JPH03201729A - Channel arrangement system for cellar system - Google Patents

Channel arrangement system for cellar system

Info

Publication number
JPH03201729A
JPH03201729A JP1340306A JP34030689A JPH03201729A JP H03201729 A JPH03201729 A JP H03201729A JP 1340306 A JP1340306 A JP 1340306A JP 34030689 A JP34030689 A JP 34030689A JP H03201729 A JPH03201729 A JP H03201729A
Authority
JP
Japan
Prior art keywords
interference
base station
antenna
channel arrangement
directivity
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP1340306A
Other languages
Japanese (ja)
Inventor
Toshihito Kanai
金井 敏仁
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp filed Critical NEC Corp
Priority to JP1340306A priority Critical patent/JPH03201729A/en
Publication of JPH03201729A publication Critical patent/JPH03201729A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To build up a cellar system of sector constitution with less interference quantity by arranging an interference station closer in a direction where an antenna gain is small. CONSTITUTION:A same frequency channel is allocated to sectors covered by a directional antenna of a radio base station whose maximum radiation is 0 deg. with respect to a positive direction of the s axis in which the oblique coordinate (s,t) is given as (3<1/2>RnK, 3<1/2>Rj), where a prescribed natural number (n), optional integral numbers j,k and a prescribed real number R. Thus, an interference station is arranged apart in a direction where an antenna gain is large and closer in a direction where the antenna gain is small so as to utilize sufficiently the directivity of a base station antenna thereby building up a cellar system with less interference quantity.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、セクタ構成のセルラーシステムのチャネル配
置方式に関する。
DETAILED DESCRIPTION OF THE INVENTION (Field of Industrial Application) The present invention relates to a channel allocation scheme for a sector-based cellular system.

(従来の技術) 自動車電話システムのような移動通信システムにおいて
は、サービスエリアを複数のセルに分割し、分割された
セル内をカバーする無線基地局をそれぞれ配置し、干渉
妨害の発生しない無線基地局間−で同一周波数を繰返し
利用することにより、周波数の有効利用を図っている。
(Prior Art) In a mobile communication system such as a car telephone system, a service area is divided into a plurality of cells, and each radio base station covering the divided cells is placed to create a radio base station that does not cause interference. Effective use of frequencies is achieved by repeatedly using the same frequency between stations.

この様な移動通信システムはセルラーシステムと呼ばれ
ている。
Such a mobile communication system is called a cellular system.

セルラーシステムの無線基地局に複数の指向性アンテナ
を配置してセルを更に分割すると、容易にセルサイズが
縮小され、またアンテナ指向性を利用して同一周波数の
繰返し距離が短縮可能なため、周波数利用率をより一層
向上することが出来る。この様に無線基地局に複数の指
向性アンテナを配置してセルを分割した構成は、セクタ
構成と呼ばれている。セクタ構成のセルラーシステムの
チャネル配置方式としては、電子通信学会発行「自動車
電話J(桑原守二監修)第79頁がら第83頁に記載さ
れている様に、平行ビーム方式とバックバックビーム方
式とが知られている。
By placing multiple directional antennas in the radio base station of a cellular system and further dividing the cell, the cell size can be easily reduced, and antenna directivity can be used to shorten the repetition distance of the same frequency. The utilization rate can be further improved. A configuration in which a plurality of directional antennas are arranged in a wireless base station to divide cells in this way is called a sector configuration. Channel allocation methods for sector-configured cellular systems include the parallel beam method and the back-back beam method, as described on pages 79 to 83 of "Automobile Telephone J (edited by Moriji Kuwahara)" published by the Institute of Electronics and Communication Engineers. It has been known.

(発明が解決しようとする課題) 無指向性の基地局アンテナを用いたセル構成においては
、干渉量は同一周波数を用いる干渉層との距離だけに依
存する。従ってクラスタサイズ(繰返しセル数)一定の
下で干渉量を最小にするためには、干渉層を出来るだけ
離して配置する必要がある。セルの形状を正六角形で近
似すると、干渉層との距離を最大にするチャネル配置は
、各基地局から等距離の位置に6局の干渉層を配置した
場合である。
(Problems to be Solved by the Invention) In a cell configuration using omnidirectional base station antennas, the amount of interference depends only on the distance to an interference layer that uses the same frequency. Therefore, in order to minimize the amount of interference with a constant cluster size (number of repeated cells), it is necessary to arrange the interference layers as far apart as possible. If the shape of the cell is approximated by a regular hexagon, the channel arrangement that maximizes the distance to the interference layer is when six interference layers are arranged at positions equidistant from each base station.

一方、セクタ構成においては、干渉量は干渉層との距離
以外に基地局アンテナの指向性にも依存する。従って基
地局アンテナの指向性を利用して、干渉量を低く抑える
必要がある。しかしながら従来の平行ビーム方式やバッ
クバックビーム方式においては、アンテナ指向性を利用
した干渉除去が十分に行われていない。
On the other hand, in the sector configuration, the amount of interference depends not only on the distance to the interference layer but also on the directivity of the base station antenna. Therefore, it is necessary to suppress the amount of interference by utilizing the directivity of the base station antenna. However, in the conventional parallel beam method and back-back beam method, interference removal using antenna directivity is not sufficiently performed.

平行ビーム方式は、第2図に示す様に無指向性セルと同
じく、干渉層との距離を最大にしたチャネル配置である
。従ってアンテナ指向性のために最小距離にある6干渉
局の内の一部の基地局がら強力な干渉を受けてしまう。
The parallel beam method, as shown in FIG. 2, has a channel arrangement that maximizes the distance to the interference layer, similar to the omnidirectional cell. Therefore, due to antenna directivity, some base stations among the six interfering stations located at the minimum distance receive strong interference.

またバックバックビーム方式は、第3図に示す様にアン
テナ指向性を利用して干渉層との距離を平行ビーム方式
より短縮したチャネル配置である。
Further, the back-back beam method is a channel arrangement in which the distance to the interference layer is shorter than that of the parallel beam method by utilizing antenna directivity, as shown in FIG.

トラフィックが局所的に集中した地域における周波数利
用率を重視したチャネル配置であり、サービスエリア全
体に展開した場合の干渉量は考慮されていない。
Channel allocation focuses on frequency utilization in areas where traffic is locally concentrated, and does not take into account the amount of interference that would occur if spread over the entire service area.

このように従来のセクタ構成のチャネル配置方式におい
ては、基地局アンテナの指向性を利用した干渉除去が十
分に行われていないため、全体の干渉量が多いという問
題がある。
As described above, in the conventional sector configuration channel allocation system, there is a problem in that the overall amount of interference is large because interference cancellation using the directivity of the base station antenna is not sufficiently performed.

本発明の目的は、セクタ構成のセルラーシステムにおい
て干渉量の少ないチャネル配置方式を提供することにあ
る。
An object of the present invention is to provide a channel allocation method that reduces the amount of interference in a sector-configured cellular system.

(課題を解決するための手段) 本願の発明のチャネル配置方式は、60°または120
°で交わる斜交座標(s、 t)において、任意の整数
i、jおよび一定の実数Rに対して s=v’丁Ri t=V′aj で与えられる斜交座標(s、t)の位置に無線基地局を
配置し、前記各無線基地局に六つの指向性アンテナをそ
の最大放射方向がS軸の正の方向に対してそれぞれOo
、60°、120°、180°、2400.300oと
なルヨうに配置することによりモデル化されるセクタ構
成のセルラーシステムのチャネル配置方式であって、一
定の自然数nと任意の整数j、におよび一定の実数Rに
対して、斜交座標(s、t)が(vT Rnk、v’N
Rj)で与えられる無線基地局の最大放射方向がS軸の
正の方向に対してOoとなる指向性アンテナによりカバ
ーされるセクタに、同一周波数のチャネルを配置するこ
とを特徴とする。
(Means for Solving the Problems) The channel arrangement method of the invention of the present application is 60° or 120°
At the oblique coordinates (s, t) that intersect at °, for arbitrary integers i, j and a constant real number R, A radio base station is placed at a position, and each radio base station is equipped with six directional antennas whose maximum radiation direction is Oo relative to the positive direction of the S axis.
, 60°, 120°, 180°, 2400.300°, and is modeled by arranging channels in a sector-configured cellular system with a fixed natural number n and an arbitrary integer j. For a constant real number R, the oblique coordinates (s, t) are (vT Rnk, v'N
It is characterized in that channels of the same frequency are arranged in sectors covered by directional antennas in which the maximum radiation direction of the radio base station given by Rj) is Oo with respect to the positive direction of the S axis.

(作用) このようなチャネル配置を60°で交わる斜交座標の場
合について第4図に示す。第4図において同一周波数の
チャネルが配置されたセクタの基地局間の最小距離は■
Rとなるが、十分に鋭い指向性のアンテナを用いればこ
れらのセクタ間の干渉を抑えることが出来る。またアン
テナ指向性の最大利得方向における干渉層との距離はψ
Inとなるが、nの値をある程度大きくすることにより
干渉を抑えることが出来る。1200で交わる斜交座標
の場合のチャネル配置は、第4図をS軸を中心に折返し
た配置となるため干渉量は同一である。
(Function) FIG. 4 shows such a channel arrangement in the case of oblique coordinates that intersect at 60°. In Figure 4, the minimum distance between base stations in sectors where channels of the same frequency are arranged is ■
However, if an antenna with sufficiently sharp directivity is used, interference between these sectors can be suppressed. Also, the distance to the interference layer in the maximum gain direction of antenna directivity is ψ
However, interference can be suppressed by increasing the value of n to a certain extent. In the case of oblique coordinates that intersect at 1200, the channel arrangement is the arrangement in which FIG. 4 is folded around the S axis, so the amount of interference is the same.

このように干渉層をアンテナ利得が大きな方向には離し
て、利得が小さな方向には近づけて配置することにより
、基地局アンテナの指向性を十分に利用して干渉量の少
ないセルラーシステムを構築することが出来る。
In this way, by placing the interference layer farther away in the direction of high antenna gain and closer to the direction of lower gain, we can fully utilize the directivity of the base station antenna and build a cellular system with less interference. I can do it.

(実施例) 次に本発明の実施例について図面を参照して説明する。(Example) Next, embodiments of the present invention will be described with reference to the drawings.

第1図は本発明のチャネル配置方式において60°で交
わる斜交座標の場合に自然数nを4とした場合の実施例
を示す図である。参照数字10.20はそれぞれ無線基
地局、同一周波数のチャネルが配置されたセクタを示し
ている。この場合の繰返しセクタ数は24であり、サー
ビスエリア全体をカバーするためには、第2図の平行ビ
ーム方式および第3図のバックバックビーム方式と同様
に異なる周波数のチャネルが最低24チヤネル必要であ
る。
FIG. 1 is a diagram showing an embodiment in which the natural number n is set to 4 in the case of oblique coordinates that intersect at 60° in the channel arrangement method of the present invention. Reference numbers 10 and 20 respectively indicate sectors in which radio base stations and channels of the same frequency are arranged. In this case, the number of repeated sectors is 24, and in order to cover the entire service area, a minimum of 24 channels of different frequencies are required, similar to the parallel beam method in Figure 2 and the back-back beam method in Figure 3. be.

第1図〜第3図の各チャネル配置方式における干渉量は
、その劣・化率により評価出来る。劣化率は、所要品質
を同一周波干渉および熱雑音により満足出来ない確率で
あり、セクタ内のCNR(希望波対雑音電力比)とCI
R(希望波対干渉波電力比)の結合密度関数を、所要品
質を満足出来ない範囲に渡って積分することにより求め
られる。この詳細な方法は、1989年電子情報通信学
会秋季全国大会、B−492、第2分冊、第162頁、
「アンテナ指向性パタンを考慮したセクタセルの設計J
(文献1)および電子情報通信学会論文誌B、Vol、
J71−B、 No、5、第633頁〜第639頁、「
小ゾーン構成移動通信における厳密な無線回線設計法]
(文献2)に記載されているため、ここでは省略する。
The amount of interference in each channel arrangement method shown in FIGS. 1 to 3 can be evaluated based on its degradation rate. The deterioration rate is the probability that the required quality cannot be satisfied due to co-frequency interference and thermal noise, and is the probability that the required quality cannot be satisfied due to co-frequency interference and thermal noise.
It is obtained by integrating the coupling density function of R (desired wave to interference wave power ratio) over a range where the required quality cannot be satisfied. This detailed method is described in the 1989 Institute of Electronics, Information and Communication Engineers Autumn National Conference, B-492, Volume 2, p. 162.
“Design of sector cell considering antenna directivity pattern J
(Reference 1) and IEICE Transactions B, Vol.
J71-B, No. 5, pp. 633-639, “
Strict wireless link design method for small zone configuration mobile communications]
(Reference 2), so it will be omitted here.

以下に示す条件のもとて劣化率を計算する。アンテナ指
向性は、文献2と同様に、半値幅60’の実測パタンを
基準にして、半値幅n0の指向性を与える。
The deterioration rate is calculated under the conditions shown below. Similar to Document 2, the antenna directivity gives a directivity with a half-width n0 based on an actually measured pattern with a half-width of 60'.

またCを希望波電力、Nを雑音電力、■を干渉波電力と
してC/(N+I) < 14dBとなる場合を劣化と
する。伝搬モデルは、長区間中央値の距離減衰定数αを
3.5、希望波および各干渉波の短区間中央値は互いに
独立に標準偏差σ=6.0dBの対数正規分布に従うも
のとする。
Furthermore, where C is the desired wave power, N is the noise power, and ■ is the interference wave power, the case where C/(N+I) < 14 dB is considered to be deterioration. In the propagation model, the distance attenuation constant α of the long interval median value is 3.5, and the short interval median values of the desired wave and each interference wave independently follow a lognormal distribution with a standard deviation σ = 6.0 dB.

第5図は、送信電力をアンテナ指向性の最大利得方向の
セル境界における長区間平均CNRが25dBとなる様
に設定した場合の半値幅に対する劣化率の変化である。
FIG. 5 shows the change in deterioration rate with respect to the half-width when the transmission power is set so that the long-term average CNR at the cell boundary in the maximum gain direction of the antenna directivity is 25 dB.

送信電力が同一であるため、劣化率の差は干渉量の差を
示している。第5図は、本発明のチャネル配置方式にお
いて半値幅が400以下のアンテナを用いれば、従来の
平行ビーム方式やバックバックビーム方式よりも、干渉
量が少なくなることを示している。例えば半値幅が30
°の場合、平行ビーム方式の劣化率11.8%に対して
、本発明のチャネル配置方式の劣化率は7.3%と2/
3以下になる。
Since the transmission power is the same, the difference in deterioration rate indicates the difference in the amount of interference. FIG. 5 shows that if an antenna with a half width of 400 or less is used in the channel arrangement method of the present invention, the amount of interference will be smaller than in the conventional parallel beam method or back-back beam method. For example, the half width is 30
°, the deterioration rate of the channel arrangement method of the present invention is 7.3%, compared to 11.8% for the parallel beam method.
Becomes 3 or less.

(発明の効果) 以上詳細に説明したように本発明によれば、干渉量の少
ないセクタ溝底のセルラーシステムを構築することが出
来る。
(Effects of the Invention) As described above in detail, according to the present invention, it is possible to construct a sector groove bottom cellular system with less interference.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明のチャネル配置方式の実施例を示す図、
第2図は平行ビーム方式を示す図、第3図はバックバッ
ク方式を示す図、第4図は本発明の詳細な説明するため
の図、第5図は各チャネル配置方式の劣化率を示す図で
ある。 図において、 10・・・無線基地局、20・・・同一周波数のチャネ
ルが配置されたセクタ。
FIG. 1 is a diagram showing an embodiment of the channel arrangement method of the present invention;
FIG. 2 is a diagram showing the parallel beam method, FIG. 3 is a diagram showing the back-back method, FIG. 4 is a diagram for explaining the present invention in detail, and FIG. 5 is a diagram showing the deterioration rate of each channel arrangement method. It is a diagram. In the figure, 10... Wireless base station, 20... Sector in which channels of the same frequency are arranged.

Claims (1)

【特許請求の範囲】 60°または120°で交わる斜交座標(s,t)にお
いて、任意の整数i、jおよび一定の実数Rに対してs
=√3Ri t=√3Rj で与えられる斜交座標(s,t)の位置に無線基地局を
配置し、前記各無線基地局に六つの指向性アンテナをそ
の最大放射方向がs軸の正の方向に対してそれぞれ0°
、60°、120°、180°、240°、300°と
なるように配置することによりモデル化されるセクタ構
成のセルラーシステムのチャネル配置方式であって、一
定の自然数nと任意の整数j、kおよび一定の実数Rに
対して、斜交座標(s,t)が(√3Rnk,√3Rj
)で与えられる無線基地局の最大放射方向がs軸の正の
方向に対して0°となる指向性アンテナによりカバーさ
れるセクタに、同一周波数のチャネルを配置することを
特徴とするチャネル配置方式。
[Claims] In oblique coordinates (s, t) that intersect at 60° or 120°, for arbitrary integers i, j and a constant real number R, s
=√3Ri t=√3Rj A wireless base station is placed at the position of the oblique coordinates (s, t) given by 0° for each direction
, 60°, 120°, 180°, 240°, and 300°, the channel arrangement method of a cellular system with a sector configuration is modeled by arranging the channels so that the angles are set as follows: a constant natural number n and an arbitrary integer j, k and a constant real number R, the oblique coordinates (s, t) are (√3Rnk, √3Rj
) is a channel allocation method characterized by arranging channels of the same frequency in sectors covered by directional antennas in which the maximum radiation direction of the wireless base station is 0° with respect to the positive direction of the s-axis. .
JP1340306A 1989-12-28 1989-12-28 Channel arrangement system for cellar system Pending JPH03201729A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1340306A JPH03201729A (en) 1989-12-28 1989-12-28 Channel arrangement system for cellar system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1340306A JPH03201729A (en) 1989-12-28 1989-12-28 Channel arrangement system for cellar system

Publications (1)

Publication Number Publication Date
JPH03201729A true JPH03201729A (en) 1991-09-03

Family

ID=18335682

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1340306A Pending JPH03201729A (en) 1989-12-28 1989-12-28 Channel arrangement system for cellar system

Country Status (1)

Country Link
JP (1) JPH03201729A (en)

Similar Documents

Publication Publication Date Title
US8718541B2 (en) Techniques for optimal location and configuration of infrastructure relay nodes in wireless networks
US6339708B1 (en) Method and apparatus for communications resource allocation for a wireless communications system
US6405044B1 (en) Cellular communications system
JPH04502694A (en) cellular radiotelephone communication system
US11240752B2 (en) Adaptive energy efficient cellular network
Laiho-Steffens et al. The impact of the radio network planning and site configuration on the WCDMA network capacity and quality of service
Coombs et al. Introducing microcells into macrocellular networks: A case study
Marzi et al. Interference analysis for mm-wave picocells
Wang et al. Interference analysis and resource allocation for TDD-CDMA systems to support asymmetric services by using directional antennas
Meng et al. Co-channel coexistence analysis between 5G IoT system and fixed-satellite service at 40 GHz
CN101335552A (en) Strip type covered intelligent antenna implementing method and apparatus
Han et al. Numerical approximation of millimeter-wave frequency sharing between cellular systems and fixed service systems
JPH03201729A (en) Channel arrangement system for cellar system
JP2504246B2 (en) Channel allocation method for cellular system
Lötter et al. An overview of space division multiple access techniques in cellular systems
JPH03201727A (en) Channel arrangement system for cellar system
Iqbal et al. Calculation of Overlapping Area for Cellular Systems
JPH03201726A (en) Channel arrangement system for cellar system
JPH03201730A (en) Channel arrangement system for cellar system
JP2006245827A (en) Radio communication system and method for forming cell
JPH0411419A (en) Channel arrangement system for cellular system
JP2900531B2 (en) Channel allocation method of cellular system
JP3754224B2 (en) Sector antenna and sector cell configuration method
JP2900513B2 (en) Channel allocation method of cellular system
Nomura et al. Multiple radio zone plans in mobile radio systems