JPH03201704A - Parabolic antenna system - Google Patents

Parabolic antenna system

Info

Publication number
JPH03201704A
JPH03201704A JP34135889A JP34135889A JPH03201704A JP H03201704 A JPH03201704 A JP H03201704A JP 34135889 A JP34135889 A JP 34135889A JP 34135889 A JP34135889 A JP 34135889A JP H03201704 A JPH03201704 A JP H03201704A
Authority
JP
Japan
Prior art keywords
diameter
weight
throughholes
reflecting mirror
antenna
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP34135889A
Other languages
Japanese (ja)
Inventor
Yasuyuki Nonaka
康行 野中
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP34135889A priority Critical patent/JPH03201704A/en
Publication of JPH03201704A publication Critical patent/JPH03201704A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/005Damping of vibrations; Means for reducing wind-induced forces

Landscapes

  • Aerials With Secondary Devices (AREA)

Abstract

PURPOSE:To make the weight of a reflection mirror light, to reduce the window pressure weight and to relieve the load onto a mount support without deteriorating the antenna efficiency by making plural throughholes to the reflection mirror formed with a self-standing member and selecting the diameter and the pitch of the throughholes. CONSTITUTION:The diameter and the pitch of plural throughholes 51 are selected to satisfy inequality I in a reflecting mirror 31 with the plural throughholes 51 made thereto, where L is the diameter of the throughhole, Ad is its total area, A is an area of a reflecting mirror and lambda is a wavelength of a received radio wave in the inequality I. Moreover, a base member 52 of the reflection mirror 31 is made of an unsaturated polyester and a glass fiber reinforced resin and a reflecting layer 53 made of a metallic plate with a high reflectance of a radio wave such as aluminum press-formed in matching with the shape of a parabolic curved face of the member 52 is adhered to an inner face (aperture) of a bowl by means of the adhesion. Thus, the wind resistance and the reduced weight are maximized without deteriorating the reception performance.

Description

【発明の詳細な説明】 [発明の目的1 (産業上の利用分野) 本発明は衛星放送及び衛星通1.)等に使用号るパラボ
ラアンテナ装dに係り、特に軽品化や耐風圧性の向上を
図るようにしたものである。
[Detailed Description of the Invention] [Objective of the Invention 1 (Field of Industrial Application) The present invention is directed to satellite broadcasting and satellite communication 1. ), etc., and is particularly designed to be lighter and have improved wind pressure resistance.

(従来の技術) 一般にパラボラアンテナの反射鏡は金属板の一体構造で
形成される。ところが近年衛星放送等の酋長に伴って、
一般家庭にもパラボラアンテナが取付けられるようにな
ってきている。一般家庭に取付けるに1ま、取付けが簡
単で、軽損なものがよい。そこで、反Ql 11の基材
には、軽くて丈夫な繊維強化樹脂(FRP)を用い、表
面(開口面)側に、電波を反射づる薄い金属板を張付1
ノるm造のパラボラアンテナが実用化されている。
(Prior Art) Generally, a reflecting mirror of a parabolic antenna is formed of an integral structure of a metal plate. However, in recent years, with the advancement of satellite broadcasting, etc.
Parabolic antennas are increasingly being installed in ordinary homes. For installation in a general household, it is best to use one that is easy to install and has minimal damage. Therefore, we used light and durable fiber reinforced resin (FRP) as the base material of anti-Ql 11, and attached a thin metal plate that reflects radio waves to the surface (opening surface) side.
A parabolic antenna made by Norm construction has been put into practical use.

このようなパラボラアンテナは、第6図に示づように、
放物曲面の板体形状をした反射111、反射I11によ
って収束したm波を受信する一次敢剣器2を主要なエレ
メントとして構成される。−次放射器2は周波数コンバ
ータと一体化さている。
Such a parabolic antenna, as shown in Figure 6,
The main elements are a reflection 111 having a parabolic plate shape and a primary sword device 2 that receives m-waves converged by the reflection I11. -order radiator 2 is integrated with a frequency converter.

反射鏡1は、全体の外形が開口面側を凹面とづるお椀形
となっており、反射鏡1の背面はマウント4を介してボ
ール3に取(juられる。
The overall external shape of the reflecting mirror 1 is a bowl shape with the opening side being concave, and the back surface of the reflecting mirror 1 is attached to a ball 3 via a mount 4.

反射鏡1の断面構造は、第7図に示すように、駐材61
反射層7.エポキシ樹脂8の3層構造になっている。基
材6は、繊維強化樹脂を用い、上記万物曲面の板体形状
に形成される。反!8屑7は、金属板を基材6の万物曲
面に合わせてプレス形成したものであり、基材6の開口
面に接着により取付られている。エボ主シ樹脂8は反射
層7を外気から保護しており、コーディングにより形成
される。
The cross-sectional structure of the reflecting mirror 1 is as shown in FIG.
Reflective layer7. It has a three-layer structure of epoxy resin 8. The base material 6 is made of fiber-reinforced resin and is formed into a plate shape having the above-mentioned curved surface. Against! The 8 pieces 7 are formed by pressing a metal plate to match the curved surface of the base material 6, and are attached to the open surface of the base material 6 by adhesive. The evo main resin 8 protects the reflective layer 7 from the outside air and is formed by coating.

このようなパラボラアンテナ装置は、反射鏡1がお椀形
をしているため、風圧加重が大ぎい。また、反射鏡1は
、繊組強化樹脂で形成されているといってら、小形のも
のて” b 60 cmあり、重量物になる。このため
ボールを太径の強固な構造にしなければならず、さらに
(よ、ベランダのような強度が十分でない揚′所に取付
けるのに問題があった。
In such a parabolic antenna device, since the reflecting mirror 1 is bowl-shaped, the wind pressure load is large. In addition, although the reflector 1 is made of fiber-reinforced resin, it is small (60 cm) and heavy.For this reason, the ball must have a strong structure with a large diameter. Furthermore, there was a problem in installing it on a lift that is not strong enough, such as a balcony.

また、1)−向合せのため、反射鏡をモータ専の駆動装
置によって自動的に回転させるにうなパラボラアンテナ
”tA Mtに対しても、駆iF!IJ装置への負荷が
多くなる。さらに、ベランダの柵にパラボラアンテナW
iを取付!すると、部屋からの視界を遮るため圧迫感が
あり、太陽も遮って生活環境を悪化することが考えられ
る。
In addition, for 1)-alignment, the load on the drive iF!IJ device increases even for a parabolic antenna "tA Mt" whose reflecting mirror is automatically rotated by a drive device dedicated to a motor.Furthermore, Parabolic antenna W on the balcony fence
Install i! This can create a feeling of oppression as it blocks the view from the room, and also blocks the sun, worsening the living environment.

一方、従来からある軽量化及び対風圧性の向上の方法に
、反tA鏡を金網にする方法がある。これにより、反射
鏡の重量が大幅に軽くなるとと6に、風が網目を通風し
て風圧による加重が少なくなる。
On the other hand, one of the conventional methods for reducing weight and improving wind pressure resistance is to use a wire mesh for the anti-tA mirror. As a result, the weight of the reflector is significantly reduced, and the wind passes through the mesh, reducing the load caused by wind pressure.

この場合、アンテナ効率は、網目を細くずことe、一定
の効率をカバーすることができる。
In this case, the antenna efficiency can cover a certain efficiency as the mesh is thinned.

しかしながら、上記金網によるパラボラアンテナ装置は
、第8図に示すように、パラボラ状に金網20を形成す
るために、扇形の断片をフレーム19にて結合した傘状
の構造となり、フレーム19の重置によって軽量化を十
分行えない。ま/=、金網2゜は、反射鏡の円周方向で
正確な回転方物面を成さず、必然的に高い面粘度が得ら
れないため、小形のパラボラアンテナ装置では十分な性
能を発揮できず、一般家庭用として番よ不向きである。
However, as shown in FIG. 8, the above parabolic antenna device using a wire mesh has an umbrella-like structure in which fan-shaped pieces are connected by a frame 19 in order to form the wire mesh 20 in a parabolic shape. Therefore, it is not possible to achieve sufficient weight reduction. The wire mesh 2° does not form an accurate rotating object surface in the circumferential direction of the reflecting mirror, and inevitably high surface viscosity cannot be obtained, so it exhibits sufficient performance in a small parabolic antenna device. Therefore, it is not suitable for general household use.

(発明が解決しようとする課題) 従来のパラボラアンテナ装置では、反射鏡が風圧加重を
受け、ベランダのような強度が十分でない場所に取付け
るのに問題があった。また、視界が遮られ圧迫感がある
等の問題が指摘された。
(Problems to be Solved by the Invention) In conventional parabolic antenna devices, the reflecting mirror is subject to wind pressure, and there is a problem in installing it in a place where the strength is not sufficient, such as a balcony. Additionally, problems such as obstructed vision and a feeling of pressure were pointed out.

本発明は上記問題点を除去し、アンテナ効率を低下づる
ことなく、反()I鏡の軽量化、風圧加重の低下を図り
、取付は支持物に負担がかからないようにしたアンテナ
装置の提供を目的とする。
The present invention eliminates the above-mentioned problems and provides an antenna device in which the weight of the anti-I mirror is reduced and the wind pressure load is reduced without reducing the antenna efficiency, and the installation does not place any burden on the support. purpose.

[発明の構成] (課題を解決するための手段〉 立 本発明は、自律部材にて形成した反射鏡に複数の透孔を
穿設したパラボラアンテナ装置において、上記透孔の径
を[、その総面積を八d、反射鏡の面積をA、受信電波
の波長をλとしたとき、を満足づる上うに上記透孔の径
及びピッチを選択したことを特徴づる。
[Structure of the Invention] (Means for Solving the Problems) The present invention provides a parabolic antenna device in which a plurality of through holes are formed in a reflecting mirror formed of an autonomous member, in which the diameter of the through holes is The present invention is characterized in that the diameter and pitch of the through holes are selected so as to satisfy the following conditions, where the total area is 8d, the area of the reflecting mirror is A, and the wavelength of the received radio wave is λ.

(作用) 本弁明によれば、透孔の径1−がある伯のとき的限界を
求め、ll1fa化と副風圧性を向上することができる
(Function) According to the present invention, it is possible to obtain the time limit of the diameter 1-of the through hole, and to improve the ll1fa and secondary wind pressure properties.

(実施例) 以下、本発明を図示の実施例により詳細に説明する。(Example) Hereinafter, the present invention will be explained in detail with reference to illustrated embodiments.

第1図ないし第3図は本発明に係るパラボラアンテナ装
置の一実施例を示す構成図であり、笥1図は全体を示す
斜視図、第2図は本実施例により反射鏡に形成した透孔
を示す説明図、第3図1よ開展銅鏡の断面図ある。
1 to 3 are configuration diagrams showing one embodiment of a parabolic antenna device according to the present invention, in which FIG. 1 is a perspective view showing the whole, and FIG. 2 is a transparent An explanatory diagram showing the holes, FIG. 3 is a cross-sectional view of the unfolded copper mirror.

即ち、第1図に示すパラボラアンテナ装置は、放物曲面
を成すように形成された展開@31に、その凹面から裏
面を貫通する複数の丸形透孔51を、以下に説明する数
式に単いて所定の大きさ、ビツヂにて形成している。ま
た、同図では、ベランダに取付けた場合を示し、ボール
38をベランダ欄41に、取付は金具39を介して取付
け、ボール38の上端に、仰角調整金具37を介して、
反射@31.−次放射器32.支持部材33.コンバー
タ34からなるアンテナエレメントを搭載している。
That is, in the parabolic antenna device shown in FIG. 1, a plurality of round through holes 51 penetrating from the concave surface to the back surface of the expanded @31 formed to form a parabolic curved surface can be simply calculated using the following mathematical formula. It is formed with a screw to a predetermined size. In addition, the figure shows a case where the ball 38 is installed on a balcony, and the ball 38 is attached to the balcony column 41 via a metal fitting 39, and the ball 38 is attached to the upper end of the ball 38 via an elevation angle adjusting metal fitting 37.
Reflection @31. -Next radiator 32. Support member 33. It is equipped with an antenna element consisting of a converter 34.

透孔51を更に詳しく説明すると、透孔51は、第2図
に示すように、それぞれ60°の角度で交わる3方向等
間隔平行線の交点にそれぞれ丸形に形成される。ここで
、透孔51の直径(以下径という)をL1隣接する透孔
51間の距11ft(ピッチ)をPとづる。
To explain the through holes 51 in more detail, the through holes 51 are each formed in a round shape at the intersections of equally spaced parallel lines in three directions that intersect at an angle of 60 degrees, respectively, as shown in FIG. Here, the diameter (hereinafter referred to as diameter) of the through holes 51 is defined as L1, and the distance 11 ft (pitch) between adjacent through holes 51 is defined as P.

また、反射鏡31は、第3図に示すように、基材52が
、不飽和ポリニスデル及びガラス繊維に上る繊@強化樹
脂にて構成されている。お椀面の内側面(開口面)には
、アルミ等の電波の反射率が高い金属板を基材52の放
物曲面に合わせてプレス成型した反t))[453が接
着等の手段により接合される。
Further, as shown in FIG. 3, the reflecting mirror 31 has a base material 52 made of unsaturated polynisdel and glass fiber reinforced resin. On the inner surface (opening surface) of the bowl surface, a metal plate with high radio wave reflectance such as aluminum is press-molded to match the parabolic curved surface of the base material 52. be done.

また、反射層53は、エボー1シ樹脂54がコーティン
グされている。このような反射鏡31は、例えば基材5
2に反射層53を形成した後、透孔51をドリル等の穿
孔手段により形成する。丁ボ(シ樹脂54はくの後形成
する。
Further, the reflective layer 53 is coated with Evo 1 resin 54. Such a reflecting mirror 31 is, for example, a base material 5.
After forming the reflective layer 53 on the substrate 2, the through holes 51 are formed using a drilling means such as a drill. Formed after peeling off the resin 54.

本実施例は上記構成において、孔を明けない通常のアン
テナにおける効率を100%とし、実用的に許容できる
効率に対して、透孔51の直径(以下ILとする〉とそ
のピッチPをいずれの伯に設定するかを決める式を求め
たものである。即ち、反1)j!I231は、透孔51
の径りが人きい程、風圧を受けないが、効率Iよ下がる
。また、透孔51の総面積が小さい程、重量は軽くなる
が効率は下がる。そこで、この発明により設定した式に
基づいて、効率を犠牲にすることなく、耐凧圧性能と軽
量化の両方を最大限に達成づる1−とPの関係を、容易
に見出だすようにしたちのである。
In this embodiment, in the above configuration, the efficiency of a normal antenna without holes is assumed to be 100%, and the diameter of the through hole 51 (hereinafter referred to as IL) and its pitch P are determined for the practically allowable efficiency. This is an equation to determine whether to set the equation to 1). I231 is the through hole 51
The wider the diameter, the less wind pressure will be applied, but the efficiency will be lower than I. Furthermore, the smaller the total area of the through holes 51, the lighter the weight, but the lower the efficiency. Therefore, based on the formula established by this invention, we have attempted to easily find the relationship between 1- and P that maximizes both kite pressure resistance and weight reduction without sacrificing efficiency. It's ours.

まず、第4図は透孔51の径りとアンテナ効率との関係
を測定したグラフである。縦軸は通常のアンテナを10
0%どした場合のアンテナ効率(%)を示し、横軸は、
受信電波の波長λを単位として表示した径りの大きざを
示す。尚、波長λは12GH7を想定して25mmであ
る。
First, FIG. 4 is a graph showing the relationship between the diameter of the through hole 51 and the antenna efficiency. The vertical axis is a normal antenna at 10
It shows the antenna efficiency (%) when it is 0%, and the horizontal axis is
This shows the size of the radius expressed in units of the wavelength λ of the received radio waves. Note that the wavelength λ is 25 mm assuming 12GH7.

上記グラフは、しが0.145λまで(よ、通常のアン
テナと同じ100%の性能を発押し、はとんど、それと
同じ効率100%を維持づる。径L−を0.145λよ
り大きくすると、除々に低下りることを示している。実
用的な目安として、効率90%を許容すると、多少のば
らつきを生じるものの、略0.2λに拡げても良いこと
が解かる。
The above graph shows that up to 0.145λ, the antenna achieves 100% performance, which is the same as a normal antenna, and almost always maintains the same efficiency of 100%.If the diameter L- is made larger than 0.145λ, As a practical guideline, if the efficiency is allowed to be 90%, it can be seen that it may be expanded to approximately 0.2λ, although some variation will occur.

しかし、Lの大きさを決定しても、ピップを決めなけれ
ば、透孔51を穿孔することはできない。
However, even if the size of L is determined, the through hole 51 cannot be drilled unless the pip is determined.

そこで、この発明で番よ、反射鏡31に占める透孔51
の総面積割合(以下開口率と呼ぶ〉とLの値をそれぞれ
に変化させたときの、アンテナ効率特性を測定した。
Therefore, in this invention, the through hole 51 occupied by the reflecting mirror 31 is
The antenna efficiency characteristics were measured when the total area ratio (hereinafter referred to as aperture ratio) and the value of L were varied.

第5図は上記開口率と透孔51の(¥Lとを種々の組合
わじに変化さ吐で測定したアンテナ効率特性を示すグラ
フである。即ち、縦軸にアンテナ効率をとり、横軸には
、受イ3電波の波長に対するしの割合(1,/λ)と間
口率との積(スカラー重となる)をとっである。なお、
左側の縦@【よ透孔を設()ないアンテナどの相対利4
9(dB)を表わしている。
FIG. 5 is a graph showing the antenna efficiency characteristics measured by varying the aperture ratio and (\L) of the through hole 51 in various combinations. That is, the vertical axis represents the antenna efficiency, and the horizontal axis represents the antenna efficiency. is the product of the ratio (1,/λ) to the wavelength of the received A3 radio wave and the frontage ratio (which becomes a scalar weight).
Vertical on the left side @ [Relative advantage of which antenna does not have a through hole ()
9 (dB).

このグラフによれば、積値が0.05以下のときは10
0%の効率を維持し、この値より小ざくすると、直線的
にアンテナ効率の低下が始まる。
According to this graph, when the product value is 0.05 or less, 10
If the efficiency is maintained at 0% and the value is decreased below this value, the antenna efficiency begins to decrease linearly.

アンテナ効率90%を許容づると、積値を0.13:L
で大きくすることができる。このとぎのアンブナ相対利
4!#1よ、−0,5dBである。
If the antenna efficiency is 90%, the product value is 0.13:L.
You can make it bigger with . Anbuna relative interest of this moment 4! #1, -0.5dB.

同日率は、反射鏡31の面積をA、透孔51の総面積を
A、とすると、Ad/Aで表され、透孔51によって軽
くなった割合に相当する。いま、アンテナ重量を5分の
1だけ忰くシようとすると、Ad/A=0.2となり、
アンテナ効率90%を達成しようとづると、L/、Rは
、0.65より小さければ良い。これより、λを25M
とすれば、しは最大16.25mの大きさにづることが
できる。
The same-day rate is expressed as Ad/A, where A is the area of the reflecting mirror 31 and A is the total area of the through holes 51, and corresponds to the rate of weight reduction due to the through holes 51. Now, if we try to reduce the antenna weight by one-fifth, Ad/A=0.2,
In order to achieve antenna efficiency of 90%, L/R should be smaller than 0.65. From this, λ is 25M
Therefore, the maximum size of the ship can be 16.25 m.

また、同じ90%で、5分の1の軽量度J、り上げよう
とりれば(督くづる)、Li3(よ小さくなり、[を小
さくしなければならず、軽量度を5分の1より小ざくし
ようとづれば(重くする〉、Li3は大きくなり、Lを
大きくすることができる。これにより、必要とりるアン
テナ効率を維持しながら、軽量化を図り、F!4風圧風
合性好にづるしとPを見出だりことができる。
Also, at the same 90%, if you try to raise the weight J to 1/5, it will become smaller than Li3, and you will have to make it smaller, and the weight will be reduced to 1/5. If you try to make it smaller (make it heavier), Li3 becomes larger and L can be increased.This allows you to reduce the weight while maintaining the required antenna efficiency, and improve the F!4 wind pressure and texture. You can find Nizurushi and P.

即ら、第2図のような丸形透孔51の場合、開口率は径
しとビッヂPによって以下のように表でことができる。
That is, in the case of a round through hole 51 as shown in FIG. 2, the aperture ratio can be expressed in the table below using the diameter and bit P.

第2図の場合、−辺がビッヂPの正三角形に1/6πの
扇形が3つ分、つまり、透孔51の半円分存在し、この
とき、反射鏡31に対して、全体で一様に透孔51が形
成されていたとすると、聞[]率ηは、半円分の面積と
正三角形の比となるので、 ・・・■ で表わせる。上式によれば、開口率がLとPの比の2乗
に比例しているので、あるしの伯に対する間口率を求め
れば、ピッチPを弾出することができる。
In the case of FIG. 2, there are three sectors of 1/6π in the equilateral triangle with the - side of bit P, that is, the half circle of the through hole 51. Assuming that the through hole 51 is formed as shown in FIG. According to the above formula, since the aperture ratio is proportional to the square of the ratio of L and P, the pitch P can be ejected by finding the frontage ratio for the square.

なJ3.412図の丸形透孔の場合、積が0.125以
上だと、透孔と透孔の間の祠料か細くなり、透孔の形成
時に材料が切れる等、酸味性の点からもこれ以下が望に
シい。また、開口率とし/λの積値が0.05までなら
、アンテナ効率を100%に保ったまま、軽め化を図り
風圧を小さくすることができる。上記Ia値を0.13
まで許容するならばアンテナ効率は90%となり、相対
利得は−Q、5dBとなる。また、0.38まで許容す
ると、アンテナ効率は60%となり、相対利得は−2、
OdBとなる。
In the case of the round holes shown in Figure J3.412, if the product is 0.125 or more, the abrasive material between the holes will become thinner, and the material may be cut when forming the holes, etc., from the point of view of acidity. I can't hope for anything less than this. Further, if the aperture ratio /λ product value is up to 0.05, it is possible to reduce the weight and reduce the wind pressure while maintaining the antenna efficiency at 100%. The above Ia value is 0.13
If the antenna efficiency is allowed up to 90%, the relative gain is -Q, 5 dB. Also, if it is allowed up to 0.38, the antenna efficiency will be 60% and the relative gain will be -2,
It becomes OdB.

このように、この発明に係るアンテナ装置によれば、適
当なしとPの選択により、受信性能を劣化せすることな
く、通風性と軽量度を最大限に高めることができる。ま
た、ベランダに設置した場合、部屋からの視界を妨げず
、圧迫感がなく、日本の住宅事情に合い、狭い空間の右
動利用が図れる。
As described above, according to the antenna device according to the present invention, by selecting the appropriate value "None" and "P", it is possible to maximize ventilation and light weight without deteriorating reception performance. In addition, when installed on a balcony, it does not obstruct the view from the room and does not feel oppressive, making it suitable for Japanese housing conditions and allowing for the right movement of narrow spaces.

さらに、反射鏡の軽星化が図れることで、方向調整を行
う駆動装置を低電力回路で構成できるという利点がある
Furthermore, by making the reflector a light star, there is an advantage that the driving device for direction adjustment can be configured with a low-power circuit.

なお、反射鏡を形成する基材は、繊維強化樹脂。The base material that forms the reflective mirror is fiber reinforced resin.

金属等の自立部材とし、金網のように、材料部品から構
成するものとは区別する。
It is a self-supporting member made of metal, etc., and is distinguished from one made of material parts, such as a wire mesh.

[発明の効果コ 以上説明したようにこの発明によれば、耐風圧性と軽母
化の両方を最大限に達成づるパラボラアンテナを提供す
ることができる。
[Effects of the Invention] As explained above, according to the present invention, it is possible to provide a parabolic antenna that can maximize both wind pressure resistance and light weight.

【図面の簡単な説明】[Brief explanation of drawings]

第1図ないし第3図は本発明に係るパラボラアンテナ装
置の一実施例を示す斜視図、説明図及び断面図、第4図
は透孔の径とアンテナ効率との関係を測定したグラフ、
第5図1.i透孔の径と開[1率を考慮したアンテナ効
率特性を表わすグラフ、第6図は従来のパラボラアンテ
ナ装置を示す斜視図、第7図は第6図のアンテナ装置の
反9112を示す断面図、第8図(よ従来の他のパラボ
ラアンテナ装置を示す斜視図である。 31・・・反射鏡、32・・・−吹成Q4器、33・・
・支持部材、34・・・コンバータ、37・・・仰角調
整用金具、38・・・ボール、39・・・取付は金具、
41・・・ベランダ欄、51・・・透孔、し・・・透孔
の径、P−・・透孔のピッチ、52・・・基材、53・
・・反射に’?、54・・・]]ニポ4−シ樹脂第1r
lA ト)lh+□船
1 to 3 are perspective views, explanatory views, and cross-sectional views showing one embodiment of the parabolic antenna device according to the present invention, and FIG. 4 is a graph measuring the relationship between the diameter of the through hole and the antenna efficiency.
Figure 5 1. A graph showing the antenna efficiency characteristics considering the diameter of the through-hole and the aperture [1 ratio], Fig. 6 is a perspective view showing a conventional parabolic antenna device, and Fig. 7 is a cross section showing the angle 9112 of the antenna device in Fig. 6. FIG. 8 is a perspective view showing another conventional parabolic antenna device.
・Support member, 34... Converter, 37... Elevation adjustment fitting, 38... Ball, 39... Mounting fitting,
41...Balcony column, 51...Through hole,...Through hole diameter, P-...Through hole pitch, 52...Base material, 53...
...Reflection'? , 54...]] Nipo 4-Si resin 1r
lA g)lh+□ship

Claims (1)

【特許請求の範囲】 自立部材で形成された反射鏡に複数の透孔が穿設された
パラボラアンテナ装置であつて、前記透孔の径をL、そ
の総面積をA_d、反射鏡の面積をA、受信電波の波長
をλとしたとき、0<L/λ×A_d/A≦0.38 を満足するように前記透孔の径及びピッチを選択したこ
とを特徴するパラボラアンテナ装置。
[Claims] A parabolic antenna device in which a plurality of through holes are bored in a reflecting mirror formed of a self-supporting member, wherein the diameter of the through holes is L, the total area is A_d, and the area of the reflecting mirror is A. A parabolic antenna device characterized in that the diameter and pitch of the through holes are selected so as to satisfy 0<L/λ×A_d/A≦0.38, where λ is the wavelength of a received radio wave.
JP34135889A 1989-12-28 1989-12-28 Parabolic antenna system Pending JPH03201704A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP34135889A JPH03201704A (en) 1989-12-28 1989-12-28 Parabolic antenna system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP34135889A JPH03201704A (en) 1989-12-28 1989-12-28 Parabolic antenna system

Publications (1)

Publication Number Publication Date
JPH03201704A true JPH03201704A (en) 1991-09-03

Family

ID=18345448

Family Applications (1)

Application Number Title Priority Date Filing Date
JP34135889A Pending JPH03201704A (en) 1989-12-28 1989-12-28 Parabolic antenna system

Country Status (1)

Country Link
JP (1) JPH03201704A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016087721A1 (en) * 2014-12-03 2016-06-09 Airbus Defence And Space Sas Method for manufacturing an antenna reflector shell, in particular of a space vehicle
WO2016087722A1 (en) * 2014-12-03 2016-06-09 Airbus Defence And Space Sas Process for manufacturing an antenna reflector body, in particular for a spacecraft

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016087721A1 (en) * 2014-12-03 2016-06-09 Airbus Defence And Space Sas Method for manufacturing an antenna reflector shell, in particular of a space vehicle
WO2016087722A1 (en) * 2014-12-03 2016-06-09 Airbus Defence And Space Sas Process for manufacturing an antenna reflector body, in particular for a spacecraft
FR3029691A1 (en) * 2014-12-03 2016-06-10 Airbus Defence & Space Sas METHOD FOR MANUFACTURING ANTENNA REFLECTOR SHELL, ESPECIALLY A SPATIAL DEVICE
FR3029690A1 (en) * 2014-12-03 2016-06-10 Airbus Defence & Space Sas METHOD FOR MANUFACTURING ANTENNA REFLECTOR SHELL, ESPECIALLY A SPATIAL DEVICE

Similar Documents

Publication Publication Date Title
US7348934B2 (en) Lens antenna system
US6727861B2 (en) Satellite antenna mounting apparatus and method
US6990773B2 (en) Flexible reflective skylight tubes
US5512913A (en) Flat plate antenna, scaler collector and supporting structure
US6307521B1 (en) RF and IR bispectral window and reflector antenna arrangement including the same
US6198457B1 (en) Low-windload satellite antenna
JP3437993B2 (en) Antenna unit using radio wave transmitting body
JPH03201704A (en) Parabolic antenna system
CN107331960B (en) Antenna housing for reflector antenna and manufacturing method thereof
JPH02228103A (en) Conical horn antenna
US4916459A (en) Parabolic antenna dish
JP3657554B2 (en) Lens antenna device
CN111355034B (en) Dual-passband wave-transmitting structure with wave absorbing function
WO2005020373A1 (en) Plane elements for the absorption or reduction of the reflection of electromagnetic waves
EP0480917A1 (en) A solid dielectric lens aerial
JPH03178204A (en) Fresnel lens type antenna
US11742569B2 (en) Protective enclosure system
KR100314343B1 (en) Digital Satellite Broadcasting Servo System for Vehicle using Aperture Coupled Microstrip Array Antenna and Control Method the Same
US20230361456A1 (en) Protective Enclosure System
US11128951B1 (en) Prime polygon reflectors and methods of use
US10462562B1 (en) Prime polygon reflectors and methods of use
JP2771876B2 (en) Planar antenna structure
JP2771877B2 (en) Surface antenna
JPS62249503A (en) Plane antenna
JP2004282718A (en) Radio wave lens antenna device