oscillators tend to be required to have more stable oscillation frequencies.

このような要求を満たす水晶発振器としては発振回路を
恒温槽に収納したものがある。しかしながら恒温槽を用
いたものでは形状が大型化し、消費電力も大きく、電源
の投入時に周波数が安定化するまでに時間がかかり、し
かも部品は70℃程度の比較的高温度にさらされるため
に信頼性にも問題がある。
A crystal oscillator that satisfies these requirements includes one in which an oscillation circuit is housed in a thermostatic oven. However, devices using a constant temperature oven are larger in size, consume more power, take longer to stabilize the frequency when the power is turned on, and are unreliable because the components are exposed to a relatively high temperature of about 70°C. There are also problems with sexuality.

このために水晶振動子に、たとえはバリキャップ等の電
圧容量変換素子を接続し、サーミスタ等の温度検出素子
の検出温度に応じて補償電圧発生回路により補償電圧を
生成し、この補償電圧を上記バリキャップに印加して温
度補償を行うものがある。
For this purpose, a voltage capacitance conversion element such as a varicap is connected to the crystal resonator, a compensation voltage is generated by a compensation voltage generation circuit according to the temperature detected by a temperature detection element such as a thermistor, and this compensation voltage is There are some that perform temperature compensation by applying voltage to a varicap.

第2図は従来のこの種の温度補償発振器の一例を示すブ
ロック図で、いわゆるコルピッツ型の水晶発振器1の水
晶振動子2に直列に電圧容量可変素子3、たとえはバリ
キャップを接続している。
FIG. 2 is a block diagram showing an example of a conventional temperature-compensated oscillator of this type, in which a voltage-capacitance variable element 3, for example a varicap, is connected in series to a crystal resonator 2 of a so-called Colpitts-type crystal oscillator 1. .

そしてサーミスタ等の温度センサ4の検出温度信号を補
償電圧発生回路5に与えて温度補償電圧を得て上記バリ
キャップ3に印加する。ところでこのような温度補償発
振器では、水晶振動子の経時変化等により周波数がわず
かに変化した場合、発振周波数を目的周波数に正確に一
致させるために微細な調整を行えるようにする必要があ
る。このため上記バリキャップ3に高抵抗6を介してバ
イアス入力端子7からバイアス電圧vbを印加するよう
にしている。
Then, a temperature signal detected by a temperature sensor 4 such as a thermistor is applied to a compensation voltage generation circuit 5 to obtain a temperature compensation voltage, which is applied to the varicap 3. However, in such a temperature-compensated oscillator, if the frequency changes slightly due to changes in the crystal resonator over time, etc., it is necessary to be able to make fine adjustments in order to make the oscillation frequency accurately match the target frequency. For this reason, a bias voltage vb is applied to the varicap 3 from a bias input terminal 7 via a high resistance 6.

なお、−船釣には第3図に示すグラフのようにバイアス
電圧vbの可変幅を最も効率よく利用するためにバイア
ス電圧vbの可変幅の略中点電位■bOにおいて目的周
波数fOとなるように設計される。
For boat fishing, as shown in the graph shown in Figure 3, in order to use the variable width of the bias voltage vb most efficiently, the target frequency fO should be set at approximately the midpoint potential of the variable width of the bias voltage vb. Designed to.

このようにすればバイアス入力端子7に与える電圧に応
じて発振周波数を微細に調整することができ、所定の目
的周波数に正確に合わせ込むことが可能となる。
In this way, the oscillation frequency can be finely adjusted in accordance with the voltage applied to the bias input terminal 7, and it becomes possible to accurately match it to a predetermined target frequency.

しかしながらこのようなものでは、厳密にはバイアス入
力端子7に接続する電圧源の内部抵抗が変化すると補償
電圧発生回路5の補償電圧による温度補償特性が変化し
所望の補償特性が得られなくなる。したがってバイアス
入力端子7には所定の特性の可変可能な定電圧源を接続
する必要があり実際の取扱はきわめて面倒であった。
However, in such a device, strictly speaking, if the internal resistance of the voltage source connected to the bias input terminal 7 changes, the temperature compensation characteristic due to the compensation voltage of the compensation voltage generating circuit 5 changes, making it impossible to obtain the desired compensation characteristic. Therefore, it is necessary to connect a variable constant voltage source with predetermined characteristics to the bias input terminal 7, which is extremely troublesome to handle in practice.

またバイアス入力端子7をオーブンにした場合は、発振
周波数はバイアス電圧vbによる周波数の可変幅の略下
端の周波数になり、しかも所定の温度補償特性も得られ
なくなる。
Further, if the bias input terminal 7 is set to an oven, the oscillation frequency will be approximately at the lower end of the frequency variable range by the bias voltage vb, and furthermore, the predetermined temperature compensation characteristic will not be obtained.

また、このようなバイアス入力端子を有する比較的高級
な仕様の温度補償発振器と、バイアス入力端子を設けな
い比較的簡単な仕様の発振器とは同じ発振周波数であっ
ても温度補償回路の構成を異ならせる必要がある。この
ために同じ発振器であってもバイアス入力端子の有無に
応じて別々の温度補償回路を必要とする問題もあった。
Furthermore, a temperature compensated oscillator with relatively high-end specifications that has such a bias input terminal and an oscillator with relatively simple specifications that do not have a bias input terminal may have different temperature compensation circuit configurations even if they have the same oscillation frequency. It is necessary to For this reason, there is a problem in that even if the oscillator is the same, separate temperature compensation circuits are required depending on the presence or absence of a bias input terminal.

このために、温度補償用の電圧容量変換素子と、バイア
ス用の電圧容量変換素子とを各別に設けたものもある。
For this reason, some devices are provided with separate voltage-capacitance conversion elements for temperature compensation and voltage-capacity conversion elements for bias.

しかしながら、このようなものでは電気的な構成が複雑
になり発振周波数に影響を及ぼす素子の数が多くなり高
精度の温度補償を行うことは難しくなる問題があった。
However, this type of device has the problem that the electrical configuration becomes complicated and the number of elements that affect the oscillation frequency increases, making it difficult to perform highly accurate temperature compensation.

(発明の目的) 本発明は、上記の事情に鑑みてなされたもので、バイア
ス源の直流特性によって温度補償特性を損なうことがな
く、バイアス電圧を印可すればその値に応じて周波数を
@細に調整でき、発振周波数を微細に調整する必要のな
い場合には端子をオーブンにすれば自動的にバイアス電
圧による可変範囲の略中心の周波数に設定可能で所定の
温度補償特性を得られる温度補償発振器を提供すること
を目的とするものである。
(Object of the Invention) The present invention has been made in view of the above circumstances, and the DC characteristics of the bias source do not impair the temperature compensation characteristics, and when a bias voltage is applied, the frequency is adjusted according to the value. If the oscillation frequency does not need to be finely adjusted, by opening the terminal, the frequency can be automatically set to approximately the center of the variable range due to the bias voltage. Temperature compensation allows you to obtain the desired temperature compensation characteristics. The purpose is to provide an oscillator.

(発明の概要) 本発明は、発振周波数を制御する電圧容量変換素子に温
度補償電圧を印加して温度補償を行う発振器において、
発振周波数の微調整を行うバイアス回路は入力をバイア
ス入力端子に接続し出力を上記電圧容量変換素子に与え
る高入力インピーダンス増幅器と、この高入力インピー
ダンス増幅器の入力を上記バイアス電圧の可変範囲の略
中点電位にプルアップするプルアップ回路とからなるこ
とを特徴とするものである。
(Summary of the Invention) The present invention provides an oscillator that performs temperature compensation by applying a temperature compensation voltage to a voltage-capacitance conversion element that controls the oscillation frequency.
The bias circuit that finely adjusts the oscillation frequency includes a high input impedance amplifier whose input is connected to the bias input terminal and whose output is given to the voltage capacitance conversion element, and the input of this high input impedance amplifier is connected to the bias voltage within the variable range of the bias voltage. It is characterized by comprising a pull-up circuit that pulls up the voltage to a point potential.

(実施例) 以下、本発明の一実施例を、第1図に示すブロック図を
参照して詳細に説明する。
(Example) Hereinafter, an example of the present invention will be described in detail with reference to the block diagram shown in FIG.

図中11は、温度センサで、たとえば温度変化に応じて
抵抗値が変化するサーミスタである。そして12は温度
センサ11から検出温度に応した温度信号を与えられて
温度補償電圧Vtを生成する補償電圧発生回路である。
In the figure, 11 is a temperature sensor, for example, a thermistor whose resistance value changes according to temperature changes. Reference numeral 12 denotes a compensation voltage generation circuit which receives a temperature signal corresponding to the detected temperature from the temperature sensor 11 and generates a temperature compensation voltage Vt.

そして補償電圧発生回路12から出力する温度補償電圧
Vtは抵抗13を介して電圧容量変換素子14に印加し
てその静電容量を制御する。
The temperature compensation voltage Vt outputted from the compensation voltage generation circuit 12 is applied to the voltage capacitance conversion element 14 via the resistor 13 to control its capacitance.

この電圧容量変換素子14は、たとえばコルピッツ型の
水晶発振回路15の水晶振動子16に直列に接続し、そ
の発振周波数を微細に可変し、温度変化による発振周波
数の変化を補償する。
This voltage-capacitance conversion element 14 is connected in series to a crystal resonator 16 of a Colpitts-type crystal oscillation circuit 15, for example, and finely varies its oscillation frequency to compensate for changes in the oscillation frequency due to temperature changes.

そして17は高入力インピーダンス増幅器で、たとえば
演算増幅器の反転入力を出力に接続した、いわゆる増幅
率が1倍のボルテージホロワ回路である。そしてこの高
入力インピーダンス増幅器17の入力を外部からの制御
電圧を与えるバイアス入力端子18に接続するとともに
抵抗20を介して上記制御電圧の可変範囲の略中点電位
の電圧■nにプルアップしている。そして高入力インピ
ーダンス増幅器17の出力、すなわちバイアス電圧vb
を抵抗19を介して上記電圧容量変換素子14に印加す
る。
A high input impedance amplifier 17 is, for example, a voltage follower circuit with an amplification factor of 1, in which the inverting input of an operational amplifier is connected to the output. The input of this high input impedance amplifier 17 is connected to a bias input terminal 18 that provides an external control voltage, and is pulled up via a resistor 20 to a voltage n that is approximately at the midpoint of the variable range of the control voltage. There is. And the output of the high input impedance amplifier 17, that is, the bias voltage vb
is applied to the voltage capacitance conversion element 14 via the resistor 19.

このような構成であれば、温度センサ11の検出温度に
応じた補償電圧Vtを補償電圧発生回路12で得て電圧
容量変換素子14に印加して温度補償を行うことができ
る。そして、バイアス入力端子18がオーブンで制御電
圧が印加されない場合は、高入力インピーダンス増幅器
170入力は上記中点電位となり、自動的に制御電圧t
こよる周波数可変幅の略中心周波数となる。またバイア
ス入力端子18に制御電圧を与えれはその値に応じて発
振周波数を微細に調整することができる。
With such a configuration, the compensation voltage Vt corresponding to the temperature detected by the temperature sensor 11 can be obtained by the compensation voltage generation circuit 12 and applied to the voltage capacitance conversion element 14 to perform temperature compensation. When the bias input terminal 18 is in an oven and no control voltage is applied, the input of the high input impedance amplifier 170 becomes the above-mentioned midpoint potential, and the control voltage t is automatically applied.
This becomes approximately the center frequency of the frequency variable width. Further, by applying a control voltage to the bias input terminal 18, the oscillation frequency can be finely adjusted according to the value of the control voltage.

しかして補償電圧発生回路12とバイアス入力端子18
とは高入力インピーダンス増幅器17によって直流的に
切り放されているのでバイアス入力端子18に接続され
る回路の内部インピーダンスによって温度補償特性が損
なわれることもない。
Therefore, the compensation voltage generation circuit 12 and the bias input terminal 18
Since the high input impedance amplifier 17 disconnects the bias input terminal 18 from the bias input terminal 18 in terms of direct current, the internal impedance of the circuit connected to the bias input terminal 18 will not impair the temperature compensation characteristics.

さらにバイアス入力端子を有する比較的高級な仕様の温
度補償発振器と、バイアス入力端子を設けない比較的簡
単な仕様の発振器とは同じ構成で製作でき共通の水晶振
動子を使用できるので機種を共通化できる利点もある。
Furthermore, a temperature-compensated oscillator with a relatively high-grade specification that has a bias input terminal and an oscillator with a relatively simple specification that does not have a bias input terminal can be manufactured with the same configuration and use a common crystal oscillator, so they can be made into a common model. There are some advantages to doing so.

なお、本発明は上記実施例に限定されるものではなく、
たとえば上記高入力インピーダンス増幅器は演算増幅器
だけでなく電界効果トランジスタ等を用いて構成しても
よい。
Note that the present invention is not limited to the above embodiments,
For example, the high input impedance amplifier may be configured using not only an operational amplifier but also a field effect transistor or the like.

また補償電圧発生回路としてはアナログ的に補償電圧を
発生するものでも良いし、デジタル的に記憶素子から補
償データを読みだして補償するものでも良いことは勿論
である。
It goes without saying that the compensation voltage generating circuit may be one that generates a compensation voltage in an analog manner, or one that digitally reads compensation data from a storage element and performs compensation.

(発明の効果) 以上詳述しkように本発明によればバイアス電圧によっ
て発振周波数を微細に調整することが可能でバイアス源
の特性が温度補償特性に影響することなく、しかも発振
周波数を調整する必要のない場合はバイアス入力端子を
オーブンにすれば温度補償特性を損なうことなく目的周
波数に自動的に調定することができる温度補償発振器を
提供することができる。
(Effects of the Invention) As detailed above, according to the present invention, the oscillation frequency can be finely adjusted by the bias voltage, and the oscillation frequency can be adjusted without the characteristics of the bias source affecting the temperature compensation characteristics. If it is not necessary to do so, by opening the bias input terminal, it is possible to provide a temperature compensated oscillator that can automatically adjust to the target frequency without impairing the temperature compensation characteristics.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の一実施例を示すブロック図、第2図は
従来の温度補償発振器の一例を示すブロック図、 第3図はバイアス電圧による周波数の調整を説明するグ
ラフである。 11 ・ l 2 ・ 14 φ l 5 ・ 16 ・ 17 ◆ l 8 ・ 温度センサ 補償電圧発生回路 電圧容量変換素子 発振回路 水晶振動子 高入力インピーダンス増幅器 バイアス入力端子
FIG. 1 is a block diagram showing an embodiment of the present invention, FIG. 2 is a block diagram showing an example of a conventional temperature compensated oscillator, and FIG. 3 is a graph explaining frequency adjustment by bias voltage. 11 ・ l 2 ・ 14 φ l 5 ・ 16 ・ 17 ◆ l 8 ・ Temperature sensor compensation voltage generation circuit Voltage capacitance conversion element Oscillation circuit Crystal resonator High input impedance amplifier Bias input terminal

Claims (1)

【特許請求の範囲】 温度を検出する温度センサと、 この温度センサの検出出力に応じた温度補償電圧を出力
する補償電圧発生回路と、 この補償電圧発生回路の出力に応じて静電容量を制御さ
れる電圧容量変換素子と、 この電圧容量変換素子によって周波数を制御される圧電
振動子と、 この圧電振動子と共に発振器を構成する発振回路と、 上記電圧容量変換素子に上記発振回路の発振周波数を所
定周波数に設定するバイアス電圧を印加するバイアス回
路と、 を具備するものにおいて、 上記バイアス回路は入力をバイアス入力端子に接続し出
力を上記電圧容量変換素子に与える高入力インピーダン
ス増幅器と、この高入力インピーダンス増幅器の入力を
上記バイアス電圧の可変範囲の略中点電位にプルアップ
するプルアップ回路とからなることを特徴とする温度補
償発振器。
[Scope of Claims] A temperature sensor that detects temperature, a compensation voltage generation circuit that outputs a temperature compensation voltage according to the detection output of this temperature sensor, and a capacitance that is controlled according to the output of this compensation voltage generation circuit. a piezoelectric vibrator whose frequency is controlled by the voltage-capacitance conversion element; an oscillation circuit that constitutes an oscillator together with the piezoelectric vibrator; a bias circuit that applies a bias voltage set to a predetermined frequency; the bias circuit includes a high input impedance amplifier whose input is connected to the bias input terminal and whose output is provided to the voltage capacitance conversion element; A temperature compensated oscillator comprising a pull-up circuit that pulls up the input of the impedance amplifier to approximately the midpoint potential of the variable range of the bias voltage.
JP1344005A 1989-12-28 1989-12-28 Temperature compensated oscillator Expired - Fee Related JP3058425B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1344005A JP3058425B2 (en) 1989-12-28 1989-12-28 Temperature compensated oscillator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1344005A JP3058425B2 (en) 1989-12-28 1989-12-28 Temperature compensated oscillator

Publications (2)

Publication Number Publication Date
JPH03201808A true JPH03201808A (en) 1991-09-03
JP3058425B2 JP3058425B2 (en) 2000-07-04

Family

ID=18365928

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1344005A Expired - Fee Related JP3058425B2 (en) 1989-12-28 1989-12-28 Temperature compensated oscillator

Country Status (1)

Country Link
JP (1) JP3058425B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH077326A (en) * 1993-06-15 1995-01-10 Nec Corp Frequency modulator

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH077326A (en) * 1993-06-15 1995-01-10 Nec Corp Frequency modulator

Also Published As

Publication number Publication date
JP3058425B2 (en) 2000-07-04

Similar Documents

Publication Publication Date Title
US5473289A (en) Temperature compensated crystal oscillator
US5883550A (en) Crystal oscillator with a temperature-compensating analog circuit
US6278338B1 (en) Crystal oscillator with peak detector amplitude control
US6614313B2 (en) Precision oscillator circuits and methods with switched capacitor frequency control and frequency-setting resistor
JP5737834B2 (en) Method, system, and apparatus for accurate and stable LC-type reference oscillator
JP2008507174A (en) Temperature compensated thermostatic chamber controlled crystal oscillator
GB2482528A (en) Crystal reference oscillator for navigation applications
US20180375524A1 (en) Voltage Controlled Oscillator
JPH02180410A (en) Temperature compensating multi-frequency oscillator
US20060022763A1 (en) Temperature compensated piezoelectric oscillator and electronic apparatus comprising it
US4223524A (en) Quartz oscillation circuit for electronic timepieces
CN110798148A (en) Analog type anti-vibration crystal oscillator compensation device and method
JPH01108801A (en) Temperature compensation type pizo- electric oscillator
JPH07297767A (en) Sensor of guidance-approach
CA1057828A (en) Temperature compensated surface acoustic wave oscillator
US9231520B2 (en) Wien-bridge oscillator and circuit arrangement for regulating a detuning
Van Den Homberg A universal 0.03-mm/sup 2/one-pin crystal oscillator in CMOS
JPH03201808A (en) Temperature compensation oscillator
JPH0329505A (en) Temperature control crystal oscillation circuit
JP2011103564A (en) Temperature-compensated piezoelectric oscillator, and method of adjusting frequency for the same
US20020060597A1 (en) Method and apparatus for generating an input signal for a parameter sensitive circuit
JP2002135051A (en) Piezoelectric oscillator
JPH0846427A (en) Voltage controlled crystal oscillator
JP2975386B2 (en) Digital temperature compensated oscillator
JPH03220905A (en) Crystal oscillator of temperature compensation type

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090421

Year of fee payment: 9

LAPS Cancellation because of no payment of annual fees